Nanocrystalline Al7075 + 1 wt % Zr Alloy Prepared Using Mechanical Milling and Spark Plasma Sintering

. 2017 Sep 20 ; 10 (9) : . [epub] 20170920

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28930192

The microstructure, phase composition, and microhardness of both gas-atomized and mechanically milled powders of the Al7075 + 1 wt % Zr alloy were investigated. The gas-atomized powder exhibited a cellular microstructure (grain size of a few µm) with layers of intermetallic phases along the cell boundaries. Mechanical milling (400 revolutions per minute (RPM)/8 h) resulted in a grain size reduction to the nanocrystalline range (20 to 100 nm) along with the dissolution of the intermetallic phases. Milling led to an increase in the powder's microhardness from 97 to 343 HV. Compacts prepared by spark plasma sintering (SPS) exhibited negligible porosity. The grain size of the originally gas-atomized material was retained, but the continuous layers of intermetallic phases were replaced by individual particles. Recrystallization led to a grain size increase to 365 nm in the SPS compact prepared from the originally milled powder. Small precipitates of the Al₃Zr phase were observed in the SPS compacts, and they are believed to be responsible for the retainment of the sub-microcrystalline microstructure during SPS. A more intensive precipitation in this SPS compact can be attributed to a faster diffusion due to a high density of dislocations and grain boundaries in the milled powder.

Zobrazit více v PubMed

Lawley A. Trends in Atomization and Consolidation of Powders for High-Temperature Aerospace Materials. In: Bramfitt B.L., Benn R.C., Brinkmann C.R., Voort G.F.V., editors. MiCon 86: Optimization of Processing, Properties, and Service Performance Through Microstructural Control. American Society for Testing and Materials; Philadelphia, PA, USA: 1988. pp. 193–201. ASTM STP 979. DOI

Bachaga T., Daly R., Escoda L., Suñol J.J., Khitouni M. Amorphization of Al50(Fe2B)30Nb20 mixture by mechanical alloying. J. Metall. Mater. Trans. A. 2013;44:4718–4724. doi: 10.1007/s11661-013-1831-7. DOI

Makhlouf M.B., Bachaga T., Suñol J.J., Dammak M., Khitouni M. Synthesis and Characterization of Nanocrystalline Al-20 at. % Cu Powders Produced by Mechanical Alloying. Metals. 2016;6:145. doi: 10.3390/met6070145. DOI

Fecht H.-J. Nanostructure formation by mechanical attrition. Nanostruct. Mater. 1995;6:33–42. doi: 10.1016/0965-9773(95)00027-5. DOI

Suryanarayana C. Mechanical alloying and milling. Prog. Mater. Sci. 2001;46:1–184. doi: 10.1016/S0079-6425(99)00010-9. DOI

Orru R., Licheri R., Locci A.M., Cincotti A., Cao G. Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater. Sci. Eng. R. 2009;63:127–287. doi: 10.1016/j.mser.2008.09.003. DOI

Guillon O., Gonzalez-Julian J., Dargatz B., Kessel T., Schierning G., Räthel J., Herrmann M. Field-Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments. Adv. Eng. Mater. 2014;16:830–849. doi: 10.1002/adem.201300409. DOI

Suarez M., Fernandez A., Menendez J.L., Torrecillas R., Kessel H.U., Hennicke J., Kirchner R., Kessel T. Challenges and Opportunities for Spark Plasma Sintering: A Key Technology for a New Generation of Materials. In: Ertug B., editor. Sintering Applications. InTech; Rijeka, Croatia: 2013. pp. 319–342. DOI

Kwon H., Park D.H., Park Y., Silvain J.F., Kawasaki A., Park Y. Spark plasma sintering behavior of pure aluminium depending on various sintering temperatures. Met. Mater. Int. 2010;16:71–75. doi: 10.1007/s12540-010-0071-2. DOI

Salem H.G., Sadek A.A. Fabrication of High Performance PM Nanocrystalline Bulk AA2124. J. Mater. Eng. Perform. 2010;19:356–367. doi: 10.1007/s11665-009-9507-6. DOI

Rajabi M., Vahidi M., Simchi A., Davami P. Effect of rapid solidification on the microstructure and mechanical properties of hot-pressed Al-20Si-5Fe alloys. Mater. Charact. 2009;60:1370–1381. doi: 10.1016/j.matchar.2009.06.014. DOI

Malek P., Janecek M., Bartuska P. Structure and properties of a powder metallurgy Al-Zr-Ti alloy. [(accessed on 4 April 2017)];Kovove Mater. 2002 40:371–388. Available online: https://www.researchgate.net/publication/287630953_Structure_and_properties_of_a_powder_metallurgy_Al-Zr-Ti_alloy.

Matsuki K., Iwaki M., Tokiyawa M., Murakami Z. Microstructural evolution during initial stage of high-strain rate superplastic deformation in powder metallurgical 7475 Al-0.7Zr alloy. Mater. Sci. Technol. 1991;7:513–519. doi: 10.1179/mst.1991.7.6.513. DOI

Malek P., Erlebach J., Cieslar M., Knoop F.M. Superplasticity in an Al-Zn-Mg-Cu-Zr alloy prepared by powder metallurgy. Phys. Status Solidi A. 1996;157:275–286. doi: 10.1002/pssa.2211570209. DOI

Rokni M.R., Widener C.A., Crawford G.A. Microstructural evolution of 7075 Al gas atomized powder and high-pressure cold sprayed deposition. Surf. Coat. Technol. 2014;251:254–263. doi: 10.1016/j.surfcoat.2014.04.035. DOI

Asgharzadeh H., Simchi A., Kim H.S. Microstructural features, texture and strengthening mechanisms of nanostructured AA6063 alloy processed by powder metallurgy. Mater. Sci. Eng. A. 2011;528:3981–3989. doi: 10.1016/j.msea.2011.01.082. DOI

Azimi A., Shokuhfar A., Zolriasatein A. Nanostructured Al-Zn-Mg-Cu-Zr alloy prepared by mechanical alloying followed by hot pressing. Mater. Sci. Eng. A. 2014;595:124–130. doi: 10.1016/j.msea.2013.11.094. DOI

Das T., Karunanithi R., Sinha A., Ghosh K.S., Bera S. Deformation, decomposition and hardening of nano Al7075 alloy prepared by mechanical milling and hot pressing. Adv. Powder Technol. 2016;27:1874–1877. doi: 10.1016/j.apt.2016.05.010. DOI

Saheb N., Aliyu I.K., Hassan S.F., Al-Aqeeli N. Matrix structure evolution and nanoreinforcement distribution in mechanically milled and spark plasma sintered Al-SiC nanocomposites. Materials. 2014;7:6748–6767. doi: 10.3390/ma7096748. PubMed DOI PMC

Al-Aqeeli N. Processing of CNTs reincorced Al-based nanocomposites using different consolidation techniques. J. Nanomater. 2013:1–10. doi: 10.1155/2013/370785. DOI

Molnárová O., Málek P., Lukáč F., Chráska T. Spark Plasma Sintering of a Gas Atomized Al7075 Alloy: Microstructure and Properties. Materials. 2016;9:1004. doi: 10.3390/ma9121004. PubMed DOI PMC

Becker H., Dopita M., Stráská J., Málek P., Vilémová M., Rafaja D. Microstructure and properties of spark plasma sintered Al-Zn-Mg-Cu alloy. Acta Phys. Pol. A. 2015;128:602–605. doi: 10.12693/APhysPolA.128.602. DOI

Zhang J.C., Ding D.Y., Zhang W.L., Kang S.H., Xu X.L., Gao Y.J., Chen G.Z., Chen W.G., You X.H. Effect of Zr addition on microstructure and properties of Al-Mn-Si-Zn-based alloy. Trans. Nonferrous Met. Soc. China. 2014;24:3872–3878. doi: 10.1016/S1003-6326(14)63545-7. DOI

Panigrahi S.K., Jayaganthan R. Effect of Annealing on Thermal Stability, Precipitate Evolution, and Mechanical Properties of Cryorolled Al 7075 Alloy. Met. Mater. Trans. A. 2011;42:3208–3217. doi: 10.1007/s11661-011-0723-y. DOI

Tagliente M.A., Massaro M. Strain-driven (0 0 2) preferred orientation of ZnO nanoparticles in ion-implanted silica. Nucl. Instrum. Methods Phys. Res. B. 2008;266:1055–1061. doi: 10.1016/j.nimb.2008.02.036. DOI

Hellebrandt M. The Inorganic Crystal Structure Database (ICSD)—Present and Future. Crystallogr. Rev. 2004;10:17–22. doi: 10.1080/08893110410001664882. DOI

Stadelmann P.A. EMS—A software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy. 1987;21:131–145. doi: 10.1016/0304-3991(87)90080-5. DOI

Wert J.A., Paton N.E., Hamilton C.H., Mahoney M. Grain-refinement in 7075 Aluminum by thermomechanical processing. Met. Trans. A. 1981;12:1267–1276. doi: 10.1007/BF02642340. DOI

Malek P. Superplasticity in an Al-Zn-Mg-Cu alloy. Mater. Sci. Eng. A. 1991;137:21–26. doi: 10.1016/0921-5093(91)90314-D. DOI

Turba K., Malek P., Rauch E.F., Cieslar M. High strain rate superplasticity in a Zr and Sc modified 7075 aluminum alloy produced by ECAP. Mater. Sci. Forum. 2008;584–586:164–169. doi: 10.4028/www.scientific.net/MSF.584-586.164. DOI

Devaraj S., Sankaran S., Kumar R. Influence of spark plasma sintering temperature on the densification, microstructure and mechanical properties of Al-4.5 wt %Cu alloy. Acta Metall. Sin. 2013;26:761–771. doi: 10.1007/s40195-013-0159-z. DOI

Gupta M., Mohamed F.A., Lavernia E.J. Solidification characteristics of atomized Al-Ti powders. Scr. Metall. Mater. 1992;26:697–702. doi: 10.1016/0956-716X(92)90422-B. DOI

Molnárová O., Málek P., Becker H. The investigation of the Al7075+ 1 wt % Zr alloy prepared using spark plasma sintering; Proceedings of the METAL 2015: 24th International Conference on Metallurgy and Materials; Brno, Czech Republic. 3–5 June 2015; pp. 1221–1226.

Molnarova O., Malek P., Németh G., Kozlík J., Lukáč F., Chráska T., Cinert J. The investigation of an Al7075 alloy prepared by spark plasma sintering of milled powders; Proceedings of the METAL 2016: 25th Anniversary International Conference on Metallurgy and Materials; Brno, Czech Republic. 25–27 May 2016; pp. 1200–1205.

Humphreys F.J., Huang Y., Brough I.I., Harris C. Electron backscatter diffraction of grain and subgrain structures-resolution considerations. J. Microsc. 1999;195:212–216. doi: 10.1046/j.1365-2818.1999.00579.x. PubMed DOI

Chen H.B., Tao K., Yang B., Zhang J.S. Nanostructured Al-Zn-Mg-Cu alloy synthesized by cryomilling and spark plasma sintering. Trans. Nonferrous Met. Soc. China. 2009;19:1110–1115. doi: 10.1016/S1003-6326(08)60415-X. DOI

Hulbert D.M., Anders A., Dudina D.V., Anderson J., Jiang D., Unuvar C., Anselmi-Tamburini U., Lavernia E.J., Mukherjee A.K. The absence of plasma in “spark plasma sintering”. J. Appl. Phys. 2008;104:033305. doi: 10.1063/1.2963701. DOI

Srinivasarao B., Suryanarayana C., Oh-ishi K., Hano K. Microstructure and Mechanical Properties of Al-Zr nanocomposite materials. Mater. Sci. Eng. A. 2009;518:100–107. doi: 10.1016/j.msea.2009.04.032. DOI

Liu Z.F., Zhang Z.H., Lu J.F., Korznikova V.E., Wang F.C. Effect of sintering temperature on microstructures and mechanical properties of spark plasma sintered nanocrystalline aluminium. Mater. Des. 2014;64:625–630. doi: 10.1016/j.matdes.2014.08.030. DOI

Mondolfo L.F. 4-Aluminum-Zinc Alloys. In: Mondolfo L.F., editor. Aluminium Alloys: Structure and Properties. Butterworth-Heinemann; London, UK: 1976. pp. 842–882. DOI

Hardy H.K., Heal T.J. Report on precipitation. Prog. Met. Phys. 1954;5:143–278. doi: 10.1016/0502-8205(54)90006-4. DOI

Liu J.Z., Chen J.H., Yang X.B., Ren S., Wu C.L., Xub H.Y., Zoub J. Revisiting the precipitation sequence in Al-Zn-Mg-based alloys by high-resolution transmission electron microscopy. Scr. Mater. 2010;63:1061–1064. doi: 10.1016/j.scriptamat.2010.08.001. DOI

El-Khalek A.M.A. The variation of work-hardening characteristics of Al-1 wt % Si and Al-1 wt % Si-0.1 wt % Zr-0.1 wt % Ti alloys. Phys. B Condens. Matter. 2002;315:7–12. doi: 10.1016/S0921-4526(01)01458-2. DOI

Kim I.H., Kim C.S., Kim K.T., Kim Z.H. Microstructural Characterization of Al-Zr Alloy with Nano-Sized Grains. Key Eng. Mater. 2006;326–328:429–432. doi: 10.4028/www.scientific.net/KEM.326-328.429. DOI

Cahn R.W. In: Binary Alloy Phase Diagrams. 2nd ed. Massalski T.B., Okamoto H., Subramanian P.R., Kacprzak L., editors. ASM International; Materials Park, OH, USA: 1990. DOI

Lityńska-Dobrzyńska L., Ochin P., Góral A., Faryna M., Dutkiewicz J. The Microstructure of Rapidly Solidified Al-Zn-Mg-Cu Alloys with Zr Addition. Solid State Phenom. 2010;163:42–45. doi: 10.4028/www.scientific.net/SSP.163.42. DOI

Yazdian N., Karimzadeh F., Tavoosi M. Microstructural evolution of nanostructure 7075 aluminum alloy during isothermal annealing. J. Alloys Compd. 2010;493:137–141. doi: 10.1016/j.jallcom.2009.12.144. DOI

Patra A., Karak S.K., Pal S. Effects of Mechanical Alloying on Solid Solubility. Adv. Eng. Forum. 2016;15:17–24. doi: 10.4028/www.scientific.net/AEF.15.17. DOI

Piela K., Blaž L., Sierpinski Z., Foryš T. Non-isothermal annealing of AA7075 aluminum alloy-structural and mechanical effects. Arch Metall. Mater. 2012;57:703–709. doi: 10.2478/v10172-012-0076-6. DOI

Mondal C., Mukhopadhyay A.K. On the nature of T(Al2Mg3Zn3) and S(Al2CuMg) phases present in as-cast and annealed 7055 aluminum alloy. Mater. Sci. Eng. A. 2005;391:367–376. doi: 10.1016/j.msea.2004.09.013. DOI

Das S.K., Davis A. High-performance aerospace alloys via rapid solidification processing. Mater. Sci. Eng. 1988;98:1–12. doi: 10.1016/0025-5416(88)90116-4. DOI

Xie G., Ohashi O., Sato T., Yamaguchi N., Song M., Mitsuishi K., Furuya K. Effect of Mg on the Sintering of Al-Mg Alloy Powders by Pulse Electric-Current Sintering Process. Mater. Trans. 2004;45:904–909. doi: 10.2320/matertrans.45.904. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...