Nanocrystalline Al7075 + 1 wt % Zr Alloy Prepared Using Mechanical Milling and Spark Plasma Sintering
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
28930192
PubMed Central
PMC5615758
DOI
10.3390/ma10091105
PII: ma10091105
Knihovny.cz E-zdroje
- Klíčová slova
- gas atomization, mechanical milling, microhardness, microstructure, recrystallization, spark plasma sintering,
- Publikační typ
- časopisecké články MeSH
The microstructure, phase composition, and microhardness of both gas-atomized and mechanically milled powders of the Al7075 + 1 wt % Zr alloy were investigated. The gas-atomized powder exhibited a cellular microstructure (grain size of a few µm) with layers of intermetallic phases along the cell boundaries. Mechanical milling (400 revolutions per minute (RPM)/8 h) resulted in a grain size reduction to the nanocrystalline range (20 to 100 nm) along with the dissolution of the intermetallic phases. Milling led to an increase in the powder's microhardness from 97 to 343 HV. Compacts prepared by spark plasma sintering (SPS) exhibited negligible porosity. The grain size of the originally gas-atomized material was retained, but the continuous layers of intermetallic phases were replaced by individual particles. Recrystallization led to a grain size increase to 365 nm in the SPS compact prepared from the originally milled powder. Small precipitates of the Al₃Zr phase were observed in the SPS compacts, and they are believed to be responsible for the retainment of the sub-microcrystalline microstructure during SPS. A more intensive precipitation in this SPS compact can be attributed to a faster diffusion due to a high density of dislocations and grain boundaries in the milled powder.
Department of Metals and Corrosion Engineering UCT Prague Technická 5 Prague 16628 Czech Republic
Institute of Plasma Physics of the CAS Za Slovankou 1782 3 Prague 18200 Czech Republic
Zobrazit více v PubMed
Lawley A. Trends in Atomization and Consolidation of Powders for High-Temperature Aerospace Materials. In: Bramfitt B.L., Benn R.C., Brinkmann C.R., Voort G.F.V., editors. MiCon 86: Optimization of Processing, Properties, and Service Performance Through Microstructural Control. American Society for Testing and Materials; Philadelphia, PA, USA: 1988. pp. 193–201. ASTM STP 979. DOI
Bachaga T., Daly R., Escoda L., Suñol J.J., Khitouni M. Amorphization of Al50(Fe2B)30Nb20 mixture by mechanical alloying. J. Metall. Mater. Trans. A. 2013;44:4718–4724. doi: 10.1007/s11661-013-1831-7. DOI
Makhlouf M.B., Bachaga T., Suñol J.J., Dammak M., Khitouni M. Synthesis and Characterization of Nanocrystalline Al-20 at. % Cu Powders Produced by Mechanical Alloying. Metals. 2016;6:145. doi: 10.3390/met6070145. DOI
Fecht H.-J. Nanostructure formation by mechanical attrition. Nanostruct. Mater. 1995;6:33–42. doi: 10.1016/0965-9773(95)00027-5. DOI
Suryanarayana C. Mechanical alloying and milling. Prog. Mater. Sci. 2001;46:1–184. doi: 10.1016/S0079-6425(99)00010-9. DOI
Orru R., Licheri R., Locci A.M., Cincotti A., Cao G. Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater. Sci. Eng. R. 2009;63:127–287. doi: 10.1016/j.mser.2008.09.003. DOI
Guillon O., Gonzalez-Julian J., Dargatz B., Kessel T., Schierning G., Räthel J., Herrmann M. Field-Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments. Adv. Eng. Mater. 2014;16:830–849. doi: 10.1002/adem.201300409. DOI
Suarez M., Fernandez A., Menendez J.L., Torrecillas R., Kessel H.U., Hennicke J., Kirchner R., Kessel T. Challenges and Opportunities for Spark Plasma Sintering: A Key Technology for a New Generation of Materials. In: Ertug B., editor. Sintering Applications. InTech; Rijeka, Croatia: 2013. pp. 319–342. DOI
Kwon H., Park D.H., Park Y., Silvain J.F., Kawasaki A., Park Y. Spark plasma sintering behavior of pure aluminium depending on various sintering temperatures. Met. Mater. Int. 2010;16:71–75. doi: 10.1007/s12540-010-0071-2. DOI
Salem H.G., Sadek A.A. Fabrication of High Performance PM Nanocrystalline Bulk AA2124. J. Mater. Eng. Perform. 2010;19:356–367. doi: 10.1007/s11665-009-9507-6. DOI
Rajabi M., Vahidi M., Simchi A., Davami P. Effect of rapid solidification on the microstructure and mechanical properties of hot-pressed Al-20Si-5Fe alloys. Mater. Charact. 2009;60:1370–1381. doi: 10.1016/j.matchar.2009.06.014. DOI
Malek P., Janecek M., Bartuska P. Structure and properties of a powder metallurgy Al-Zr-Ti alloy. [(accessed on 4 April 2017)];Kovove Mater. 2002 40:371–388. Available online: https://www.researchgate.net/publication/287630953_Structure_and_properties_of_a_powder_metallurgy_Al-Zr-Ti_alloy.
Matsuki K., Iwaki M., Tokiyawa M., Murakami Z. Microstructural evolution during initial stage of high-strain rate superplastic deformation in powder metallurgical 7475 Al-0.7Zr alloy. Mater. Sci. Technol. 1991;7:513–519. doi: 10.1179/mst.1991.7.6.513. DOI
Malek P., Erlebach J., Cieslar M., Knoop F.M. Superplasticity in an Al-Zn-Mg-Cu-Zr alloy prepared by powder metallurgy. Phys. Status Solidi A. 1996;157:275–286. doi: 10.1002/pssa.2211570209. DOI
Rokni M.R., Widener C.A., Crawford G.A. Microstructural evolution of 7075 Al gas atomized powder and high-pressure cold sprayed deposition. Surf. Coat. Technol. 2014;251:254–263. doi: 10.1016/j.surfcoat.2014.04.035. DOI
Asgharzadeh H., Simchi A., Kim H.S. Microstructural features, texture and strengthening mechanisms of nanostructured AA6063 alloy processed by powder metallurgy. Mater. Sci. Eng. A. 2011;528:3981–3989. doi: 10.1016/j.msea.2011.01.082. DOI
Azimi A., Shokuhfar A., Zolriasatein A. Nanostructured Al-Zn-Mg-Cu-Zr alloy prepared by mechanical alloying followed by hot pressing. Mater. Sci. Eng. A. 2014;595:124–130. doi: 10.1016/j.msea.2013.11.094. DOI
Das T., Karunanithi R., Sinha A., Ghosh K.S., Bera S. Deformation, decomposition and hardening of nano Al7075 alloy prepared by mechanical milling and hot pressing. Adv. Powder Technol. 2016;27:1874–1877. doi: 10.1016/j.apt.2016.05.010. DOI
Saheb N., Aliyu I.K., Hassan S.F., Al-Aqeeli N. Matrix structure evolution and nanoreinforcement distribution in mechanically milled and spark plasma sintered Al-SiC nanocomposites. Materials. 2014;7:6748–6767. doi: 10.3390/ma7096748. PubMed DOI PMC
Al-Aqeeli N. Processing of CNTs reincorced Al-based nanocomposites using different consolidation techniques. J. Nanomater. 2013:1–10. doi: 10.1155/2013/370785. DOI
Molnárová O., Málek P., Lukáč F., Chráska T. Spark Plasma Sintering of a Gas Atomized Al7075 Alloy: Microstructure and Properties. Materials. 2016;9:1004. doi: 10.3390/ma9121004. PubMed DOI PMC
Becker H., Dopita M., Stráská J., Málek P., Vilémová M., Rafaja D. Microstructure and properties of spark plasma sintered Al-Zn-Mg-Cu alloy. Acta Phys. Pol. A. 2015;128:602–605. doi: 10.12693/APhysPolA.128.602. DOI
Zhang J.C., Ding D.Y., Zhang W.L., Kang S.H., Xu X.L., Gao Y.J., Chen G.Z., Chen W.G., You X.H. Effect of Zr addition on microstructure and properties of Al-Mn-Si-Zn-based alloy. Trans. Nonferrous Met. Soc. China. 2014;24:3872–3878. doi: 10.1016/S1003-6326(14)63545-7. DOI
Panigrahi S.K., Jayaganthan R. Effect of Annealing on Thermal Stability, Precipitate Evolution, and Mechanical Properties of Cryorolled Al 7075 Alloy. Met. Mater. Trans. A. 2011;42:3208–3217. doi: 10.1007/s11661-011-0723-y. DOI
Tagliente M.A., Massaro M. Strain-driven (0 0 2) preferred orientation of ZnO nanoparticles in ion-implanted silica. Nucl. Instrum. Methods Phys. Res. B. 2008;266:1055–1061. doi: 10.1016/j.nimb.2008.02.036. DOI
Hellebrandt M. The Inorganic Crystal Structure Database (ICSD)—Present and Future. Crystallogr. Rev. 2004;10:17–22. doi: 10.1080/08893110410001664882. DOI
Stadelmann P.A. EMS—A software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy. 1987;21:131–145. doi: 10.1016/0304-3991(87)90080-5. DOI
Wert J.A., Paton N.E., Hamilton C.H., Mahoney M. Grain-refinement in 7075 Aluminum by thermomechanical processing. Met. Trans. A. 1981;12:1267–1276. doi: 10.1007/BF02642340. DOI
Malek P. Superplasticity in an Al-Zn-Mg-Cu alloy. Mater. Sci. Eng. A. 1991;137:21–26. doi: 10.1016/0921-5093(91)90314-D. DOI
Turba K., Malek P., Rauch E.F., Cieslar M. High strain rate superplasticity in a Zr and Sc modified 7075 aluminum alloy produced by ECAP. Mater. Sci. Forum. 2008;584–586:164–169. doi: 10.4028/www.scientific.net/MSF.584-586.164. DOI
Devaraj S., Sankaran S., Kumar R. Influence of spark plasma sintering temperature on the densification, microstructure and mechanical properties of Al-4.5 wt %Cu alloy. Acta Metall. Sin. 2013;26:761–771. doi: 10.1007/s40195-013-0159-z. DOI
Gupta M., Mohamed F.A., Lavernia E.J. Solidification characteristics of atomized Al-Ti powders. Scr. Metall. Mater. 1992;26:697–702. doi: 10.1016/0956-716X(92)90422-B. DOI
Molnárová O., Málek P., Becker H. The investigation of the Al7075+ 1 wt % Zr alloy prepared using spark plasma sintering; Proceedings of the METAL 2015: 24th International Conference on Metallurgy and Materials; Brno, Czech Republic. 3–5 June 2015; pp. 1221–1226.
Molnarova O., Malek P., Németh G., Kozlík J., Lukáč F., Chráska T., Cinert J. The investigation of an Al7075 alloy prepared by spark plasma sintering of milled powders; Proceedings of the METAL 2016: 25th Anniversary International Conference on Metallurgy and Materials; Brno, Czech Republic. 25–27 May 2016; pp. 1200–1205.
Humphreys F.J., Huang Y., Brough I.I., Harris C. Electron backscatter diffraction of grain and subgrain structures-resolution considerations. J. Microsc. 1999;195:212–216. doi: 10.1046/j.1365-2818.1999.00579.x. PubMed DOI
Chen H.B., Tao K., Yang B., Zhang J.S. Nanostructured Al-Zn-Mg-Cu alloy synthesized by cryomilling and spark plasma sintering. Trans. Nonferrous Met. Soc. China. 2009;19:1110–1115. doi: 10.1016/S1003-6326(08)60415-X. DOI
Hulbert D.M., Anders A., Dudina D.V., Anderson J., Jiang D., Unuvar C., Anselmi-Tamburini U., Lavernia E.J., Mukherjee A.K. The absence of plasma in “spark plasma sintering”. J. Appl. Phys. 2008;104:033305. doi: 10.1063/1.2963701. DOI
Srinivasarao B., Suryanarayana C., Oh-ishi K., Hano K. Microstructure and Mechanical Properties of Al-Zr nanocomposite materials. Mater. Sci. Eng. A. 2009;518:100–107. doi: 10.1016/j.msea.2009.04.032. DOI
Liu Z.F., Zhang Z.H., Lu J.F., Korznikova V.E., Wang F.C. Effect of sintering temperature on microstructures and mechanical properties of spark plasma sintered nanocrystalline aluminium. Mater. Des. 2014;64:625–630. doi: 10.1016/j.matdes.2014.08.030. DOI
Mondolfo L.F. 4-Aluminum-Zinc Alloys. In: Mondolfo L.F., editor. Aluminium Alloys: Structure and Properties. Butterworth-Heinemann; London, UK: 1976. pp. 842–882. DOI
Hardy H.K., Heal T.J. Report on precipitation. Prog. Met. Phys. 1954;5:143–278. doi: 10.1016/0502-8205(54)90006-4. DOI
Liu J.Z., Chen J.H., Yang X.B., Ren S., Wu C.L., Xub H.Y., Zoub J. Revisiting the precipitation sequence in Al-Zn-Mg-based alloys by high-resolution transmission electron microscopy. Scr. Mater. 2010;63:1061–1064. doi: 10.1016/j.scriptamat.2010.08.001. DOI
El-Khalek A.M.A. The variation of work-hardening characteristics of Al-1 wt % Si and Al-1 wt % Si-0.1 wt % Zr-0.1 wt % Ti alloys. Phys. B Condens. Matter. 2002;315:7–12. doi: 10.1016/S0921-4526(01)01458-2. DOI
Kim I.H., Kim C.S., Kim K.T., Kim Z.H. Microstructural Characterization of Al-Zr Alloy with Nano-Sized Grains. Key Eng. Mater. 2006;326–328:429–432. doi: 10.4028/www.scientific.net/KEM.326-328.429. DOI
Cahn R.W. In: Binary Alloy Phase Diagrams. 2nd ed. Massalski T.B., Okamoto H., Subramanian P.R., Kacprzak L., editors. ASM International; Materials Park, OH, USA: 1990. DOI
Lityńska-Dobrzyńska L., Ochin P., Góral A., Faryna M., Dutkiewicz J. The Microstructure of Rapidly Solidified Al-Zn-Mg-Cu Alloys with Zr Addition. Solid State Phenom. 2010;163:42–45. doi: 10.4028/www.scientific.net/SSP.163.42. DOI
Yazdian N., Karimzadeh F., Tavoosi M. Microstructural evolution of nanostructure 7075 aluminum alloy during isothermal annealing. J. Alloys Compd. 2010;493:137–141. doi: 10.1016/j.jallcom.2009.12.144. DOI
Patra A., Karak S.K., Pal S. Effects of Mechanical Alloying on Solid Solubility. Adv. Eng. Forum. 2016;15:17–24. doi: 10.4028/www.scientific.net/AEF.15.17. DOI
Piela K., Blaž L., Sierpinski Z., Foryš T. Non-isothermal annealing of AA7075 aluminum alloy-structural and mechanical effects. Arch Metall. Mater. 2012;57:703–709. doi: 10.2478/v10172-012-0076-6. DOI
Mondal C., Mukhopadhyay A.K. On the nature of T(Al2Mg3Zn3) and S(Al2CuMg) phases present in as-cast and annealed 7055 aluminum alloy. Mater. Sci. Eng. A. 2005;391:367–376. doi: 10.1016/j.msea.2004.09.013. DOI
Das S.K., Davis A. High-performance aerospace alloys via rapid solidification processing. Mater. Sci. Eng. 1988;98:1–12. doi: 10.1016/0025-5416(88)90116-4. DOI
Xie G., Ohashi O., Sato T., Yamaguchi N., Song M., Mitsuishi K., Furuya K. Effect of Mg on the Sintering of Al-Mg Alloy Powders by Pulse Electric-Current Sintering Process. Mater. Trans. 2004;45:904–909. doi: 10.2320/matertrans.45.904. DOI
Bimodal Microstructure in an AlZrTi Alloy Prepared by Mechanical Milling and Spark Plasma Sintering