Bimodal Microstructure in an AlZrTi Alloy Prepared by Mechanical Milling and Spark Plasma Sintering
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000760
Ministry of Education, Youth and Sport of the Czech Republic
LM2018110
CzechNanoLab
PubMed
32854337
PubMed Central
PMC7503699
DOI
10.3390/ma13173756
PII: ma13173756
Knihovny.cz E-zdroje
- Klíčová slova
- gas atomization, mechanical milling, microhardness, microstructure, spark plasma sintering,
- Publikační typ
- časopisecké články MeSH
The aim of this study was to prepare a low porosity bulk sample with a fine-grained structure from an AlZrTi alloy. Nanostructured powder particles were prepared by mechanical milling of gas atomized powder. The mechanically milled powder was consolidated using spark plasma sintering technology at 475 °C for 6 min using a pressure of 100 MPa. Sintering led to a low porosity sintered sample with a bimodal microstructure. The sintered sample was revealed to be composed of non-recrystallized grains with an approximate size of about 100 nm encompassed by distinct clusters of coarser, micrometer-sized grains. Whereas the larger grains were found to be lean on second phase particles, a high density of second phase particles was found in the areas of fine grains. The microhardness of the milled powder particles was established to be 163 ± 15 HV0.01, which decreased to a slightly lower value of 137 ± 25 HV0.01 after sintering.
Zobrazit více v PubMed
Valiev R.Z., Islamgaliev R.K., Alexandrov I.V. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 2000;45:103–189. doi: 10.1016/S0079-6425(99)00007-9. DOI
Jones H. Development in aluminum alloys by solidification at higher cooling rates. Aluminium. 1978;54:274–281.
Gupta R.K., Mury B.S., Birbilis N. An Overview of High-Energy Ball Milled Nanocrystalline Aluminum Alloys. Springer; Cham, Switzerland: 2017. DOI
Suryanarayana C. Mechanical alloying and milling. Prog. Mater. Sci. 2001;46:1–184. doi: 10.1016/S0079-6425(99)00010-9. DOI
Orru R., Licheri R., Locci A.M., Cincotti A., Cao G. Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater. Sci. Eng. R. 2009;63:127–287. doi: 10.1016/j.mser.2008.09.003. DOI
Eldesouky A., Johnsson M., Svengren H., Attallah M.M., Salem H.G. Effect of grain size reduction of AA2124 aluminum alloy powder compacted by spark plasma sintering. J. Alloy. Compd. 2014;609:215–221. doi: 10.1016/j.jallcom.2014.04.136. DOI
Ye J., Ajdelsztajn L., Schoenung J.M. Bulk nanocrystalline aluminum 5083 alloy fabricated by a novel technique: Cryomilling and spark plasma sintering. Metall. Mater. Trans. A. 2006;37:2569–2579. doi: 10.1007/BF02586229. DOI
Zadra M., Casari F., Girardini L., Molinari A. Spark Plasma sintering of pure aluminium powder: Mechanical properties and fracture analysis. Powder Metall. 2007;20:40–45. doi: 10.1179/174329007X186417. DOI
Kellogg F., McWilliams B., Sietins J., Giri A., Cho K. Comparison of SPS Processing Behavior between as Atomized and Cryomilled Aluminum Alloy 5083 Powder. Metall. Mater. Trans. A. 2017;48:5492–5499. doi: 10.1007/s11661-017-4286-4. DOI
Molnárová O., Málek P., Veselý J., Šlapáková M., Minárik P., Lukáč F., Chráska T., Novák P., Průša F. Nanocrystalline Al7075 + 1 wt % Zr Alloy Prepared Using Mechanical Milling and Spark Plasma Sintering. Materials. 2017;10:1105. doi: 10.3390/ma10091105. PubMed DOI PMC
Mondolfo L. Aluminium Alloys: Structure and Properties. Butterworth; London, UK: 1976.
Wagner C. Theorie der Alterung von Niederschlägen durch Umlösen. Z. Elektrochem. 1961;65:581–591.
Lifshitz I.M., Slyozov V.V. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids. 1961;19:35–50. doi: 10.1016/0022-3697(61)90054-3. DOI
Zedalis M., Fine M.E. Precipitation and Ostwald Ripening in Dilute Al Base-Zr-V Alloys. Metall. Trans. 1986;17A:2187–2198. doi: 10.1007/BF02645917. DOI
Málek P., Bartuška P., Pleštil J. Structure and properties of melt-spun Al-Zr-Ti alloys I. Composition of as-melt-spun ribbons. Kovové Mater. 1999;37:386–398.
Das S.K., Davis L.A. High Performance Aerospace Alloys via Rapid Solidification Processing. Mater. Sci. Eng. 1988;98:1–12. doi: 10.1016/0025-5416(88)90116-4. DOI
Málek P., Chalupa B., Pleštil J. Structure and properties of melt-spun Al-Zr-Ti alloys III. Phase transformations at elevated temperatures. Kovové Mater. 2000;38:77–95.
Málek P., Janeček M., Smola B. Structure and properties of melt-spun Al-Zr-Ti alloys IV. Microstructure and microhardness stability at elevated termpatures. Kovové Mater. 2000;38:160–177.
Málek P., Janeček M., Bartuška P. Structure and properties of a powder metallurgy Al-Zr-Ti alloy. Kovové Mater. 2002;40:371–388.
Bruker A.X.S. Topas V3: General Profile and Structure Analysis Software for Powder Diffraction Data—User’s Manual. Bruker AXS; Karlsruhe, Germany: 2005.
Molnárová O., Málek P., Veselý J., Lukáč F., Chráska T., Cinert J. High temperature stability of an Al-Zr-Ti alloy prepared using gas atomization and spark plasma sintering technology. Acta Phys. Pol. A. 2018;134:876–880. doi: 10.12693/APhysPolA.134.876. DOI
Lityńska-Dobrzyńska L., Dutkiewicz J., Maziarz W., Rogal Ł. TEM and HRTEM studies of ball milled 6061 aluminium alloy powder with Zr addition. J. Microsc. 2008;237:506–510. doi: 10.1111/j.1365-2818.2009.03310.x. PubMed DOI
Cardoso K.R., Rodrigues C.A.D., Botta F.W.J. Processing of aluminium alloys containing titanium addition by mechanical alloying. Mater. Sci. Eng. A. 2004;375–377:1201–1205. doi: 10.1016/j.msea.2003.10.001. DOI
Srinivasarao B., Suryanarayana C., Oh-ishi K., Hono K. Microstructure and mechanical properties of Al–Zr nanocomposite materials. Mater. Sci. Eng. A. 2009;518:100–107. doi: 10.1016/j.msea.2009.04.032. DOI
Kleiner S., Bertocco F., Khalid F.A., Beffort O. Decomposition of process control agent during mechanical milling and its influence on displacement reactions in the Al–TiO2 system. Mater. Chem. Phys. 2005;89:362–366. doi: 10.1016/j.matchemphys.2004.09.014. DOI
Othman A.R., Sardarinejad A., Abdul K.M. Effect of Milling Parameters on Mechanical Alloying of Aluminum Powders. Int. J. Adv. Manuf. Tech. 2015;76:1319–1332. doi: 10.1007/s00170-014-6283-8. DOI
Han Q., Setchi R., Evans S.L. Characterisation and milling time optimisation of nanocrystalline aluminium powder for selective laser melting. Int. J. Adv. Manuf. Technol. 2017;88:1429–1438. doi: 10.1007/s00170-016-8866-z. DOI
Frazier W.E., Koczak M.J. Mechanical and thermal stability of powder metallurgy aluminum-titanium alloys. Scr. Mater. 1987;21:129–134. doi: 10.1016/0036-9748(87)90422-4. DOI
Xie G., Ohashi O., Yoshioka T., Song M., Mitsuishi K., Yasuda H., Furuya K., Noda T. Effect of Interface Behavior between Particles on Properties of Pure Al Powder Compacts by Spark Plasma Sintering. Mater. Trans. 2001;42:1846–1849. doi: 10.2320/matertrans.42.1846. DOI
Kwon H., Park D.H., Park Y., Silvain J., Kawasaki A., Park Y. Spark plasma sintering behavior of pure aluminium depending on various sintering temperatures. Met. Mater. Int. 2010;16:71–75. doi: 10.1007/s12540-010-0071-2. DOI
Zhou F., Liao X.Z., Zhu Y.T., Dallek S., Lavernia E.J. Microstructural evolution during recovery and recrystallization of a nanocrystalline Al-Mg alloy prepared by cryogenic ball milling. Acta Mater. 2003;51:2777–2791. doi: 10.1016/S1359-6454(03)00083-1. DOI
Minamino Y., Koizum Y., Tsuji N., Hirohata N., Mizuuchi K., Ohkanda Y. Microstructures and mechanical properties of bulk nanocrystalline Fe–Al–C alloys made by mechanically alloying with subsequent spark plasma sintering. Sci. Technol. Adv. Mater. 2004;5:133–143. doi: 10.1016/j.stam.2003.11.004. DOI
Koizumi Y., Tanaka T., Minamino Y., Tsuji N., Mizuuchi K., Ohkanda Y. Densification and Structural Evolution in Spark Plasma Sintering Processof Mechanically Alloyed Nanocrystalline Fe–23Al–6C Powder. Mater. Trans. 2003;44:1604–1612. doi: 10.2320/matertrans.44.1604. DOI
Sasaki T.T., Mukai T., Hono K. A high-strength bulk nanocrystalline Al–Fe alloy processed by mechanical alloying and spark plasma sintering. Scr. Mater. 2007;57:189–192. doi: 10.1016/j.scriptamat.2007.04.010. DOI