Innovative Powder Pre-Treatment Strategies for Enhancing Maraging Steel Performance

. 2025 Jan 18 ; 18 (2) : . [epub] 20250118

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39859908

Grantová podpora
CZ.02.01.01/00/22_008/0004591 Ministry of Education, Youth, and Sports of the Czech Republic
LM2023051 MEYS CR
22-04227L Czech Science Foundation
A1_FCHT_2024_007 Ministry of Education, Youth, and Sports of the Czech Republic

Maraging steel is a high-performance material valued for its exceptional properties, making it ideal for demanding applications such as aerospace, tooling, and automotive industries, where high strength, toughness, and precision are required. These steels can be prepared by powder metallurgy techniques, which offer new processing possibilities. This paper introduces novel thermal powder pre-treatment and its impact on the final mechanical properties. Solid solution pre-treatment results in a modest improvement in strength (from 972 MPa to 1000 MPa), while the use of pre-aged powder achieves the highest strength (1316 MPa) and lowest ductility (2.6%). A self-composite material is created by mixing pre-treated powders with the same chemical composition but different properties. Such material was characterized by intermediate strength (1174 MPa) and ductility (3.1%). Although challenges such a porosity and oxidation were present, this approach allows for tuning of mechanical properties by mixing pre-treated powders, offering significant potential for advanced engineering applications.

Zobrazit více v PubMed

Tavares S.S.M., da Silva M.R., Neto J.M., Pardal J.M., Cindra Fonseca M.P., Abreu H.F.G. Magnetic properties of a Ni–Co–Mo–Ti maraging 350 steel. J. Alloys Compd. 2004;373:304–311. doi: 10.1016/j.jallcom.2003.11.009. DOI

Conde F.F., Escobar J.D., Oliveira J.P., Jardini A.L., Bose Filho W.W., Avila J.A. Austenite reversion kinetics and stability during tempering of an additively manufactured maraging 300 steel. Addit. Manuf. 2019;29:100804. doi: 10.1016/j.addma.2019.100804. DOI

Nouri N., Li Q., Schneider R., Damon J., Schüßler P., Laube S., Müller E., Graf G., Schulze V., Dietrich S. Characterization of phase transformation and strengthening mechanisms in a novel maraging steel produced using laser-based powder bed fusion. Mater. Charact. 2024;207:113522. doi: 10.1016/j.matchar.2023.113522. DOI

Strakosova A., Kubásek J., Michalcová A., Pruša F., Vojtěch D., Dvorskỳ D. High strength X3NiCoMoTi 18-9-5 maraging steel prepared by selective laser melting from atomized powder. Materials. 2019;12:4174. doi: 10.3390/ma12244174. PubMed DOI PMC

Xu T.Z., Zhang S., Du Y., Wu C.L., Zhang C.H., Sun X.Y., Chen H.T., Chen J. Development and characterization of a novel maraging steel fabricated by laser additive manufacturing. Mater. Sci. Eng. A. 2024;891:145975. doi: 10.1016/j.msea.2023.145975. DOI

Strakosova A., Průša F., Michalcová A., Vojtěch D. Structure and Mechanical Properties of the 18Ni300 Maraging Steel Produced by Spark Plasma Sintering. Metals. 2021;11:748. doi: 10.3390/met11050748. DOI

Menapace C., Lonardelli I., Molinari A. Phase transformation in a nanostructured M300 maraging steel obtained by SPS of mechanically alloyed powders. J. Therm. Anal. Calorim. 2010;101:815–821. doi: 10.1007/s10973-010-0745-5. DOI

Guo L., Zhang L., Andersson J., Ojo O. Additive manufacturing of 18% nickel maraging steels: Defect, structure and mechanical properties: A review. J. Mater. Sci. Technol. 2022;120:227–252. doi: 10.1016/j.jmst.2021.10.056. DOI

Jeong J., No G.W., Bae H.J., Yoo S.K., Choi I.-C., Kim H.S., Seol J.B., Kim J.G. Mechanical properties of lamellar-structured 18Ni300 maraging steel manufactured via directed energy deposition. Mater. Sci. Eng. A. 2024;892:146031. doi: 10.1016/j.msea.2023.146031. DOI

Santana A., Eres-Castellanos A., Jimenez J.A., Rementeria R., Capdevila C., Caballero F.G. Effect of layer thickness and laser emission mode on the microstructure of an additive manufactured maraging steel. J. Mater. Res. Technol. 2023;25:6898–6912. doi: 10.1016/j.jmrt.2023.07.114. DOI

Molnárová O., Málek P., Veselý J., Minárik P., Lukáč F., Chráska T., Novák P., Průša F. The Influence of Milling and Spark Plasma Sintering on the Microstructure and Properties of the Al7075 Alloy. Materials. 2018;11:547. doi: 10.3390/ma11040547. PubMed DOI PMC

Patil V.V., Prashanth K.G., Mohanty C.P. Spark plasma sintering of 13Ni-400 maraging steel: Enhancement of mechanical properties through surface modification. J. Alloys Compd. 2023;960:170734. doi: 10.1016/j.jallcom.2023.170734. DOI

Sercombe T.B. Sintering of freeformed maraging steel with boron additions. Mater. Sci. Eng. A. 2003;363:242–252. doi: 10.1016/S0921-5093(03)00645-2. DOI

Liu G.Y., Sun B.R., Du C.C., Li S., Xin S.W., Shen T.D. Hierarchically structured powder metallurgy austenitic stainless steel with exceptional strength and ductility. Mater. Sci. Eng. A. 2022;861:144351. doi: 10.1016/j.msea.2022.144351. DOI

Bruker AXS . Topas V3: General Profile and Structure Analysis Software for Powder Diffraction Data—User’s Manual. Bruker AXS; Karlsruhe, Germany: 2005.

Liu T., Leazer J.D., Menon S.K., Brewer L.N. Microstructural analysis of gas atomized Al-Cu alloy feedstock powders for cold spray deposition. Surf. Coat. Technol. 2018;350:621–632. doi: 10.1016/j.surfcoat.2018.07.006. DOI

Shamsdini S., Shakerin S., Hadadzadeh A., Amirkhiz B.S., Mohammadi M. A trade-off between powder layer thickness and mechanical properties in additively manufactured maraging steels. Mater. Sci. Eng. A. 2020;776:139041. doi: 10.1016/j.msea.2020.139041. DOI

Thotakura G.V., Goswami R., Jayaraman T.V. Structure and magnetic properties of milled maraging steel powders. Powder Technol. 2020;360:80–95. doi: 10.1016/j.powtec.2019.09.054. DOI

Zhu H.M., Zhang J.W., Hu J.P., Ouyang M.N., Qiu C.J. Effects of aging time on the microstructure and mechanical properties of laser-cladded 18Ni300 maraging steel. J. Mater. Sci. 2021;56:8835–8847. doi: 10.1007/s10853-021-05841-1. DOI

Dvorský D., Kubásek J., Roudnická M., Průša F., Nečas D., Minárik P., Stráská J., Vojtěch D. The effect of powder size on the mechanical and corrosion properties and the ignition temperature of WE43 alloy prepared by spark plasma sintering. J. Magnes. Alloy. 2021;9:1349–1362. doi: 10.1016/j.jma.2020.12.012. DOI

Bai Y., Yang Y., Wang D., Zhang M. Influence mechanism of parameters process and mechanical properties evolution mechanism of maraging steel 300 by selective laser melting. Mater. Sci. Eng. A. 2017;703:116–123. doi: 10.1016/j.msea.2017.06.033. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...