Innovative Powder Pre-Treatment Strategies for Enhancing Maraging Steel Performance
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.01.01/00/22_008/0004591
Ministry of Education, Youth, and Sports of the Czech Republic
LM2023051
MEYS CR
22-04227L
Czech Science Foundation
A1_FCHT_2024_007
Ministry of Education, Youth, and Sports of the Czech Republic
PubMed
39859908
PubMed Central
PMC11766480
DOI
10.3390/ma18020437
PII: ma18020437
Knihovny.cz E-zdroje
- Klíčová slova
- SPS, heat treatment, mechanical properties, powder metallurgy,
- Publikační typ
- časopisecké články MeSH
Maraging steel is a high-performance material valued for its exceptional properties, making it ideal for demanding applications such as aerospace, tooling, and automotive industries, where high strength, toughness, and precision are required. These steels can be prepared by powder metallurgy techniques, which offer new processing possibilities. This paper introduces novel thermal powder pre-treatment and its impact on the final mechanical properties. Solid solution pre-treatment results in a modest improvement in strength (from 972 MPa to 1000 MPa), while the use of pre-aged powder achieves the highest strength (1316 MPa) and lowest ductility (2.6%). A self-composite material is created by mixing pre-treated powders with the same chemical composition but different properties. Such material was characterized by intermediate strength (1174 MPa) and ductility (3.1%). Although challenges such a porosity and oxidation were present, this approach allows for tuning of mechanical properties by mixing pre-treated powders, offering significant potential for advanced engineering applications.
Zobrazit více v PubMed
Tavares S.S.M., da Silva M.R., Neto J.M., Pardal J.M., Cindra Fonseca M.P., Abreu H.F.G. Magnetic properties of a Ni–Co–Mo–Ti maraging 350 steel. J. Alloys Compd. 2004;373:304–311. doi: 10.1016/j.jallcom.2003.11.009. DOI
Conde F.F., Escobar J.D., Oliveira J.P., Jardini A.L., Bose Filho W.W., Avila J.A. Austenite reversion kinetics and stability during tempering of an additively manufactured maraging 300 steel. Addit. Manuf. 2019;29:100804. doi: 10.1016/j.addma.2019.100804. DOI
Nouri N., Li Q., Schneider R., Damon J., Schüßler P., Laube S., Müller E., Graf G., Schulze V., Dietrich S. Characterization of phase transformation and strengthening mechanisms in a novel maraging steel produced using laser-based powder bed fusion. Mater. Charact. 2024;207:113522. doi: 10.1016/j.matchar.2023.113522. DOI
Strakosova A., Kubásek J., Michalcová A., Pruša F., Vojtěch D., Dvorskỳ D. High strength X3NiCoMoTi 18-9-5 maraging steel prepared by selective laser melting from atomized powder. Materials. 2019;12:4174. doi: 10.3390/ma12244174. PubMed DOI PMC
Xu T.Z., Zhang S., Du Y., Wu C.L., Zhang C.H., Sun X.Y., Chen H.T., Chen J. Development and characterization of a novel maraging steel fabricated by laser additive manufacturing. Mater. Sci. Eng. A. 2024;891:145975. doi: 10.1016/j.msea.2023.145975. DOI
Strakosova A., Průša F., Michalcová A., Vojtěch D. Structure and Mechanical Properties of the 18Ni300 Maraging Steel Produced by Spark Plasma Sintering. Metals. 2021;11:748. doi: 10.3390/met11050748. DOI
Menapace C., Lonardelli I., Molinari A. Phase transformation in a nanostructured M300 maraging steel obtained by SPS of mechanically alloyed powders. J. Therm. Anal. Calorim. 2010;101:815–821. doi: 10.1007/s10973-010-0745-5. DOI
Guo L., Zhang L., Andersson J., Ojo O. Additive manufacturing of 18% nickel maraging steels: Defect, structure and mechanical properties: A review. J. Mater. Sci. Technol. 2022;120:227–252. doi: 10.1016/j.jmst.2021.10.056. DOI
Jeong J., No G.W., Bae H.J., Yoo S.K., Choi I.-C., Kim H.S., Seol J.B., Kim J.G. Mechanical properties of lamellar-structured 18Ni300 maraging steel manufactured via directed energy deposition. Mater. Sci. Eng. A. 2024;892:146031. doi: 10.1016/j.msea.2023.146031. DOI
Santana A., Eres-Castellanos A., Jimenez J.A., Rementeria R., Capdevila C., Caballero F.G. Effect of layer thickness and laser emission mode on the microstructure of an additive manufactured maraging steel. J. Mater. Res. Technol. 2023;25:6898–6912. doi: 10.1016/j.jmrt.2023.07.114. DOI
Molnárová O., Málek P., Veselý J., Minárik P., Lukáč F., Chráska T., Novák P., Průša F. The Influence of Milling and Spark Plasma Sintering on the Microstructure and Properties of the Al7075 Alloy. Materials. 2018;11:547. doi: 10.3390/ma11040547. PubMed DOI PMC
Patil V.V., Prashanth K.G., Mohanty C.P. Spark plasma sintering of 13Ni-400 maraging steel: Enhancement of mechanical properties through surface modification. J. Alloys Compd. 2023;960:170734. doi: 10.1016/j.jallcom.2023.170734. DOI
Sercombe T.B. Sintering of freeformed maraging steel with boron additions. Mater. Sci. Eng. A. 2003;363:242–252. doi: 10.1016/S0921-5093(03)00645-2. DOI
Liu G.Y., Sun B.R., Du C.C., Li S., Xin S.W., Shen T.D. Hierarchically structured powder metallurgy austenitic stainless steel with exceptional strength and ductility. Mater. Sci. Eng. A. 2022;861:144351. doi: 10.1016/j.msea.2022.144351. DOI
Bruker AXS . Topas V3: General Profile and Structure Analysis Software for Powder Diffraction Data—User’s Manual. Bruker AXS; Karlsruhe, Germany: 2005.
Liu T., Leazer J.D., Menon S.K., Brewer L.N. Microstructural analysis of gas atomized Al-Cu alloy feedstock powders for cold spray deposition. Surf. Coat. Technol. 2018;350:621–632. doi: 10.1016/j.surfcoat.2018.07.006. DOI
Shamsdini S., Shakerin S., Hadadzadeh A., Amirkhiz B.S., Mohammadi M. A trade-off between powder layer thickness and mechanical properties in additively manufactured maraging steels. Mater. Sci. Eng. A. 2020;776:139041. doi: 10.1016/j.msea.2020.139041. DOI
Thotakura G.V., Goswami R., Jayaraman T.V. Structure and magnetic properties of milled maraging steel powders. Powder Technol. 2020;360:80–95. doi: 10.1016/j.powtec.2019.09.054. DOI
Zhu H.M., Zhang J.W., Hu J.P., Ouyang M.N., Qiu C.J. Effects of aging time on the microstructure and mechanical properties of laser-cladded 18Ni300 maraging steel. J. Mater. Sci. 2021;56:8835–8847. doi: 10.1007/s10853-021-05841-1. DOI
Dvorský D., Kubásek J., Roudnická M., Průša F., Nečas D., Minárik P., Stráská J., Vojtěch D. The effect of powder size on the mechanical and corrosion properties and the ignition temperature of WE43 alloy prepared by spark plasma sintering. J. Magnes. Alloy. 2021;9:1349–1362. doi: 10.1016/j.jma.2020.12.012. DOI
Bai Y., Yang Y., Wang D., Zhang M. Influence mechanism of parameters process and mechanical properties evolution mechanism of maraging steel 300 by selective laser melting. Mater. Sci. Eng. A. 2017;703:116–123. doi: 10.1016/j.msea.2017.06.033. DOI