High Strength X3NiCoMoTi 18-9-5 Maraging Steel Prepared by Selective Laser Melting from Atomized Powder

. 2019 Dec 12 ; 12 (24) : . [epub] 20191212

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31842323

Grantová podpora
21-SVV/2019 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015073 Ministerstvo Školství, Mládeže a Tělovýchovy

Maraging steels are generally characterized by excellent mechanical properties, which make them ideal for various industrial applications. The application field can be further extended by using selective laser melting (SLM) for additive manufacturing of shape complicated products. However, the final mechanical properties are strongly related to the microstructure conditions. The present work studies the effect of heat treatment on the microstructure and mechanical properties of 3D printed samples prepared from powder of high-strength X3NiCoMoTi 18-9-5 maraging steel. It was found that the as-printed material had quite low mechanical properties. After sufficient heat treatment, the hardness of the material increased from 350 to 620 HV0.1 and the tensile yield strength increased from 1000 MPa up to 2000 MPa. In addition, 3% ductility was maintained. This behavior was primarily affected by strong precipitation during processing.

Zobrazit více v PubMed

Herzog D., Seyda V., Wycisk E., Emmelmann C. Additive manufacturing of metals. Acta Mater. 2016;117:371–392. doi: 10.1016/j.actamat.2016.07.019. DOI

Wong K.V., Hernandez A. A Review of additive manufacturing. ISRN Mech. Eng. 2012;2012:208760. doi: 10.5402/2012/208760. DOI

Murr L.E., Martinez E., Amato K.N., Gaytan S.M., Hernandez J., Ramirez D.A., Shindo P.W., Medina F., Wicker R.B. Fabrication of metal and alloy components by additive manufacturing: Examples of 3D materials science. J. Mater. Res. Technol. 2012;1:42–54. doi: 10.1016/S2238-7854(12)70009-1. DOI

Suryawanshi J., Prashanth K.G., Ramamurty U. Tensile, fracture, and fatigue crack growth properties of a 3D printed maraging steel through selective laser melting. J. Alloys Compd. 2017;725:355–364. doi: 10.1016/j.jallcom.2017.07.177. DOI

Afkhami S., Dabiri M., Habib Alavi S., Björk T., Salminen A. Fatigue characteristics of steels manufactured by selective laser melting. Int. J. Fatigue. 2019;122:72–83. doi: 10.1016/j.ijfatigue.2018.12.029. DOI

Casati R., Lemke J., Vedani M. Microstructure and fracture behavior of 316L austenitic stainless steel produced by selective laser melting. J. Mater. Process. Technol. 2016;32:738–744. doi: 10.1016/j.jmst.2016.06.016. DOI

Casati R., Lemke J.N., Tuissi A., Vedani M. Aging behaviour and mechanical performance of 18-Ni 300 steel processed by selective laser melting. Metals. 2016;6:218. doi: 10.3390/met6090218. DOI

Kempen K., Yasa E., Thijs L., Kruth J.P., Van Humbeeck J. Microstructure and mechanical properties of selective laser melted 18Ni-300 steel. Phys. Procedia. 2011;12:255–263. doi: 10.1016/j.phpro.2011.03.033. DOI

Tan C., Zhu K., Tong X., Huang Y., Li J., Ma W., Li F., Kuang T. Microstructure and mechanical properties of 18Ni-300 maraging steel fabricated by selective laser melting; Proceedings of the 2016 6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016); Zhuhai, China. 23–24 July 2017.

Tan C., Zhou K., Ma W., Zhang P., Liu M., Kuang T. Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel. Mater. Des. 2017;134:23–34. doi: 10.1016/j.matdes.2017.08.026. DOI

Xu X., Ganguly S., Ding J., Guo S., Williams S., Martina F. Microstructural evolution and mechanical properties of maraging steel produced by wire + arc additive manufacture process. Mater. Char. 2018;143:152–162. doi: 10.1016/j.matchar.2017.12.002. DOI

Shamantha C.R., Narayanan R., Iyer K.J.L., Radhakrishnan V.M., Seshadri S.K., Sundararajan S., Sundaresan S. Microstructural changes during welding and subsequent heat treatment of 18Ni (250-grade) maraging steel. Mater. Sci. Eng. 2000;287:43–51. doi: 10.1016/S0921-5093(00)00838-8. DOI

Tewari R., Mazumder S., Batra I.S., Dey G.K., Banerjee S. Precipitation in 18 wt% Ni maraging steel of grade 350. Acta Mater. 2000;48:1187–1200. doi: 10.1016/S1359-6454(99)00370-5. DOI

Jägle E.A., Sheng Z., Kürnsteiner P., Ocylok S., Weisheit A., Raabe D. Comparison of maraging steel micro- and nanostructure produced conventionally and by laser additive manufacturing. Materials. 2017;10:8. doi: 10.3390/ma10010008. PubMed DOI PMC

Jägle E.A., Choi P.P., van Humbeeck J., Raabe D. Precipitation and austenite reversion behavior of a maraging steel produced by selective laser melting. J. Mater. Res. 2014;29:2072–2079. doi: 10.1557/jmr.2014.204. DOI

Bai Y., Wang D., Yang Y., Wang H. Effect of heat treatment on the microstructure and mechanical properties of maraging steel by selective laser melting. Mater. Sci. Eng. 2019;760:105–117. doi: 10.1016/j.msea.2019.05.115. DOI

Tariq F., Naz N., Baloch R.A. Effect of cyclic aging on mechanical properties and microstructure of maraging steel 250. J. Mater. Eng. Perform. 2010;19:1005–1014. doi: 10.1007/s11665-009-9583-7. DOI

SAE Standard . AMS 6514H, Steel, Maraging, Bars, Forgings, Tubing, and Rings 18.5Ni-9.0Co-4.9Mo-0.65Ti-0.10Al Consumable Electrode Vacuum Melted, Annealed. SAE International; Warrendale, PA, USA: 2012.

ASM International Handbook Committee . Properties and Selection: Iron Steels and High Performance Alloy, ASM Handbook. Materials Information Company; Materials Park, OH, USA: 1991. pp. 1872–1873.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...