High Strength X3NiCoMoTi 18-9-5 Maraging Steel Prepared by Selective Laser Melting from Atomized Powder
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-SVV/2019
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015073
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
31842323
PubMed Central
PMC6947205
DOI
10.3390/ma12244174
PII: ma12244174
Knihovny.cz E-zdroje
- Klíčová slova
- atomized powder, heat treatment, maraging steel, precipitation hardening, selective laser melting,
- Publikační typ
- časopisecké články MeSH
Maraging steels are generally characterized by excellent mechanical properties, which make them ideal for various industrial applications. The application field can be further extended by using selective laser melting (SLM) for additive manufacturing of shape complicated products. However, the final mechanical properties are strongly related to the microstructure conditions. The present work studies the effect of heat treatment on the microstructure and mechanical properties of 3D printed samples prepared from powder of high-strength X3NiCoMoTi 18-9-5 maraging steel. It was found that the as-printed material had quite low mechanical properties. After sufficient heat treatment, the hardness of the material increased from 350 to 620 HV0.1 and the tensile yield strength increased from 1000 MPa up to 2000 MPa. In addition, 3% ductility was maintained. This behavior was primarily affected by strong precipitation during processing.
Zobrazit více v PubMed
Herzog D., Seyda V., Wycisk E., Emmelmann C. Additive manufacturing of metals. Acta Mater. 2016;117:371–392. doi: 10.1016/j.actamat.2016.07.019. DOI
Wong K.V., Hernandez A. A Review of additive manufacturing. ISRN Mech. Eng. 2012;2012:208760. doi: 10.5402/2012/208760. DOI
Murr L.E., Martinez E., Amato K.N., Gaytan S.M., Hernandez J., Ramirez D.A., Shindo P.W., Medina F., Wicker R.B. Fabrication of metal and alloy components by additive manufacturing: Examples of 3D materials science. J. Mater. Res. Technol. 2012;1:42–54. doi: 10.1016/S2238-7854(12)70009-1. DOI
Suryawanshi J., Prashanth K.G., Ramamurty U. Tensile, fracture, and fatigue crack growth properties of a 3D printed maraging steel through selective laser melting. J. Alloys Compd. 2017;725:355–364. doi: 10.1016/j.jallcom.2017.07.177. DOI
Afkhami S., Dabiri M., Habib Alavi S., Björk T., Salminen A. Fatigue characteristics of steels manufactured by selective laser melting. Int. J. Fatigue. 2019;122:72–83. doi: 10.1016/j.ijfatigue.2018.12.029. DOI
Casati R., Lemke J., Vedani M. Microstructure and fracture behavior of 316L austenitic stainless steel produced by selective laser melting. J. Mater. Process. Technol. 2016;32:738–744. doi: 10.1016/j.jmst.2016.06.016. DOI
Casati R., Lemke J.N., Tuissi A., Vedani M. Aging behaviour and mechanical performance of 18-Ni 300 steel processed by selective laser melting. Metals. 2016;6:218. doi: 10.3390/met6090218. DOI
Kempen K., Yasa E., Thijs L., Kruth J.P., Van Humbeeck J. Microstructure and mechanical properties of selective laser melted 18Ni-300 steel. Phys. Procedia. 2011;12:255–263. doi: 10.1016/j.phpro.2011.03.033. DOI
Tan C., Zhu K., Tong X., Huang Y., Li J., Ma W., Li F., Kuang T. Microstructure and mechanical properties of 18Ni-300 maraging steel fabricated by selective laser melting; Proceedings of the 2016 6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016); Zhuhai, China. 23–24 July 2017.
Tan C., Zhou K., Ma W., Zhang P., Liu M., Kuang T. Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel. Mater. Des. 2017;134:23–34. doi: 10.1016/j.matdes.2017.08.026. DOI
Xu X., Ganguly S., Ding J., Guo S., Williams S., Martina F. Microstructural evolution and mechanical properties of maraging steel produced by wire + arc additive manufacture process. Mater. Char. 2018;143:152–162. doi: 10.1016/j.matchar.2017.12.002. DOI
Shamantha C.R., Narayanan R., Iyer K.J.L., Radhakrishnan V.M., Seshadri S.K., Sundararajan S., Sundaresan S. Microstructural changes during welding and subsequent heat treatment of 18Ni (250-grade) maraging steel. Mater. Sci. Eng. 2000;287:43–51. doi: 10.1016/S0921-5093(00)00838-8. DOI
Tewari R., Mazumder S., Batra I.S., Dey G.K., Banerjee S. Precipitation in 18 wt% Ni maraging steel of grade 350. Acta Mater. 2000;48:1187–1200. doi: 10.1016/S1359-6454(99)00370-5. DOI
Jägle E.A., Sheng Z., Kürnsteiner P., Ocylok S., Weisheit A., Raabe D. Comparison of maraging steel micro- and nanostructure produced conventionally and by laser additive manufacturing. Materials. 2017;10:8. doi: 10.3390/ma10010008. PubMed DOI PMC
Jägle E.A., Choi P.P., van Humbeeck J., Raabe D. Precipitation and austenite reversion behavior of a maraging steel produced by selective laser melting. J. Mater. Res. 2014;29:2072–2079. doi: 10.1557/jmr.2014.204. DOI
Bai Y., Wang D., Yang Y., Wang H. Effect of heat treatment on the microstructure and mechanical properties of maraging steel by selective laser melting. Mater. Sci. Eng. 2019;760:105–117. doi: 10.1016/j.msea.2019.05.115. DOI
Tariq F., Naz N., Baloch R.A. Effect of cyclic aging on mechanical properties and microstructure of maraging steel 250. J. Mater. Eng. Perform. 2010;19:1005–1014. doi: 10.1007/s11665-009-9583-7. DOI
SAE Standard . AMS 6514H, Steel, Maraging, Bars, Forgings, Tubing, and Rings 18.5Ni-9.0Co-4.9Mo-0.65Ti-0.10Al Consumable Electrode Vacuum Melted, Annealed. SAE International; Warrendale, PA, USA: 2012.
ASM International Handbook Committee . Properties and Selection: Iron Steels and High Performance Alloy, ASM Handbook. Materials Information Company; Materials Park, OH, USA: 1991. pp. 1872–1873.
Innovative Powder Pre-Treatment Strategies for Enhancing Maraging Steel Performance
Hydrogen Embrittlement of the Additively Manufactured High-Strength X3NiCoMoTi 18-9-5 Maraging Steel
Advanced Powder Metallurgy Technologies