Hydrogen Embrittlement of the Additively Manufactured High-Strength X3NiCoMoTi 18-9-5 Maraging Steel
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
A1_FCHT_2021_010
The grant of Specific university research
PubMed
34501163
PubMed Central
PMC8434091
DOI
10.3390/ma14175073
PII: ma14175073
Knihovny.cz E-zdroje
- Klíčová slova
- hydrogen embrittlement, hydrogen-induced cracking, maraging steel, selective laser melting,
- Publikační typ
- časopisecké články MeSH
The main aim of this study was to determine the susceptibility of the additively manufactured high strength X3NiCoMoTi 18-9-5 maraging steel to hydrogen embrittlement. For this purpose, samples produced by selective laser melting technology, before and after heat treatment, were used. The examined samples were electrochemically charged with hydrogen in NaCl + NH4SCN solution at a current density of 50 mA/cm2 for 24 h. The H content increased from about 1 to 15 ppm. Heat treatment did not affect the amount of H trapped in the maraging steel. Tensile testing revealed that the tensile strength of the H-charged samples was much lower than that of the uncharged samples. Moreover, the material became brittle after charging compared to the ductile as-printed and heat-treated samples with elongation values of 7% and 2%, respectively. The loss of plasticity was confirmed by fractography, which revealed transformation of the fracture surface morphology from dimple-like in the as-produced state to a brittle one with smooth facets in the H-charged state.
Zobrazit více v PubMed
Herzog D., Seyda V., Wycisk E., Emmelmann C. Additive manufacturing of metals. Acta Mater. 2016;117:371–392. doi: 10.1016/j.actamat.2016.07.019. DOI
Murr L.E., Martinez E., Amato K.N., Gaytan S.M., Hernandez J., Ramirez D.A., Shindo P.W., Medina F., Wicker R.B. Fabrication of Metal and Alloy Components by Additive Manufacturing: Examples of 3D Materials Science. J. Mater. Res. Technol. 2012;1:42–54. doi: 10.1016/S2238-7854(12)70009-1. DOI
Fousova M., Vojtech D. Influence of Process Conditions on Additive Manufacture of Ti6Al4V Alloy by SLM Technology. Manuf. Technol. 2017;17:696–701. doi: 10.21062/ujep/x.2017/a/1213-2489/MT/17/5/696. DOI
Krištofová P., Roudnicka M., Kubásek J., Paloušek D., Suchý J., Vojtěch D. Influence of Production Parameters on the Properties of 3D Printed Magnesium Alloy Mg-4Y-3RE-Zr (WE43) Manuf. Technol. 2019;19:613–618. doi: 10.21062/ujep/343.2019/a/1213-2489/MT/19/4/6013. DOI
Li Y., Zhou J., Pavanram P., Leeflang M., Fockaert L., Pouran B., Tümer N., Schröder K.-U., Mol J.M.C., Weinans H., et al. Additively manufactured biodegradable porous magnesium. Acta Biomater. 2018;67:378–392. doi: 10.1016/j.actbio.2017.12.008. PubMed DOI
Kempen K., Yasa E., Thijs L., Kruth J.-P., Van Humbeeck J. Microstructure and mechanical properties of Selective Laser Melted 18Ni-300 steel. Phys. Procedia. 2011;12:255–263. doi: 10.1016/j.phpro.2011.03.033. DOI
Bai Y., Yang Y., Xiao Z., Wang D. Selective laser melting of maraging steel: Mechanical properties development and its application in mold. Rapid Prototyp. J. 2018;24:623–629. doi: 10.1108/RPJ-05-2017-0104. DOI
Saeidi K., Zapata D.L., Lofaj F., Kvetkova L., Olsen J., Shen Z., Akhtar F. Ultra-high strength martensitic 420 stainless steel with high ductility. Addit. Manuf. 2019;29:100803. doi: 10.1016/j.addma.2019.100803. DOI
Bai Y., Zhao C., Yang J., Hong R., Weng C., Wang H. Microstructure and machinability of selective laser melted high-strength maraging steel with heat treatment. J. Mater. Process. Technol. 2021;288:116906. doi: 10.1016/j.jmatprotec.2020.116906. DOI
Chen Y., Chen H., Chen J., Xiong J., Wu Y., Dong S. Numerical and experimental investigation on thermal behavior and microstructure during selective laser melting of high strength steel. J. Manuf. Process. 2020;57:533–542. doi: 10.1016/j.jmapro.2020.06.041. DOI
Popov V.V., Fleisher A. Hybrid additive manufacturing of steels and alloys. Manuf. Rev. 2020;7:6. doi: 10.1051/mfreview/2020005. DOI
Tan C., Zhu K., Tong X., Huang Y., Li J., Ma W., Li F., Kuang T. Microstructure and Mechanical Properties of 18Ni-300 Maraging Steel Fabricated by Selective Laser Melting; Proceedings of the 2016 6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016); Zhuhai, China. 23–24 July 2017; DOI
Strakosova A., Kubásek J., Michalcová A., Průša F., Vojtěch D., Dvorský D. High Strength X3NiCoMoTi 18-9-5 Maraging Steel Prepared by Selective Laser Melting from Atomized Powder. Materials. 2019;12:4174. doi: 10.3390/ma12244174. PubMed DOI PMC
Magnee A., Drapier J.M., Dumont J., Coutsouradis D., Habraken L. Cobalt-Containing High-Strength Steels. Centre d’Information du Cobalt; Brussels, Belgium: 1974. pp. 50–101.
Tan C., Zhou K., Ma W., Zhang P., Liu M., Kuang T. Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel. Mater. Des. 2017;134:23–34. doi: 10.1016/j.matdes.2017.08.026. DOI
Jägle E.A., Choi P.-P., Van Humbeeck J., Raabe D. Precipitation and austenite reversion behavior of a maraging steel produced by selective laser melting. J. Mater. Res. 2014;29:2072–2079. doi: 10.1557/jmr.2014.204. DOI
Béreš M., Wu L., Santos L., Masoumi M., Filho F.D.R., da Silva C., de Abreu H., da Silva M.G. Role of lattice strain and texture in hydrogen embrittlement of 18Ni (300) maraging steel. Int. J. Hydrogen Energy. 2017;42:14786–14793. doi: 10.1016/j.ijhydene.2017.03.209. DOI
Rao M.N., Mohan M., Reddy P.U.M. Environmentally assisted cracking of 18%Ni maraging steel. Corros. Sci. 2009;51:1645–1650. doi: 10.1016/j.corsci.2009.04.011. DOI
Wang G., Yan Y., Li J., Huang J., Qiao L., Volinsky A. Microstructure effect on hydrogen-induced cracking in TM210 maraging steel. Mater. Sci. Eng. A. 2013;586:142–148. doi: 10.1016/j.msea.2013.07.097. DOI
Saborío-González M., Rojas-Hernández I. Revisión: Fragilización por hidrógeno de metales y aleaciones en motores de combustión. Revista Tecnología en Marcha. 2018;31:3–13. doi: 10.18845/tm.v31i2.3620. DOI
Eliaz N., Shachar A., Tal B., Eliezer D. Characteristics of hydrogen embrittlement, stress corrosion cracking and tempered martensite embrittlement in high-strength steels. Eng. Fail. Anal. 2002;9:167–184. doi: 10.1016/S1350-6307(01)00009-7. DOI
Santos L., Béreš M., Bastos I., Tavares S., Abreu H., da Silva M.G. Hydrogen embrittlement of ultra high strength 300 grade maraging steel. Corros. Sci. 2015;101:12–18. doi: 10.1016/j.corsci.2015.06.022. DOI
Maroef I., Olson D.L., Eberhart M., Edwards G.R. Hydrogen trapping in ferritic steel weld metal. Int. Mater. Rev. 2002;47:191–223. doi: 10.1179/095066002225006548. DOI
Kim J.S., Lee Y.H., Lee D.L., Park K.-T., Lee C.S. Microstructural influences on hydrogen delayed fracture of high strength steels. Mater. Sci. Eng. A. 2009;505:105–110. doi: 10.1016/j.msea.2008.11.040. DOI
Tsay L., Lu H., Chen C. The effect of grain size and aging on hydrogen embrittlement of a maraging steel. Corros. Sci. 2008;50:2506–2511. doi: 10.1016/j.corsci.2008.06.044. DOI
Barsanti M., Beghini M., Frasconi F., Ishak R., Monelli B., Valentini R. Experimental study of hydrogen embrittlement in Maraging steels. Procedia Struct. Integr. 2018;8:501–508. doi: 10.1016/j.prostr.2017.12.049. DOI
Rousseau C., Oudriss A., Milet R., Feaugas X., El May M., Saintier N., Tonizzo Q., Msakni-Malouche M. Effect of aging treatment on apparent hydrogen solubility and trapping in a new generation maraging steel. Scr. Mater. 2020;183:144–148. doi: 10.1016/j.scriptamat.2020.03.013. DOI
Li S., Liu M., Ren Y., Wang Y. Hydrogen embrittlement behaviors of additive manufactured maraging steel investigated by in situ high-energy X-ray diffraction. Mater. Sci. Eng. A. 2019;766:138341. doi: 10.1016/j.msea.2019.138341. DOI
Kwon Y.J., Casati R., Coduri M., Vedani M., Lee C.S. Hydrogen Embrittlement Behavior of 18Ni 300 Maraging Steel Produced by Selective Laser Melting. Materials. 2019;12:2360. doi: 10.3390/ma12152360. PubMed DOI PMC
Odegaard K., Zühlke C. Bruker-Ntroduction to Elemental Analysis of Light Elements (CS, ONH) in Inorganic Materials, Webinar 15. 6. [(accessed on 15 June 2021)];2020 Available online: https://www.bruker.com/zh/news-and-events/webinars/2020/introduction-to-analysis-of-light-elements-c-s-o-n-h-in-inorganic-materials.html.
Bai Y., Wang D., Yang Y., Wang H. Effect of heat treatment on the microstructure and mechanical properties of maraging steel by selective laser melting. Mater. Sci. Eng. A. 2019;760:105–117. doi: 10.1016/j.msea.2019.05.115. DOI
Navi N.U., Tenenbaum J., Sabatani E., Kimmel G., Ben David R., Rosen B.A., Barkay Z., Ezersky V., Tiferet E., Ganor Y.I., et al. Hydrogen effects on electrochemically charged additive manufactured by electron beam melting (EBM) and wrought Ti–6Al–4V alloys. Int. J. Hydrogen Energy. 2020;45:25523–25540. doi: 10.1016/j.ijhydene.2020.06.277. DOI