Annealing Response of Additively Manufactured High-Strength 1.2709 Maraging Steel Depending on Elevated Temperatures
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
A1_FCHT_2022_007
Ministry of Education Youth and Sports
PubMed
35683051
PubMed Central
PMC9181313
DOI
10.3390/ma15113753
PII: ma15113753
Knihovny.cz E-zdroje
- Klíčová slova
- TEM-analysis, annealing response, elevated temperatures, maraging steel, mechanical properties,
- Publikační typ
- časopisecké články MeSH
The present work describes the influence of different temperatures on mechanical properties and microstructure of additively manufactured high-strength 1.2709 maraging steel. For this purpose, samples produced by selective laser melting technology were used in their as-printed as well as their heat-treated state. Both samples were than exposed to temperatures ranging between 100 °C to 900 °C with a total dwell time of 2 h followed by water-cooling. The microhardness of the as-printed material reached its maximum (561 ± 6 HV0.1) at 500 °C, which corresponded to the microstructural changes. However, the heat-treated material retained its initial mechanical properties up to 500 °C. As the temperature increased, the microhardness of both the materials reduced, reaching their minimum at 900 °C. This phenomenon was accompanied by a change in the microstructure by forming coarse-grained martensite. This also resulted in a significant decrease in the ultimate tensile strength and an increase in the plasticity. TEM analysis confirmed the formation of Ni3Mo intermetallic phases in the as-printed material when exposed to a temperature of 500 °C. It was found that the same phase was present in the heat-treated sample and it remained stable up to a temperature of 500 °C.
Zobrazit více v PubMed
Viswanathan U.K., Dey G.K., Asundi M.K. Precipitation Hardening in 350 Grade Maraging Steel. Metall. Trans. A. 1993;24:2429–2442. doi: 10.1007/BF02646522. DOI
Tavares S.S.M., da Silva M.R., Neto J.M., Pardal J.M., Cindra Fonseca M.P., Abreu H.F.G.J. Magnetic properties of a Ni–Co–Mo–Ti maraging 350 steel. Alloy Compd. 2004;373:304–311. doi: 10.1016/j.jallcom.2003.11.009. DOI
Viswanathan U.K., Dey G.K., Sethumadhavan V. Effects of austenite reversion during overageing on the mechanical properties of 18Ni(350) maraging steel. Mater. Sci. Eng. 2005;398:367–372. doi: 10.1016/j.msea.2005.03.074. DOI
Yin S., Chen C., Yan X., Feng X., Jenkins R., O’Reilly P., Liu M., Li H., Lupoi R. The influence of aging temperature and aging time on the mechanical and tribological properties of selective laser melted maraging 18Ni-300 steel. Addit. Manuf. 2018;22:592–600. doi: 10.1016/j.addma.2018.06.005. DOI
He Y., Yang K., Qu W., Kong F., Su G. Strengthening and toughening of a 2800-MPa grade maraging steel. Mater. Lett. 2002;56:763–769. doi: 10.1016/S0167-577X(02)00610-9. DOI
Mutua J., Nakata S., Onda T., Chen Z.-C. Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel. Mater. Des. 2018;139:486–497. doi: 10.1016/j.matdes.2017.11.042. DOI
Kempen K., Yasa E., Thijs L., Kruth J.P., Van Humbeeck J. Microstructure and mechanical properties of selective laser melted 18Ni-300 steel. Phys. Procedia. 2011;12:255–263. doi: 10.1016/j.phpro.2011.03.033. DOI
Bai Y., Yang Y., Wang D., Zhang M. Influence mechanism of parameters process and mechanical properties evolution mechanism of maraging steel 300 by selective laser melting. Mater. Sci. Eng. 2017;703:116–123. doi: 10.1016/j.msea.2017.06.033. DOI
Decker R.F., Floreen S. Maraging steel—The first 30 years. In: Wilson R.K., editor. Maraging Steels: Recent Developments and Applications, Proceedings of the Symposium TMS Meeting, Phoenix, AZ, USA, 25–29 January 1988. Volumes 1–38 TMS; Pittsburgh, PA, USA: 1988.
Floreen S. The physical metallurgy of maraging steels. Met. Rev. 1968;13:115–128. doi: 10.1179/imr.1968.13.1.115. DOI
Ngo T.D., Kashani A., Imbalzano G., Nguyen K.T., Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018;143:172–196. doi: 10.1016/j.compositesb.2018.02.012. DOI
Sha W., Cerezo A., Smith G.D.W. Atom probe studies of early stages of precipitation reactions in maraging steels I. Co- and Ti-containing C-300 steel. Scripta Metall. Mater. 1992;26:517. doi: 10.1016/0956-716X(92)90276-K. DOI
Sha W., Cerezo A., Smith G.D.W. Phase chemistry and precipitation reactions in maraging steels: Part I. Introduction and study of Co-containing C-300 steel. Metall. Trans. 1993;24:1221. doi: 10.1007/BF02668190. DOI
Tewari R., Mazumder S., Batra I.S., Dey G.K., Banerjee S. Precipitation in 18wt% Ni maraging steel of grade 350. Acta Mater. 2000;48:1187. doi: 10.1016/S1359-6454(99)00370-5. DOI
Moshka O., Pinkas M., Brosh E., Ezersky V., Meshi L. Addressing the issue of precipitates in maraging steels—Unambiguous answer. Mater. Sci. Eng. A. 2015;638:232. doi: 10.1016/j.msea.2015.04.067. DOI
Farooque M., Ayub H., Haq A.U., Khan A.Q. The formation of reverted austenite in 18% Ni 350 grade maraging steel. J. Mater. Sci. 1998;33:2927. doi: 10.1023/A:1004346412079. DOI
Pardal J.M., Tavares S.S.M., Cindra Fonseca M.P., Abreu H.F.G., Silva J.J.M. Study of the austenite quantification by X-ray diffraction in the 18Ni-Co-Mo-Ti maraging 300 steel. J. Mater. Sci. 2006;41:2301. doi: 10.1007/s10853-006-7170-y. DOI
Strakosova A., Kubásek J., Michalcová A., Průša F., Vojtěch D., Dvorský D. High Strength X3NiCoMoTi 18-9-5 Maraging Steel Prepared by Selective Laser Melting from Atomized Powder. Materials. 2019;12:4174. doi: 10.3390/ma12244174. PubMed DOI PMC
Kučerová L., Burdová K., Jenícek S., Chena I. Effect of solution annealing and precipitation hardening at 250 °C–550 °C on microstructure and mechanical properties of additively manufactured 1.2709 maraging steel. Mater. Sci. Eng. A. 2021;814:141195. doi: 10.1016/j.msea.2021.141195. DOI
Kim D., Kim T., Ha K., Oak J.-J., Jeon J.B., Park Y., Lee W. Effect of Heat Treatment Condition on Microstructural and Mechanical Anisotropies of Selective Laser Melted Maraging 18Ni-300 Steel. Metals. 2020;10:410. doi: 10.3390/met10030410. DOI
Kannan R., Leonard D.N., Nandwana P. Optimization of direct aging temperature of Ti free grade 300 maraging steel manufactured using laser powder bed fusion (LPBF) Mater. Sci. Eng. A. 2021;817:141266. doi: 10.1016/j.msea.2021.141266. DOI
Bai Y., Zhao C., Zhang J., Wang H. Abnormal thermal expansion behaviour and phase transition of laser powder bed fusion maraging steel with different thermal histories during continuous heating. Addit. Manuf. 2022;53:102712. doi: 10.1016/j.addma.2022.102712. DOI
Casati R., Lemke J.N., Tuissi A., Vedani M. Aging Behaviour and Mechanical Performance of 18-Ni 300 Steel Processed by Selective Laser Melting. Metals. 2016;6:218. doi: 10.3390/met6090218. DOI
Piekło J., Garbacz-Klempka A. Use of Maraging Steel 1.2709 for Implementing Parts of Pressure Mold Devices with Conformal Cooling System. Materials. 2020;13:5533. doi: 10.3390/ma13235533. PubMed DOI PMC
Król M., Snopiński P., Czech A. The phase transitions in selective laser-melted 18-NI (300-grade) maraging steel. J. Therm. Anal. Calorim. 2020;142:1011–1018. doi: 10.1007/s10973-020-09316-4. DOI
Dos Reis A.G., Reis D.A.P., Abdalla A.J., Otubo J. High-temperature creep resistance and effects on the austenite reversion and precipitation of 18 Ni (300) maraging steel. Mater. Charact. 2015;107:350–357. doi: 10.1016/j.matchar.2015.08.002. DOI
Bai Y., Wang D., Yang Y., Wang H. Effect of heat treatment on the microstructure and mechanical properties of maraging steel by selective laser melting. Mater. Sci. Eng. 2019;760:105–117. doi: 10.1016/j.msea.2019.05.115. DOI
Jägle E.A., Sheng Z., Kürnsteiner P., Ocylok S., Weisheit A., Raabe D. Comparison of maraging steel micro- and nanostructure produced conventionally and by laser additive manufacturing. Materials. 2017;10:8. doi: 10.3390/ma10010008. PubMed DOI PMC