Engineered Lactococcus lactis Secreting IL-23 Receptor-Targeted REX Protein Blockers for Modulation of IL-23/Th17-Mediated Inflammation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16-27676A
Czech Health Research Council, Ministry of Health of the Czech Republic
SAZU-16-01
Czech Academy of Sciences (CAS) and Slovenian Academy of Sciences and Arts (SAZU)
RVO: 86652036
Institutional Research Concept
BIOCEV CZ.1.05/1.1.00/02.0109
European Regional Development Fund
P4-0127 and J4-9327
Slovenian Research Agency (ARRS)
PubMed
31137908
PubMed Central
PMC6560508
DOI
10.3390/microorganisms7050152
PII: microorganisms7050152
Knihovny.cz E-zdroje
- Klíčová slova
- IL-23 cytokine, IL-23R, albumin-binding domain, binding protein, lactococcus, surface display,
- Publikační typ
- časopisecké články MeSH
Lactococcus lactis, a probiotic bacterium of food origin, has recently been demonstrated as a suitable strain for the production and in vivo delivery of therapeutically important proteins into the gut. We aimed to engineer recombinant L. lactis cells producing/secreting REX binding proteins that have been described as IL-23 receptor (IL-23R) blockers and IL-23R antagonists suppressing the secretion of cytokine IL-17A, a pivotal step in the T-helper Th17-mediated pro-inflammatory cascade, as well as in the development of autoimmune diseases, including inflammatory bowel disease (IBD). To reach this goal, we introduced cDNA sequences coding for REX009, REX115, and REX125 proteins into plasmid vectors carrying a Usp45 secretion signal, a FLAG tag sequence consensus, and a LysM-containing cA surface anchor (AcmA), thus allowing cell-surface peptidoglycan anchoring. These plasmids, or their non-FLAG/non-AcmA versions, were introduced into L. lactis host cells, thus generating unique recombinant L. lactis-REX strains. We demonstrate that all three REX proteins are expressed in L. lactis cells and are efficiently displayed on the bacterial surface, as tested by flow cytometry using an anti-FLAG antibody conjugate. Upon 10-fold concentration of the conditioned media, a REX125 secretory variant can be detected by Western blotting. To confirm that the FLAG/non-FLAG REX proteins displayed by L. lactis retain their binding specificity, cell-surface interactions of REX proteins with an IL-23R-IgG chimera were demonstrated by flow cytometry. In addition, statistically significant binding of secreted REX009 and REX115 proteins to bacterially produced, soluble human IL-23R was confirmed by ELISA. We conclude that REX-secreting L. lactis strains were engineered that might serve as IL-23/IL-23R blockers in an experimentally induced mouse model of colitis.
Department of Biotechnology Jožef Stefan Institute Jamova 39 SI 1000 Ljubljana Slovenia
Faculty of Pharmacy University of Ljubljana Aškerčeva 7 SI 1000 Ljubljana Slovenia
Zobrazit více v PubMed
Catana C.S., Berindan Neagoe I., Cozma V., Magdas C., Tabaran F., Dumitrascu D.L. Contribution of the IL-17/IL-23 axis to the pathogenesis of inflammatory bowel disease. World J. Gastroenterol. 2015;21:5823–5830. PubMed PMC
Himmel M.E., Hardenberg G., Piccirillo C.A., Steiner T.S., Levings M.K. The role of T-regulatory cells and Toll-like receptors in the pathogenesis of human inflammatory bowel disease. Immunology. 2008;125:145–153. doi: 10.1111/j.1365-2567.2008.02939.x. PubMed DOI PMC
Abraham C., Dulai P.S., Vermeire S., Sandborn W.J. Lessons Learned From Trials Targeting Cytokine Pathways in Patients with Inflammatory Bowel Diseases. Gastroenterology. 2017;152:374–388.e4. doi: 10.1053/j.gastro.2016.10.018. PubMed DOI PMC
Floss D.M., Schroder J., Franke M., Scheller J. Insights into IL-23 biology: From structure to function. Cytokine Growth Factor Rev. 2015;26:569–578. PubMed
Duijvestein M., Battat R., Vande Casteele N., D’Haens G.R., Sandborn W.J., Khanna R., Jairath V., Feagan B.G. Novel Therapies and Treatment Strategies for Patients with Inflammatory Bowel Disease. Curr. Treat. Options Gastroenterol. 2018;16:129–146. doi: 10.1007/s11938-018-0175-1. PubMed DOI
Feagan B.G., Sandborn W.J., Gasink C., Jacobstein D., Lang Y., Friedman J.R., Blank M.A., Johanns J., Gao L.L., Miao Y., et al. Ustekinumab as Induction and Maintenance Therapy for Crohn’s Disease. N. Engl. J. Med. 2016;375:1946–1960. doi: 10.1056/NEJMoa1602773. PubMed DOI
Quiniou C., Dominguez-Punaro M., Cloutier F., Erfani A., Ennaciri J., Sivanesan D., Sanchez M., Chognard G., Hou X., Rivera J.C., et al. Specific targeting of the IL-23 receptor, using a novel small peptide noncompetitive antagonist, decreases the inflammatory response. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014;307:R1216–R1230. doi: 10.1152/ajpregu.00540.2013. PubMed DOI
Kretz-Rommel A., Wild M., Bowdish K., Chen E., Oltean D., Gonzalez M., Kapoor M. Polypeptides that bind IL-23R. 2011/043835 A1. Patent WO. 2010 Apr 14
Kuchar M., Vankova L., Petrokova H., Cerny J., Osicka R., Pelak O., Sipova H., Schneider B., Homola J., Sebo P., et al. Human interleukin-23 receptor antagonists derived from an albumin-binding domain scaffold inhibit IL-23-dependent ex vivo expansion of IL-17-producing T-cells. Proteins. 2014;82:975–989. doi: 10.1002/prot.24472. PubMed DOI PMC
Skrlec K., Strukelj B., Berlec A. Non-immunoglobulin scaffolds: A focus on their targets. Trends Biotechnol. 2015;33:408–418. doi: 10.1016/j.tibtech.2015.03.012. PubMed DOI
Hlavnickova M., Kuchar M., Osicka R., Vankova L., Petrokova H., Maly M., Cerny J., Arenberger P., Maly P. ABD-Derived Protein Blockers of Human IL-17 Receptor A as Non-IgG Alternatives for Modulation of IL-17-Dependent Pro-Inflammatory Axis. Int. J. Mol. Sci. 2018;19:E3089. doi: 10.3390/ijms19103089. PubMed DOI PMC
Krizova L., Kuchar M., Petrokova H., Osicka R., Hlavnickova M., Pelak O., Cerny J., Kalina T., Maly P. p19-targeted ABD-derived protein variants inhibit IL-23 binding and exert suppressive control over IL-23-stimulated expansion of primary human IL-17+ T-cells. Autoimmunity. 2017;50:102–113. doi: 10.1080/08916934.2016.1272598. PubMed DOI
Mareckova L., Petrokova H., Osicka R., Kuchar M., Maly P. Novel binders derived from an albumin-binding domain scaffold targeting human prostate secretory protein 94 (PSP94) Protein Cell. 2015;6:774–779. doi: 10.1007/s13238-015-0194-9. PubMed DOI PMC
Zadravec P., Mareckova L., Petrokova H., Hodnik V., Perisic Nanut M., Anderluh G., Strukelj B., Maly P., Berlec A. Development of Recombinant Lactococcus lactis Displaying Albumin-Binding Domain Variants against Shiga Toxin 1 B Subunit. PLoS ONE. 2016;11:e0162625. doi: 10.1371/journal.pone.0162625. PubMed DOI PMC
Ahmad J.N., Li J., Biedermannova L., Kuchar M., Sipova H., Semeradtova A., Cerny J., Petrokova H., Mikulecky P., Polinek J., et al. Novel high-affinity binders of human interferon gamma derived from albumin-binding domain of protein G. Proteins. 2012;80:774–789. doi: 10.1002/prot.23234. PubMed DOI
Douillard F., de Vos W.M. Functional genomics of lactic acid bacteria: From food to health. Microb. Cell Fact. 2014:13. doi: 10.1186/1475-2859-13-S1-S8. PubMed DOI PMC
Sanders M.E. Probiotics: Definition, sources, selection, and uses. Clin. Infect. Dis. 2008;46(Suppl 2):S58–S61. doi: 10.1086/523341. discussion S144–S151. PubMed DOI
Plavec T.V., Berlec A. Engineering of lactic acid bacteria for delivery of therapeutic proteins and peptides. Appl. Microbiol. Biotechnol. 2019;103:2053–2066. doi: 10.1007/s00253-019-09628-y. PubMed DOI
Ravnikar M., Strukelj B., Obermajer N., Lunder M., Berlec A. Engineered lactic acid bacterium Lactococcus lactis capable of binding antibodies and tumor necrosis factor alpha. Appl. Env. Microbiol. 2010;76:6928–6932. doi: 10.1128/AEM.00190-10. PubMed DOI PMC
Berlec A., Perse M., Ravnikar M., Lunder M., Erman A., Cerar A., Strukelj B. Dextran sulphate sodium colitis in C57BL/6J mice is alleviated by Lactococcus lactis and worsened by the neutralization of Tumor necrosis Factor alpha. Int. Immunopharmacol. 2017;43:219–226. doi: 10.1016/j.intimp.2016.12.027. PubMed DOI
Simcic S., Berlec A., Stopinsek S., Strukelj B., Orel R. Engineered and wild-type L. lactis promote anti-inflammatory cytokine signalling in inflammatory bowel disease patient’s mucosa. World J. Microbiol. Biotechnol. 2019;35:45. doi: 10.1007/s11274-019-2615-z. PubMed DOI
Holo H., Nes I.F. Transformation of Lactococcus by electroporation. Methods Mol. Biol. 1995;47:195–199. PubMed
Mierau I., Kleerebezem M. 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl. Microbiol. Biotechnol. 2005;68:705–717. doi: 10.1007/s00253-005-0107-6. PubMed DOI
Skrlec K., Pucer Janez A., Rogelj B., Strukelj B., Berlec A. Evasin-displaying lactic acid bacteria bind different chemokines and neutralize CXCL8 production in Caco-2 cells. Microb. Biotechnol. 2017;10:1732–1743. doi: 10.1111/1751-7915.12781. PubMed DOI PMC
Skrlec K., Zadravec P., Hlavnickova M., Kuchar M., Vankova L., Petrokova H., Krizova L., Cerny J., Berlec A., Maly P. p19-Targeting ILP Protein Blockers of IL-23/Th-17 Pro-Inflammatory Axis Displayed on Engineered Bacteria of Food Origin. Int. J. Mol. Sci. 2018;19:E1933. doi: 10.3390/ijms19071933. PubMed DOI PMC
Sali A., Blundell T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol Biol. 1993;234:779–815. doi: 10.1006/jmbi.1993.1626. PubMed DOI
Webb B., Sali A. Comparative Protein Structure Modeling Using MODELLER. Curr Protoc Bioinform. 2014;47:5.6.1–5.6.30. doi: 10.1002/0471250953.bi0506s47. PubMed DOI
Johansson M.U., Frick I.M., Nilsson H., Kraulis P.J., Hober S., Jonasson P., Linhult M., Nygren P.A., Uhlen M., Bjorck L., et al. Structure, specificity, and mode of interaction for bacterial albumin-binding modules. J. Biol. Chem. 2002;277:8114–8120. doi: 10.1074/jbc.M109943200. PubMed DOI
Bloch Y., Bouchareychas L., Merceron R., Skladanowska K., van den Bossche L., Detry S., Govindarajan S., Elewaut D., Haerynck F., Dullaers M., et al. Structural Activation of Pro-inflammatory Human Cytokine IL-23 by Cognate IL-23 Receptor Enables Recruitment of the Shared Receptor IL-12Rbeta1. Immunity. 2018;48:45–58.e6. doi: 10.1016/j.immuni.2017.12.008. PubMed DOI PMC
Sievers F., Wilm A., Dineen D., Gibson T.J., Karplus K., Li W.Z., Lopez R., McWilliam H., Remmert M., Soding J., et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011:7. doi: 10.1038/msb.2011.75. PubMed DOI PMC
Kozakov D., Beglov D., Bohnuud T., Mottarella S.E., Xia B., Hall D.R., Vajda S. How good is automated protein docking? Proteins. 2013;81:2159–2166. doi: 10.1002/prot.24403. PubMed DOI PMC
Kozakov D., Brenke R., Comeau S.R., Vajda S. PIPER: An FFT-based protein docking program with pairwise potentials. Proteins. 2006;65:392–406. doi: 10.1002/prot.21117. PubMed DOI
Buist G., Kok J., Leenhouts K.J., Dabrowska M., Venema G., Haandrikman A.J. Molecular cloning and nucleotide sequence of the gene encoding the major peptidoglycan hydrolase of Lactococcus lactis, a muramidase needed for cell separation. J. Bacteriol. 1995;177:1554–1563. doi: 10.1128/jb.177.6.1554-1563.1995. PubMed DOI PMC
Dieye Y., Usai S., Clier F., Gruss A., Piard J.C. Design of a protein-targeting system for lactic acid bacteria. J. Bacteriol. 2001;183:4157–4166. doi: 10.1128/JB.183.14.4157-4166.2001. PubMed DOI PMC
Zadravec P., Strukelj B., Berlec A. Improvement of LysM-mediated surface display of designed ankyrin repeat proteins (DARPins) in recombinant and nonrecombinant strains of Lactococcus lactis and Lactobacillus Species. Appl. Env. Microbiol. 2015;81:2098–2106. doi: 10.1128/AEM.03694-14. PubMed DOI PMC
Walker A.W., Sanderson J.D., Churcher C., Parkes G.C., Hudspith B.N., Rayment N., Brostoff J., Parkhill J., Dougan G., Petrovska L. High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol. 2011;11:7. doi: 10.1186/1471-2180-11-7. PubMed DOI PMC
Vamanu E. Complementary Functional Strategy for Modulation of Human Gut Microbiota. Curr. Pharm. Des. 2018;24:4144–4149. doi: 10.2174/1381612824666181001154242. PubMed DOI
Sanders M.E., Guarner F., Guerrant R., Holt P.R., Quigley E.M., Sartor R.B., Sherman P.M., Mayer E.A. An update on the use and investigation of probiotics in health and disease. Gut. 2013;62:787–796. doi: 10.1136/gutjnl-2012-302504. PubMed DOI PMC