Human IL-22 receptor-targeted small protein antagonist suppress murine DSS-induced colitis
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-16423K
Czech Science Foundation
21-16423K
Czech Science Foundation
PubMed
39354587
PubMed Central
PMC11446014
DOI
10.1186/s12964-024-01846-w
PII: 10.1186/s12964-024-01846-w
Knihovny.cz E-zdroje
- Klíčová slova
- Experimental colitis, Immune suppression, Inflammatory bowel disease, Interleukin-22, Protein engineering,
- MeSH
- HEK293 buňky MeSH
- interleukin 22 MeSH
- interleukiny genetika metabolismus MeSH
- kolitida * chemicky indukované patologie metabolismus MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- receptory interleukinů * metabolismus genetika MeSH
- síran dextranu * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- interleukin 22 MeSH
- interleukin-22 receptor MeSH Prohlížeč
- interleukiny MeSH
- receptory interleukinů * MeSH
- síran dextranu * MeSH
BACKGROUND: Human interleukin-22 (IL-22) is known as a "dual function" cytokine that acts as a master regulator to maintain homeostasis, structural integrity of the intestinal epithelial barrier, and shielding against bacterial pathogens. On the other hand, the overexpression of IL-22 is associated with hyper-proliferation and recruitment of pathologic effector cells, leading to tissue damage and chronic inflammation in specific diseases including inflammatory bowel disease (IBD). To study a role of IL-22-mediated signaling axis during intestinal inflammation, we generated a set of small protein blockers of IL-22R1 and verified their inhibitory potential on murine model of colitis. METHODS: We used directed evolution of proteins to identify binders of human IL-22 receptor alpha (IL-22R1), designated as ABR ligands. This approach combines the assembly of a highly complex combinatorial protein library derived from small albumin-binding domain scaffold and selection of promising protein variants using ribosome display followed by large-scale ELISA screening. The binding affinity and specificity of ABR variants were analyzed on transfected HEK293T cells by flow cytometry and LigandTracer. Inhibitory function was further verified by competition ELISA, HEK-Blue IL-22 reporter cells, and murine dextran sulfate sodium (DSS)-induced colitis. RESULTS: We demonstrate that ABR specifically recognizes transgenic IL-22R1 expressed on HEK293T cells and IL-22R1 on TNFα/IFNγ-activated HaCaT cells. Moreover, some ABR binders compete with the IL-22 cytokine and function as IL-22R1 antagonists in HEK-Blue IL22 reporter cells. In a murine model of DSS-induced acute intestinal inflammation, daily intraperitoneal administration of the best IL-22R1 antagonist, ABR167, suppressed the development of clinical and histological markers of colitis including prevention of mucosal inflammation and architecture deterioration. In addition, ABR167 reduces the DSS-induced increase in mRNA transcript levels of inflammatory cytokines such as IL-1β, IL-6, IL-10, and IL-17A. CONCLUSIONS: We developed small anti-human IL-22R1 blockers with antagonistic properties that ascertain a substantial role of IL-22-mediated signaling in the development of intestinal inflammation. The developed ABR blockers can be useful as a molecular clue for further IBD drug development.
Zobrazit více v PubMed
Dudakov JA, Hanash AM, van den Brink MR. Interleukin-22: immunobiology and pathology. Annu Rev Immunol. 2015;33:747–85. PubMed PMC
Sonnenberg GF, Fouser LA, Artis D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat Immunol. 2011;12(5):383–90. PubMed
Xie MH, Aggarwal S, Ho WH, Foster J, Zhang ZM, Stinson J, Wood WI, Goddard AD, Gurney AL. Interleukin (IL)-22, a novel human cytokine that signals through the interferon receptor-related proteins CRF2-4 and IL-22R. J Biol Chem. 2000;275(40):31335–9. PubMed
Keir M, Yi Y, Lu T, Ghilardi N. The role of IL-22 in intestinal health and disease. J Exp Med. 2020;217(3):e20192195. PubMed PMC
Ouyang WJ, O’Garra A. IL-10 family cytokines IL-10 and IL-22: from Basic Science to Clinical Translation. Immunity. 2019;50(4):871–91. PubMed
Logsdon NJ, Jones BC, Josephson K, Cook J, Walter MR. Comparison of interleukin-22 and interleukin-10 soluble receptor complexes. J Interf Cytok Res. 2002;22(11):1099–112. PubMed
Jones BC, Logsdon NJ, Walter MR. Structure of IL-22 bound to its high-affinity IL-22R1 chain. Structure. 2008;16(9):1333–44. PubMed PMC
Li J, Tomkinson KN, Tan XY, Wu P, Yan G, Spaulding V, Deng BJ, Annis-Freeman B, Heveron K, Zollner R, et al. Temporal associations between interleukin 22 and the extracellular domains of IL-22R and IL-10R2. Int Immunopharmacol. 2004;4(5):693–708. PubMed
Bleicher L, de Moura PR, Watanabe L, Colau D, Dumoutier L, Renauld JC, Polikarpov I. Crystal structure of the IL-22/IL-22R1 complex and its implications for the IL-22 signaling mechanism. FEBS Lett. 2008;582(20):2985–92. PubMed
Kempski J, Giannou AD, Riecken K, Zhao L, Steglich B, Lucke J, Garcia-Perez L, Karstens KF, Wostemeier A, Nawrocki M, et al. IL22BP mediates the Antitumor Effects of Lymphotoxin Against Colorectal Tumors in mice and humans. Gastroenterology. 2020;159(4):1417–e14301413. PubMed PMC
Kotenko SV, Izotova LS, Mirochnitchenko OV, Esterova E, Dickensheets H, Donnelly RP, Pestka S. Identification, cloning, and characterization of a novel soluble receptor that binds IL-22 and neutralizes its activity. J Immunol. 2001;166(12):7096–103. PubMed
Wolk K, Kunz S, Witte E, Friedrich M, Asadullah K, Sabat R. IL-22 increases the innate immunity of tissues. Immunity. 2004;21(2):241–54. PubMed
Sabat R, Ouyang W, Wolk K. Therapeutic opportunities of the IL-22-IL-22R1 system. Nat Rev Drug Discov. 2014;13(1):21–38. PubMed
Zhang N, Pan HF, Ye DQ. Th22 in inflammatory and autoimmune disease: prospects for therapeutic intervention. Mol Cell Biochem. 2011;353(1–2):41–6. PubMed
Eyerich K, Dimartino V, Cavani A. IL-17 and IL-22 in immunity: driving protection and pathology. Eur J Immunol. 2017;47(4):607–14. PubMed
Mizoguchi A, Yano A, Himuro H, Ezaki Y, Sadanaga T, Mizoguchi E. Clinical importance of IL-22 cascade in IBD. J Gastroenterol. 2018;53(4):465–74. PubMed PMC
Lindemans CA, Calafiore M, Mertelsmann AM, O’Connor MH, Dudakov JA, Jenq RR, Velardi E, Young LF, Smith OM, Lawrence G, et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature. 2015;528(7583):560–4. PubMed PMC
Geng H, Bu HF, Liu FY, Wu LT, Pfeifer K, Chou PM, Wang X, Sun JR, Lu L, Pandey A, et al. In inflamed intestinal tissues and epithelial cells, Interleukin 22 Signaling increases expression of H19 long noncoding RNA, which promotes mucosal regeneration. Gastroenterology. 2018;155(1):144–55. PubMed PMC
Pennino D, Eyerich K, Scarponi C, Carbone T, Eyerich S, Nasorri F, Garcovich S, Traidl-Hoffmann C, Albanesi C, Cavani A. IL-17 amplifies human contact hypersensitivity by licensing hapten nonspecific Th1 cells to kill autologous keratinocytes. J Immunol. 2010;184(9):4880–8. PubMed
Zenewicz LA, Yancopoulos GD, Valenzuela DM, Murphy AJ, Stevens S, Flavell RA. Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity. 2008;29(6):947–57. PubMed PMC
Radaeva S, Sun R, Pan HN, Hong F, Gao B. Interleukin 22 (IL-22) plays a protective role in T cell-mediated murine hepatitis: IL-22 is a survival factor for hepatocytes via STAT3 activation. Hepatology. 2004;39(5):1332–42. PubMed
Ito T, Hirose K, Saku A, Kono K, Takatori H, Tamachi T, Goto Y, Renauld JC, Kiyono H, Nakajima H. IL-22 induces Reg3gamma and inhibits allergic inflammation in house dust mite-induced asthma models. J Exp Med. 2017;214(10):3037–50. PubMed PMC
Bernshtein B, Curato C, Ioannou M, Thaiss CA, Gross-Vered M, Kolesnikov M, Wang Q, David E, Chappell-Maor L, Harmelin A et al. IL-23-producing IL-10Ralpha-deficient gut macrophages elicit an IL-22-driven proinflammatory epithelial cell response. Sci Immunol 2019, 4(36). PubMed PMC
Fujita H. The role of IL-22 and Th22 cells in human skin diseases. J Dermatol Sci. 2013;72(1):3–8. PubMed
Gunasekera DC, Ma JX, Vacharathit V, Shah P, Ramakrishnan A, Uprety P, Shen ZL, Sheh A, Brayton CF, Whary MT, et al. The development of colitis in Il10(-/-) mice is dependent on IL-22. Mucosal Immunol. 2020;13(3):493–506. PubMed PMC
Hwang S, Hicks A, Hoo CZ, Kwon YS, Cho YE, Moore J, Gao B. Novel treatment of acute and acute-on-chronic liver failure: Interleukin-22. Liver Int 2023. PubMed PMC
Stefanich EG, Rae J, Sukumaran S, Lutman J, Lekkerkerker A, Ouyang W, Wang X, Lee D, Danilenko DM, Diehl L, et al. Pre-clinical and translational pharmacology of a human interleukin-22 IgG fusion protein for potential treatment of infectious or inflammatory diseases. Biochem Pharmacol. 2018;152:224–35. PubMed
Tang KY, Lickliter J, Huang ZH, Xian ZS, Chen HY, Huang C, Xiao C, Wang YP, Tan Y, Xu LF, et al. Safety, pharmacokinetics, and biomarkers of F-652, a recombinant human interleukin-22 dimer, in healthy subjects. Cell Mol Immunol. 2019;16(5):473–82. PubMed PMC
Lekkerkerker A, Harder B, Kulkarni P, Zhao R, Choi M, Noyes A, Polihrom A, Fillos D, Rae J, Danilenko D, et al. Pharmacodynamic biomarkers demonstrate dose-dependent pharmacological activity of the IL-22Fc fusion protein UTR1147A in healthy volunteers in a phase 1a clinical trial. J Crohns Colitis. 2017;11:S289–289.
Wagner F, Mansfield JC, Lekkerkerker AN, Wang YH, Keir M, Dash A, Butcher B, Harder B, Orozco LD, Mar JS, et al. Dose escalation randomised study of efmarodocokin alfa in healthy volunteers and patients with ulcerative colitis. Gut. 2023;72(8):1451–61. PubMed PMC
Ponce DM, Alousi AM, Nakamura R, Sandhu KS, Barker JN, Shia J, Yan XQ, Daley WL, Moore G, Fatmi S, et al. A phase 2 study of F-652, a Novel tissue-targeted recombinant human Interleukin-22 (IL-22) Dimer, for treatment of newly diagnosed Acute Gvhd of the Lower GI Tract. Biol Blood Marrow Tr. 2020;26(3):S51–2.
Guttman-Yassky E, Brunner PM, Neumann AU, Khattri S, Pavel AB, Malik K, Singer GK, Baum D, Gilleaudeau P, Sullivan-Whalen M, et al. Efficacy and safety of fezakinumab (an IL-22 monoclonal antibody) in adults with moderate-to-severe atopic dermatitis inadequately controlled by conventional treatments: a randomized, double-blind, phase 2a trial. J Am Acad Dermatol. 2018;78(5):872–e881876. PubMed PMC
Lin Y, Krogh-Andersen K, Hammarstrom L, Marcotte H. Lactobacillus delivery of bioactive interleukin-22. Microb Cell Fact. 2017;16(1):148. PubMed PMC
Krízová L, Kuchar M, Petroková H, Osicka R, Hlavnicková M, Pelák O, Cerny J, Kalina T, Maly P. p19-targeted ABD-derived protein variants inhibit IL-23 binding and exert suppressive control over IL-23-stimulated expansion of primary human IL-17 + T-cells. Autoimmunity. 2017;50(2):102–13. PubMed
Kuchar M, Vanková L, Petroková H, Cerny J, Osicka R, Pelák O, Sípová H, Schneider B, Homola J, Sebo P, et al. Human interleukin-23 receptor antagonists derived from an albumin-binding domain scaffold inhibit IL-23-dependent expansion of IL-17-producing T-cells. Proteins. 2014;82(6):975–89. PubMed PMC
Hlavnicková M, Kuchar M, Osicka R, Vanková L, Petroková H, Maly M, Cerny J, Arenberger P, Maly P. ABD-Derived protein blockers of human IL-17 receptor A as Non-IgG Alternatives for Modulation of IL-17-Dependent Pro-inflammatory Axis. Int J Mol Sci 2018, 19(10). PubMed PMC
Smejkal J, Maly P, Kuchar M, Panova N, Semerádtová A, Aubrecht P, Stofik M, Maly J. Cell immunocapture microfluidic chip based on high-affinity recombinant protein binders. Biosens Bioelectron 2021, 172. PubMed
Ahmad JN, Li JJ, Biedermannova L, Kuchar M, Sipova H, Semeradtova A, Cerny J, Petrokova H, Mikulecky P, Polinek J, et al. Novel high-affinity binders of human interferon gamma derived from albumin-binding domain of protein G. Proteins. 2012;80(3):774–89. PubMed
Jang M, Kim H, Kim Y, Choi J, Jeon J, Hwang Y, Kang JS, Lee WJ. The crucial role of IL-22 and its receptor in thymus and activation regulated chemokine production and T-cell migration by house dust mite extract. Exp Dermatol. 2016;25(8):598–603. PubMed
Sali A, Blundell TL. Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol. 1993;234(3):779–815. PubMed
Johansson MU, Frick IM, Nilsson H, Kraulis PJ, Hober S, Jonasson P, Linhult M, Nygren PA, Uhlen M, Bjorck L, et al. Structure, specificity, and mode of interaction for bacterial albumin-binding modules. J Biol Chem. 2002;277(10):8114–20. PubMed
Kozakov D, Beglov D, Bohnuud T, Mottarella SE, Xia B, Hall DR, Vajda S. How good is automated protein docking? Proteins 2013, 81(12):2159–66. PubMed PMC
Kozakov D, Brenke R, Comeau SR, Vajda S. PIPER: an FFT-based protein docking program with pairwise potentials. Proteins. 2006;65(2):392–406. PubMed
UniProt C. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47(D1):D506–15. PubMed PMC
Juritsch AF, Moreau R. Rapid removal of dextran sulfate sodium from tissue RNA preparations for measurement of inflammation biomarkers. Anal Biochem. 2019;579:18–24. PubMed
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–8. PubMed
Erben U, Loddenkemper C, Doerfel K, Spieckermann S, Haller D, Heimesaat MM, Zeitz M, Siegmund B, Kühl AA. A guide to histomorphological evaluation of intestinal inflammation in mouse models. Int J Clin Exp Patho. 2014;7(8):4557–U4527. PubMed PMC
Lin JX, Leonard WJ. Fine-tuning cytokine signals. Annu Rev Immunol. 2019;37:295–324. PubMed PMC
Wang X, Lupardus P, Laporte SL, Garcia KC. Structural biology of shared cytokine receptors. Annu Rev Immunol. 2009;27:29–60. PubMed PMC
Zenewicz LA. IL-22 binding protein (IL-22BP) in the regulation of IL-22 Biology. Front Immunol 2021, 12. PubMed PMC
Saxton RA, Henneberg LT, Calafiore M, Su L, Jude KM, Hanash AM, Garcia KC. The tissue protective functions of interleukin-22 can be decoupled from pro-inflammatory actions through structure-based design. Immunity. 2021;54(4):660–. PubMed PMC
Sabat R. IL-10 family of cytokines. Cytokine Growth Factor Rev. 2010;21(5):315–24. PubMed
Dumoutier L, Leemans C, Lejeune D, Kotenko SV, Renauld JC. Cutting edge: STAT activation by IL-19, IL-20 and mda-7 through IL-20 receptor complexes of two types. J Immunol. 2001;167(7):3545–9. PubMed
Wang M, Tan Z, Zhang R, Kotenko SV, Liang P. Interleukin 24 (MDA-7/MOB-5) signals through two heterodimeric receptors, IL-22R1/IL-20R2 and IL-20R1/IL-20R2. J Biol Chem. 2002;277(9):7341–7. PubMed
Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology. 1990;98(3):694–702. PubMed
Cox JH, Kljavin NM, Ota N, Leonard J, Roose-Girma M, Diehl L, Ouyang W, Ghilardi N. Opposing consequences of IL-23 signaling mediated by innate and adaptive cells in chemically induced colitis in mice. Mucosal Immunol. 2012;5(1):99–109. PubMed
Yang XO, Seon HC, Park H, Nurieva R, Shah B, Acero L, Wang YH, Schluns KS, Broaddus RR, Zhu Z, et al. Regulation of inflammatory responses by IL-17F. J Exp Med. 2008;205(5):1063–75. PubMed PMC
Yan J, Yu J, Yuan SZ, Tang WQ, Ma W, Yang X, Liu YJ, Liang HP, Zhong XM, Shao J, et al. Musculin is highly enriched in Th17 and IL-22-producing ILC3s and restrains pro-inflammatory cytokines in murine colitis. Eur J Immunol. 2021;51(4):995–8. PubMed
Leppkes M, Becker C, Ivanov II, Hirth S, Wirtz S, Neufert C, Pouly S, Murphy AJ, Valenzuela DM, Yancopoulos GD, et al. RORgamma-expressing Th17 cells induce murine chronic intestinal inflammation via redundant effects of IL-17A and IL-17F. Gastroenterology. 2009;136(1):257–67. PubMed
Oppmann B, Lesley R, Blom B, Timans JC, Xu YM, Hunte B, Vega F, Yu N, Wang J, Singh K, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 2000;13(5):715–25. PubMed
Eken A, Singh AK, Treuting PM, Oukka M. IL-23R + innate lymphoid cells induce colitis via interleukin-22-dependent mechanism. Mucosal Immunol. 2014;7(1):143–54. PubMed PMC
Panda SK, Colonna M. Innate lymphoid cells in mucosal immunity. Front Immunol 2019, 10. PubMed PMC
Buonocore S, Ahern PP, Uhlig HH, Ivanov II, Littman DR, Maloy KJ, Powrie F. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature. 2010;464(7293):1371–5. PubMed PMC
Chen FD, Cao A, Yao SX, Evans-Marin HL, Liu H, Wu W, Carlsen ED, Dann SM, Soong L, Sun JR, et al. mTOR mediates IL-23 induction of Neutrophil IL-17 and IL-22 production. J Immunol. 2016;196(10):4390–9. PubMed PMC
Zindl CL, Lai JF, Lee YK, Maynard CL, Harbour SN, Ouyang WJ, Chaplin DD, Weaver CT. IL-22-producing neutrophils contribute to antimicrobial defense and restitution of colonic epithelial integrity during colitis. P Natl Acad Sci USA. 2013;110(31):12768–73. PubMed PMC
Groza Y, Lacina L, Kuchar M, Raskova Kafkova L, Zachova K, Janouskova O, Osicka R, Cerny J, Petrokova H, Mierzwicka JM, et al. Small protein blockers of human IL-6 receptor alpha inhibit proliferation and migration of cancer cells. Cell Commun Signal. 2024;22(1):261. PubMed PMC