Myomedin variants developed for in vitro PD-L1 diagnostics in tissue samples of non-small cell lung carcinoma patients
Language English Country England, Great Britain Media electronic
Document type Journal Article
Grant support
NU-21-03-00372
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
40514707
PubMed Central
PMC12166602
DOI
10.1186/s12967-025-06699-6
PII: 10.1186/s12967-025-06699-6
Knihovny.cz E-resources
- Keywords
- Cancer diagnostic, Combinatorial library, Immune checkpoint, Non-small cell lung cancer, Programmed cell death ligand 1, Protein engineering,
- MeSH
- B7-H1 Antigen * metabolism MeSH
- HEK293 Cells MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Lung Neoplasms * diagnosis metabolism pathology MeSH
- Carcinoma, Non-Small-Cell Lung * diagnosis metabolism pathology MeSH
- Protein Binding MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- B7-H1 Antigen * MeSH
- CD274 protein, human MeSH Browser
BACKGROUND: The treatment of non-small cell lung cancer (NSCLC) patients is correlated with the efficacy of immune checkpoint blockade therapy (ICB) targeting programmed cell death ligand 1 (PD-L1) or its cognate receptor (PD-1) on cancer cells or infiltrating immune cells. Analysis of PD-L1/PD-1 expression in tumor tissue represents a crucial step before PD-L1/PD-1 blocker usage. METHODS: We used directed evolution of protein variants derived from a 13 kDa Myomedin loop-type combinatorial library with 12 randomized amino acid residues to select high-affinity binders of human PD-L1 (hPD-L1). After the ribosome display, individual clones were screened by ELISA. Detailed analysis of binding affinity and kinetics was performed using LigandTracer. The specificity of Myomedins was assessed using fluorescent microscopy on HEK293T-transfected cells and cultured cancer cells in vitro, formalin-fixed paraffin-embedded (FFPE) sections of human tonsils, and FFPE tumor samples of NSCLC patients. RESULTS: Seven identified PD-L1 binders, called MLE, showed positive staining for hPD-L1 on transfected HEK293T cells and cultured MCF-7 cells. MLE031, MLE105, MLE249, and MLE309 exhibited high affinity to both human and mouse PD-L1-transfected HEK293T cells measured with LigandTracer. The diagnostic potential of MLE variants was tested on human tonsillitis tissue and compared with diagnostic anti-PD-L1 antibody DAKO 28-8 and PD-L1 IHC 22C3 pharmDx antibody. MLE249 and MLE309 exhibited an excellent overlap with diagnostic DAKO 28-8 (Pearson´s coefficient (r) = 0.836 and 0.731, respectively) on human tonsils on which MLE309 exhibited also excellent overlap with diagnostic 22C3 antibody (r = 0.876). Using three NSCLC tissues, MLE249 staining overlaps with 28-8 antibody (r = 0.455-0.883), and MLE309 exhibited overlap with 22C3 antibody (r = 0.534-0.619). Three MLE proteins fused with Fc fragments of rabbit IgG, MLE249-rFc, MLE309-rFc and MLE031-rFc, exhibited very good overlap with anti-PD-L1 antibody 28-8 on tonsil tissue (r = 0.691, 0.610, and 0.667, respectively). Finally, MLE249-rFc, MLE309-rFc and MLE031-rFc exhibited higher sensitivity in comparison to IHC 22C3 antibody using routine immunohistochemistry staining system Ventana, which is one of gold standards for PD-L1 diagnosis. CONCLUSIONS: We demonstrated the development of MLE Myomedins specifically recognizing hPD-L1 that may serve as a refinement tool for clinical PD-L1 detection.
Department of Immunology University Hospital Olomouc Zdravotníků 248 7 Olomouc 77900 Czech Republic
Department of Pathology University Hospital Ostrava and Faculty of Medicine Ostrava Czech Republic
See more in PubMed
Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704. PubMed PMC
Akinleye A, Rasool Z. Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. J Hematol Oncol. 2019;12(1):92. PubMed PMC
Wang X, Teng F, Kong L, Yu J. PD-L1 expression in human cancers and its association with clinical outcomes. OncoTargets Therapy. 2016;9:5023–39. PubMed PMC
Nishimura H, Honjo T. PD-1: an inhibitory immunoreceptor involved in peripheral tolerance. Trends Immunol. 2001;22(5):265–8. PubMed
Gibbons Johnson RM, Dong H. Functional expression of programmed Death-Ligand 1 (B7-H1) by immune cells and tumor cells. Front Immunol. 2017;8:961. PubMed PMC
Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8(8):793–800. PubMed
Kornepati AVR, Vadlamudi RK, Curiel TJ. Programmed death ligand 1 signals in cancer cells. Nat Rev Cancer. 2022;22(3):174–89. PubMed PMC
Zhou YJ, Li G, Wang J, Liu M, Wang Z, Song Y, Zhang X, Wang X. PD-L1: expression regulation. Blood Sci. 2023;5(2):77–91. PubMed PMC
Raskova Kafkova L, Mierzwicka JM, Chakraborty P, Jakubec P, Fischer O, Skarda J, Maly P, Raska M. NSCLC: from tumorigenesis, immune checkpoint misuse to current and future targeted therapy. Front Immunol. 2024;15:1342086. PubMed PMC
Doroshow DB, Bhalla S, Beasley MB, Sholl LM, Kerr KM, Gnjatic S, Wistuba II, Rimm DL, Tsao MS, Hirsch FR. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat Reviews Clin Oncol. 2021;18(6):345–62. PubMed
Phillips T, Simmons P, Inzunza HD, Cogswell J, Novotny J Jr., Taylor C, Zhang X. Development of an automated PD-L1 immunohistochemistry (IHC) assay for non-small cell lung cancer. Appl Immunohistochem Mol Morphology: AIMM. 2015;23(8):541–9. PubMed PMC
Kojima K, Sakamoto T, Kasai T, Kagawa T, Yoon H, Atagi S. PD-L1 expression as a predictor of postoperative recurrence and the association between the PD-L1 expression and mutations in NSCLC. Sci Rep-Uk; 2021. 11(1). PubMed PMC
Carbognin L, Pilotto S, Milella M, Vaccaro V, Brunelli M, Calio A, Cuppone F, Sperduti I, Giannarelli D, Chilosi M, et al. Differential activity of nivolumab, pembrolizumab and MPDL3280A according to the tumor expression of programmed Death-Ligand-1 (PD-L1): sensitivity analysis of trials in melanoma, lung and genitourinary cancers. PLoS ONE. 2015;10(6):e0130142. PubMed PMC
Vranic S, Gatalica Z. PD-L1 testing by immunohistochemistry in immuno-oncology. Biomolecules Biomed. 2023;23(1):15–25. PubMed PMC
Torlakovic E, Lim HJ, Adam J, Barnes P, Bigras G, Chan AWH, Cheung CC, Chung JH, Couture C, Fiset PO, et al. Interchangeability of PD-L1 immunohistochemistry assays: a meta-analysis of diagnostic accuracy. Mod Pathology: Official J United States Can Acad Pathol Inc. 2020;33(1):4–17. PubMed PMC
Maule JG, Clinton LK, Graf RP, Xiao J, Oxnard GR, Ross JS, Huang RSP. Comparison of PD-L1 tumor cell expression with 22C3, 28– 8, and SP142 IHC assays across multiple tumor types. J Immunother Cancer. 2022; 10(10). PubMed PMC
Scheerens H, Malong A, Bassett K, Boyd Z, Gupta V, Harris J, Mesick C, Simnett S, Stevens H, Gilbert H, et al. Current status of companion and complementary diagnostics: strategic considerations for development and launch. Clin Transl Sci. 2017;10(2):84–92. PubMed PMC
Willis JE, Eyerer F, Walk EE, Vasalos P, Bradshaw G, Yohe SL, Laser JS. Companion diagnostics: lessons learned and the path forward from the programmed death Ligand-1 rollout. Arch Pathol Lab Med. 2023;147(1):62–70. PubMed
Buttner R, Gosney JR, Skov BG, Adam J, Motoi N, Bloom KJ, Dietel M, Longshore JW, Lopez-Rios F, Penault-Llorca F, et al. Programmed Death-Ligand 1 immunohistochemistry testing: A review of analytical assays and clinical implementation in Non-Small-Cell lung Cancer. J Clin Oncology: Official J Am Soc Clin Oncol. 2017;35(34):3867–76. PubMed
Fujimoto D, Yamashita D, Fukuoka J, Kitamura Y, Hosoya K, Kawachi H, Sato Y, Nagata K, Nakagawa A, Tachikawa R, et al. Comparison of PD-L1 assays in Non-small cell lung cancer: 22C3 pharmdx and SP263. Anticancer Res. 2018;38(12):6891–5. PubMed
Kuchar M, Kosztyu P, Lisková VD, Cerny J, Petroková H, Vróblová E, Maly M, Vanková L, Krupka M, Kafková LR, et al. Myomedin scaffold variants targeted to 10E8 HIV-1 broadly neutralizing antibody mimic gp41 epitope and elicit HIV-1 virus-neutralizing Sera in mice. Virulence. 2021;12(1):1271–87. PubMed PMC
Lisková VD, Kosztyu P, Kuchar M, Cerny J, Bharadwaj S, Petroková H, Vroblová E, Krupka M, Maly M, Zosincuková T et al. Myomedin replicas of gp120 V3 loop glycan epitopes recognized by PGT121 and PGT126 antibodies as non-cognate antigens for stimulation of HIV-1 broadly neutralizing antibodies. Front Immunol. 2022; 13. PubMed PMC
Mierzwicka JM, Petroková H, Kafková LR, Kosztyu P, Cerny J, Kuchar M, Petrík M, Bendová K, Krasulová K, Groza Y et al. Engineering PD-1-targeted small protein variants for in vitro diagnostics and in vivo PET imaging. J Transl Med. 2024; 22(1). PubMed PMC
Azadi S, Aboulkheyr Es H, Razavi Bazaz S, Thiery JP, Asadnia M, Ebrahimi Warkiani M. Upregulation of PD-L1 expression in breast cancer cells through the formation of 3D multicellular cancer aggregates under different chemical and mechanical conditions. Biochim Et Biophys Acta Mol Cell Res. 2019;1866(12):118526. PubMed
Zheng Y, Fang YC, Li J. PD-L1 expression levels on tumor cells affect their immunosuppressive activity. Oncol Lett. 2019;18(5):5399–407. PubMed PMC
Gong X, Li X, Jiang T, Xie H, Zhu Z, Zhou F, Zhou C. Combined radiotherapy and Anti-PD-L1 antibody synergistically enhances antitumor effect in Non-Small cell lung Cancer. J Thorac Oncology: Official Publication Int Association Study Lung Cancer. 2017;12(7):1085–97. PubMed
Zhang X, Zeng Y, Qu Q, Zhu J, Liu Z, Ning W, Zeng H, Zhang N, Du W, Chen C, et al. PD-L1 induced by IFN-gamma from tumor-associated macrophages via the JAK/STAT3 and PI3K/AKT signaling pathways promoted progression of lung cancer. Int J Clin Oncol. 2017;22(6):1026–33. PubMed
Kwak G, Kim D, Nam GH, Wang SY, Kim IS, Kim SH, Kwon IC, Yeo Y. Programmed cell death protein Ligand-1 Silencing with Polyethylenimine-Dermatan sulfate complex for dual Inhibition of melanoma growth. ACS Nano. 2017;11(10):10135–46. PubMed PMC
Zhang P, Qin C, Liu N, Zhou X, Chu X, Lv F, Gu Y, Yin L, Liu J, Zhou J, et al. The programmed site-specific delivery of LY3200882 and PD-L1 SiRNA boosts immunotherapy for triple-negative breast cancer by remodeling tumor microenvironment. Biomaterials. 2022;284:121518. PubMed
Udall M, Rizzo M, Kenny J, Doherty J, Dahm S, Robbins P, Faulkner E. PD-L1 diagnostic tests: a systematic literature review of scoring algorithms and test-validation metrics. Diagn Pathol. 2018;13(1):12. PubMed PMC
Badenhorst M, Windhorst AD, Beaino W. Navigating the landscape of PD-1/PD-L1 imaging tracers: from challenges to opportunities. Front Med. 2024;11:1401515. PubMed PMC
McLaughlin J, Han G, Schalper KA, Carvajal-Hausdorf D, Pelekanou V, Rehman J, Velcheti V, Herbst R, LoRusso P, Rimm DL. Quantitative assessment of the heterogeneity of PD-L1 expression in Non-Small-Cell lung Cancer. JAMA Oncol. 2016;2(1):46–54. PubMed PMC
Dodson A, Parry S, Lissenberg-Witte B, Haragan A, Allen D, O’Grady A, McClean E, Hughes J, Miller K, Thunnissen E. External quality assessment demonstrates that PD-L1 22C3 and SP263 assays are systematically different. J Pathol Clin Res. 2020;6(2):138–45. PubMed PMC
Xu HP, Lin G, Huang C, Zhu WF, Miao Q, Fan XR, Wu B, Zheng XB, Lin XD, Jiang K et al. Assessment of concordance between 22C3 and SP142 immunohistochemistry assays regarding PD-L1 expression in Non-Small cell lung Cancer. Sci Rep-Uk; 2017. 7. PubMed PMC
Qi C, Li Y, Zeng H, Wei Q, Tan S, Zhang Y, Li W, Tian P. Current status and progress of PD-L1 detection: guiding immunotherapy for non-small cell lung cancer. Clin Exp Med. 2024;24(1):162. PubMed PMC
Jing L, Liu J, Cui D, Li Y, Liu Z, Tao L, Zhao Q, Diao A. Screening and production of an affibody inhibiting the interaction of the PD-1/PD-L1 immune checkpoint. Protein Exp Purif. 2020;166:105520. PubMed
Gonzalez Trotter DE, Meng X, McQuade P, Rubins D, Klimas M, Zeng Z, Connolly BM, Miller PJ, O’Malley SS, Lin SA, et al. In vivo imaging of the programmed death ligand 1 by (18)F PET. J Nuclear Medicine: Official Publication Soc Nuclear Med. 2017;58(11):1852–7. PubMed
Wong NC, Cai Y, Meszaros LK, Biersack HJ, Cook GJ, Ting HH, Mottaghy FM. Preclinical development and characterisation of (99m)Tc-NM-01 for SPECT/CT imaging of human PD-L1. Am J Nucl Med Mol Imaging. 2021;11(3):154–66. PubMed PMC
Natarajan A, Patel CB, Ramakrishnan S, Panesar PS, Long SR, Gambhir SS. A novel engineered small protein for positron emission tomography imaging of human programmed death Ligand-1: validation in mouse models and human Cancer tissues. Clin cancer Research: Official J Am Association Cancer Res. 2019;25(6):1774–85. PubMed PMC
Ramakrishnan S, Natarajan A, Chan CT, Panesar PS, Gambhir SS. Engineering of a novel subnanomolar affinity fibronectin III domain binder targeting human programmed death-ligand 1. Protein Eng Des Sel. 2019;32(5):231–40. PubMed PMC
Maute RL, Gordon SR, Mayer AT, McCracken MN, Natarajan A, Ring NG, Kimura R, Tsai JM, Manglik A, Kruse AC, et al. Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging. Proc Natl Acad Sci USA. 2015;112(47):E6506–6514. PubMed PMC
Kamalinia G, Engel BJ, Srinivasamani A, Grindel BJ, Ong JN, Curran MA, Takahashi TT, Millward SW, Roberts RW. mRNA display discovery of a novel programmed death ligand 1 (PD-L1) binding peptide (a peptide ligand for PD-L1). ACS Chem Biol. 2020;15(6):1630–41. PubMed PMC
Donnelly DJ, Smith RA, Morin P, Lipovsek D, Gokemeijer J, Cohen D, Lafont V, Tran T, Cole EL, Wright M, et al. Synthesis and biologic evaluation of a novel (18)F-Labeled adnectin as a PET radioligand for imaging PD-L1 expression. J Nuclear Medicine: Official Publication Soc Nuclear Med. 2018;59(3):529–35. PubMed
Stutvoet TS, van der Veen EL, Kol A, Antunes IF, de Vries EFJ, Hospers GAP, de Vries EGE, de Jong S, Lub-de Hooge MN. Molecular imaging of PD-L1 expression and dynamics with the Adnectin-Based PET tracer (18)F-BMS-986192. J Nuclear Medicine: Official Publication Soc Nuclear Med. 2020;61(12):1839–44. PubMed
Zhou H, Bao G, Wang Z, Zhang B, Li D, Chen L, Deng X, Yu B, Zhao J, Zhu X. PET imaging of an optimized anti-PD-L1 probe (68)Ga-NODAGA-BMS986192 in immunocompetent mice and non-human primates. EJNMMI Res. 2022;12(1):35. PubMed PMC
Robu S, Richter A, Gosmann D, Seidl C, Leung D, Hayes W, Cohen D, Morin P, Donnelly DJ, Lipovšek D, et al. Synthesis and preclinical evaluation of a (68)Ga-Labeled adnectin, (68)Ga-BMS-986192, as a PET agent for imaging PD-L1 expression. J Nuclear Medicine: Official Publication Soc Nuclear Med. 2021;62(9):1228–34. PubMed PMC
Wang Y, Liu Z, Li Y, Wang K, Yuan C, Shi J, Ren J, Wang S, Wang J, Zhao M, et al. Peptide-based PET/CT imaging visualizes PD-L1-driven radioresistance in glioblastoma. Drug Resist Updates: Reviews Commentaries Antimicrob Anticancer Chemother. 2025;79:101202. PubMed
Zhou M, Xiang S, Zhao Y, Tang Y, Yang J, Yin X, Tian J, Hu S, Du Y. [(68)Ga]Ga-AUNP-12 PET imaging to assess the PD-L1 status in preclinical and first-in-human study. Eur J Nucl Med Mol Imaging. 2024;51(2):369–79. PubMed
Shima Y, Sato Y, Morimoto T, Hara S, Hirabayashi R, Nagata K, Nakagawa A, Tachikawa R, Hamakawa H, Takahashi Y, et al. Predictive performance of PD-L1 tumor proportion score for nivolumab response evaluated using archived specimens in patients with non-small cell lung cancer experiencing a postoperative recurrence. Invest New Drugs. 2023;41(1):35–43. PubMed
Lawson NL, Dix CI, Scorer PW, Stubbs CJ, Wong E, Hutchinson L, McCall EJ, Schimpl M, DeVries E, Walker J, et al. Mapping the binding sites of antibodies utilized in programmed cell death ligand-1 predictive immunohistochemical assays for use with immuno-oncology therapies. Mod Pathology: Official J United States Can Acad Pathol Inc. 2020;33(4):518–30. PubMed PMC
Tan SG, Liu KF, Chai Y, Zhang CWH, Gao S, Gao G, Qi JX. Distinct PD-L1 binding characteristics of therapeutic monoclonal antibody durvalumab. Protein Cell. 2018;9(1):135–9. PubMed PMC
Chen Y, Pei Y, Luo J, Huang Z, Yu J, Meng X. Looking for the optimal PD-1/PD-L1 inhibitor in Cancer treatment: A comparison in basic structure, function, and clinical practice. Front Immunol. 2020;11:1088. PubMed PMC
Benicky J, Sanda M, Brnakova Kennedy Z, Grant OC, Woods RJ, Zwart A, Goldman R. PD-L1 glycosylation and its impact on binding to clinical antibodies. J Proteome Res. 2021;20(1):485–97. PubMed PMC
Zanello A, Bortolotti M, Maiello S, Bolognesi A, Polito L. Anti-PD-L1 immunoconjugates for cancer therapy: are available antibodies good carriers for toxic payload delivering? Front Pharmacol. 2022;13:972046. PubMed PMC
Adam J, Le Stang N, Rouquette I, Cazes A, Badoual C, Pinot-Roussel H, Tixier L, Danel C, Damiola F, Damotte D, et al. Multicenter harmonization study for PD-L1 IHC testing in non-small-cell lung cancer. Ann Oncol. 2018;29(4):953–8. PubMed
Parra ER, Villalobos P, Mino B, Rodriguez-Canales J. Comparison of different antibody clones for immunohistochemistry detection of programmed cell death ligand 1 (PD-L1) on Non-Small cell lung carcinoma. Appl Immunohistochem Mol Morphology: AIMM. 2018;26(2):83–93. PubMed PMC
Rimm DL, Han G, Taube JM, Yi ES, Bridge JA, Flieder DB, Homer R, West WW, Wu H, Roden AC et al. A Prospective, Multi-institutional, Pathologist-Based Assessment of 4 Immunohistochemistry Assays for PD-L1 Expression in Non-Small Cell Lung Cancer. JAMA Oncol. 2017; 3(8):1051–1058. PubMed PMC
Tretiakova M, Fulton R, Kocherginsky M, Long T, Ussakli C, Antic T, Gown A. Concordance study of PD-L1 expression in primary and metastatic bladder carcinomas: comparison of four commonly used antibodies and RNA expression. Mod Pathol. 2018;31(4):623–32. PubMed
Shu Z, Dwivedi B, Switchenko JM, Yu DS, Deng X. PD-L1 deglycosylation promotes its nuclear translocation and accelerates DNA double-strand-break repair in cancer. Nat Commun. 2024;15(1):6830. PubMed PMC
Wang YN, Lee HH, Hsu JL, Yu D, Hung MC. The impact of PD-L1 N-linked glycosylation on cancer therapy and clinical diagnosis. J Biomed Sci. 2020;27(1):77. PubMed PMC