• This record comes from PubMed

Myomedin variants developed for in vitro PD-L1 diagnostics in tissue samples of non-small cell lung carcinoma patients

. 2025 Jun 13 ; 23 (1) : 655. [epub] 20250613

Language English Country England, Great Britain Media electronic

Document type Journal Article

Grant support
NU-21-03-00372 Ministerstvo Školství, Mládeže a Tělovýchovy

Links

PubMed 40514707
PubMed Central PMC12166602
DOI 10.1186/s12967-025-06699-6
PII: 10.1186/s12967-025-06699-6
Knihovny.cz E-resources

BACKGROUND: The treatment of non-small cell lung cancer (NSCLC) patients is correlated with the efficacy of immune checkpoint blockade therapy (ICB) targeting programmed cell death ligand 1 (PD-L1) or its cognate receptor (PD-1) on cancer cells or infiltrating immune cells. Analysis of PD-L1/PD-1 expression in tumor tissue represents a crucial step before PD-L1/PD-1 blocker usage. METHODS: We used directed evolution of protein variants derived from a 13 kDa Myomedin loop-type combinatorial library with 12 randomized amino acid residues to select high-affinity binders of human PD-L1 (hPD-L1). After the ribosome display, individual clones were screened by ELISA. Detailed analysis of binding affinity and kinetics was performed using LigandTracer. The specificity of Myomedins was assessed using fluorescent microscopy on HEK293T-transfected cells and cultured cancer cells in vitro, formalin-fixed paraffin-embedded (FFPE) sections of human tonsils, and FFPE tumor samples of NSCLC patients. RESULTS: Seven identified PD-L1 binders, called MLE, showed positive staining for hPD-L1 on transfected HEK293T cells and cultured MCF-7 cells. MLE031, MLE105, MLE249, and MLE309 exhibited high affinity to both human and mouse PD-L1-transfected HEK293T cells measured with LigandTracer. The diagnostic potential of MLE variants was tested on human tonsillitis tissue and compared with diagnostic anti-PD-L1 antibody DAKO 28-8 and PD-L1 IHC 22C3 pharmDx antibody. MLE249 and MLE309 exhibited an excellent overlap with diagnostic DAKO 28-8 (Pearson´s coefficient (r) = 0.836 and 0.731, respectively) on human tonsils on which MLE309 exhibited also excellent overlap with diagnostic 22C3 antibody (r = 0.876). Using three NSCLC tissues, MLE249 staining overlaps with 28-8 antibody (r = 0.455-0.883), and MLE309 exhibited overlap with 22C3 antibody (r = 0.534-0.619). Three MLE proteins fused with Fc fragments of rabbit IgG, MLE249-rFc, MLE309-rFc and MLE031-rFc, exhibited very good overlap with anti-PD-L1 antibody 28-8 on tonsil tissue (r = 0.691, 0.610, and 0.667, respectively). Finally, MLE249-rFc, MLE309-rFc and MLE031-rFc exhibited higher sensitivity in comparison to IHC 22C3 antibody using routine immunohistochemistry staining system Ventana, which is one of gold standards for PD-L1 diagnosis. CONCLUSIONS: We demonstrated the development of MLE Myomedins specifically recognizing hPD-L1 that may serve as a refinement tool for clinical PD-L1 detection.

See more in PubMed

Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704. PubMed PMC

Akinleye A, Rasool Z. Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. J Hematol Oncol. 2019;12(1):92. PubMed PMC

Wang X, Teng F, Kong L, Yu J. PD-L1 expression in human cancers and its association with clinical outcomes. OncoTargets Therapy. 2016;9:5023–39. PubMed PMC

Nishimura H, Honjo T. PD-1: an inhibitory immunoreceptor involved in peripheral tolerance. Trends Immunol. 2001;22(5):265–8. PubMed

Gibbons Johnson RM, Dong H. Functional expression of programmed Death-Ligand 1 (B7-H1) by immune cells and tumor cells. Front Immunol. 2017;8:961. PubMed PMC

Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8(8):793–800. PubMed

Kornepati AVR, Vadlamudi RK, Curiel TJ. Programmed death ligand 1 signals in cancer cells. Nat Rev Cancer. 2022;22(3):174–89. PubMed PMC

Zhou YJ, Li G, Wang J, Liu M, Wang Z, Song Y, Zhang X, Wang X. PD-L1: expression regulation. Blood Sci. 2023;5(2):77–91. PubMed PMC

Raskova Kafkova L, Mierzwicka JM, Chakraborty P, Jakubec P, Fischer O, Skarda J, Maly P, Raska M. NSCLC: from tumorigenesis, immune checkpoint misuse to current and future targeted therapy. Front Immunol. 2024;15:1342086. PubMed PMC

Doroshow DB, Bhalla S, Beasley MB, Sholl LM, Kerr KM, Gnjatic S, Wistuba II, Rimm DL, Tsao MS, Hirsch FR. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat Reviews Clin Oncol. 2021;18(6):345–62. PubMed

Phillips T, Simmons P, Inzunza HD, Cogswell J, Novotny J Jr., Taylor C, Zhang X. Development of an automated PD-L1 immunohistochemistry (IHC) assay for non-small cell lung cancer. Appl Immunohistochem Mol Morphology: AIMM. 2015;23(8):541–9. PubMed PMC

Kojima K, Sakamoto T, Kasai T, Kagawa T, Yoon H, Atagi S. PD-L1 expression as a predictor of postoperative recurrence and the association between the PD-L1 expression and mutations in NSCLC. Sci Rep-Uk; 2021. 11(1). PubMed PMC

Carbognin L, Pilotto S, Milella M, Vaccaro V, Brunelli M, Calio A, Cuppone F, Sperduti I, Giannarelli D, Chilosi M, et al. Differential activity of nivolumab, pembrolizumab and MPDL3280A according to the tumor expression of programmed Death-Ligand-1 (PD-L1): sensitivity analysis of trials in melanoma, lung and genitourinary cancers. PLoS ONE. 2015;10(6):e0130142. PubMed PMC

Vranic S, Gatalica Z. PD-L1 testing by immunohistochemistry in immuno-oncology. Biomolecules Biomed. 2023;23(1):15–25. PubMed PMC

Torlakovic E, Lim HJ, Adam J, Barnes P, Bigras G, Chan AWH, Cheung CC, Chung JH, Couture C, Fiset PO, et al. Interchangeability of PD-L1 immunohistochemistry assays: a meta-analysis of diagnostic accuracy. Mod Pathology: Official J United States Can Acad Pathol Inc. 2020;33(1):4–17. PubMed PMC

Maule JG, Clinton LK, Graf RP, Xiao J, Oxnard GR, Ross JS, Huang RSP. Comparison of PD-L1 tumor cell expression with 22C3, 28– 8, and SP142 IHC assays across multiple tumor types. J Immunother Cancer. 2022; 10(10). PubMed PMC

Scheerens H, Malong A, Bassett K, Boyd Z, Gupta V, Harris J, Mesick C, Simnett S, Stevens H, Gilbert H, et al. Current status of companion and complementary diagnostics: strategic considerations for development and launch. Clin Transl Sci. 2017;10(2):84–92. PubMed PMC

Willis JE, Eyerer F, Walk EE, Vasalos P, Bradshaw G, Yohe SL, Laser JS. Companion diagnostics: lessons learned and the path forward from the programmed death Ligand-1 rollout. Arch Pathol Lab Med. 2023;147(1):62–70. PubMed

Buttner R, Gosney JR, Skov BG, Adam J, Motoi N, Bloom KJ, Dietel M, Longshore JW, Lopez-Rios F, Penault-Llorca F, et al. Programmed Death-Ligand 1 immunohistochemistry testing: A review of analytical assays and clinical implementation in Non-Small-Cell lung Cancer. J Clin Oncology: Official J Am Soc Clin Oncol. 2017;35(34):3867–76. PubMed

Fujimoto D, Yamashita D, Fukuoka J, Kitamura Y, Hosoya K, Kawachi H, Sato Y, Nagata K, Nakagawa A, Tachikawa R, et al. Comparison of PD-L1 assays in Non-small cell lung cancer: 22C3 pharmdx and SP263. Anticancer Res. 2018;38(12):6891–5. PubMed

Kuchar M, Kosztyu P, Lisková VD, Cerny J, Petroková H, Vróblová E, Maly M, Vanková L, Krupka M, Kafková LR, et al. Myomedin scaffold variants targeted to 10E8 HIV-1 broadly neutralizing antibody mimic gp41 epitope and elicit HIV-1 virus-neutralizing Sera in mice. Virulence. 2021;12(1):1271–87. PubMed PMC

Lisková VD, Kosztyu P, Kuchar M, Cerny J, Bharadwaj S, Petroková H, Vroblová E, Krupka M, Maly M, Zosincuková T et al. Myomedin replicas of gp120 V3 loop glycan epitopes recognized by PGT121 and PGT126 antibodies as non-cognate antigens for stimulation of HIV-1 broadly neutralizing antibodies. Front Immunol. 2022; 13. PubMed PMC

Mierzwicka JM, Petroková H, Kafková LR, Kosztyu P, Cerny J, Kuchar M, Petrík M, Bendová K, Krasulová K, Groza Y et al. Engineering PD-1-targeted small protein variants for in vitro diagnostics and in vivo PET imaging. J Transl Med. 2024; 22(1). PubMed PMC

Azadi S, Aboulkheyr Es H, Razavi Bazaz S, Thiery JP, Asadnia M, Ebrahimi Warkiani M. Upregulation of PD-L1 expression in breast cancer cells through the formation of 3D multicellular cancer aggregates under different chemical and mechanical conditions. Biochim Et Biophys Acta Mol Cell Res. 2019;1866(12):118526. PubMed

Zheng Y, Fang YC, Li J. PD-L1 expression levels on tumor cells affect their immunosuppressive activity. Oncol Lett. 2019;18(5):5399–407. PubMed PMC

Gong X, Li X, Jiang T, Xie H, Zhu Z, Zhou F, Zhou C. Combined radiotherapy and Anti-PD-L1 antibody synergistically enhances antitumor effect in Non-Small cell lung Cancer. J Thorac Oncology: Official Publication Int Association Study Lung Cancer. 2017;12(7):1085–97. PubMed

Zhang X, Zeng Y, Qu Q, Zhu J, Liu Z, Ning W, Zeng H, Zhang N, Du W, Chen C, et al. PD-L1 induced by IFN-gamma from tumor-associated macrophages via the JAK/STAT3 and PI3K/AKT signaling pathways promoted progression of lung cancer. Int J Clin Oncol. 2017;22(6):1026–33. PubMed

Kwak G, Kim D, Nam GH, Wang SY, Kim IS, Kim SH, Kwon IC, Yeo Y. Programmed cell death protein Ligand-1 Silencing with Polyethylenimine-Dermatan sulfate complex for dual Inhibition of melanoma growth. ACS Nano. 2017;11(10):10135–46. PubMed PMC

Zhang P, Qin C, Liu N, Zhou X, Chu X, Lv F, Gu Y, Yin L, Liu J, Zhou J, et al. The programmed site-specific delivery of LY3200882 and PD-L1 SiRNA boosts immunotherapy for triple-negative breast cancer by remodeling tumor microenvironment. Biomaterials. 2022;284:121518. PubMed

Udall M, Rizzo M, Kenny J, Doherty J, Dahm S, Robbins P, Faulkner E. PD-L1 diagnostic tests: a systematic literature review of scoring algorithms and test-validation metrics. Diagn Pathol. 2018;13(1):12. PubMed PMC

Badenhorst M, Windhorst AD, Beaino W. Navigating the landscape of PD-1/PD-L1 imaging tracers: from challenges to opportunities. Front Med. 2024;11:1401515. PubMed PMC

McLaughlin J, Han G, Schalper KA, Carvajal-Hausdorf D, Pelekanou V, Rehman J, Velcheti V, Herbst R, LoRusso P, Rimm DL. Quantitative assessment of the heterogeneity of PD-L1 expression in Non-Small-Cell lung Cancer. JAMA Oncol. 2016;2(1):46–54. PubMed PMC

Dodson A, Parry S, Lissenberg-Witte B, Haragan A, Allen D, O’Grady A, McClean E, Hughes J, Miller K, Thunnissen E. External quality assessment demonstrates that PD-L1 22C3 and SP263 assays are systematically different. J Pathol Clin Res. 2020;6(2):138–45. PubMed PMC

Xu HP, Lin G, Huang C, Zhu WF, Miao Q, Fan XR, Wu B, Zheng XB, Lin XD, Jiang K et al. Assessment of concordance between 22C3 and SP142 immunohistochemistry assays regarding PD-L1 expression in Non-Small cell lung Cancer. Sci Rep-Uk; 2017. 7. PubMed PMC

Qi C, Li Y, Zeng H, Wei Q, Tan S, Zhang Y, Li W, Tian P. Current status and progress of PD-L1 detection: guiding immunotherapy for non-small cell lung cancer. Clin Exp Med. 2024;24(1):162. PubMed PMC

Jing L, Liu J, Cui D, Li Y, Liu Z, Tao L, Zhao Q, Diao A. Screening and production of an affibody inhibiting the interaction of the PD-1/PD-L1 immune checkpoint. Protein Exp Purif. 2020;166:105520. PubMed

Gonzalez Trotter DE, Meng X, McQuade P, Rubins D, Klimas M, Zeng Z, Connolly BM, Miller PJ, O’Malley SS, Lin SA, et al. In vivo imaging of the programmed death ligand 1 by (18)F PET. J Nuclear Medicine: Official Publication Soc Nuclear Med. 2017;58(11):1852–7. PubMed

Wong NC, Cai Y, Meszaros LK, Biersack HJ, Cook GJ, Ting HH, Mottaghy FM. Preclinical development and characterisation of (99m)Tc-NM-01 for SPECT/CT imaging of human PD-L1. Am J Nucl Med Mol Imaging. 2021;11(3):154–66. PubMed PMC

Natarajan A, Patel CB, Ramakrishnan S, Panesar PS, Long SR, Gambhir SS. A novel engineered small protein for positron emission tomography imaging of human programmed death Ligand-1: validation in mouse models and human Cancer tissues. Clin cancer Research: Official J Am Association Cancer Res. 2019;25(6):1774–85. PubMed PMC

Ramakrishnan S, Natarajan A, Chan CT, Panesar PS, Gambhir SS. Engineering of a novel subnanomolar affinity fibronectin III domain binder targeting human programmed death-ligand 1. Protein Eng Des Sel. 2019;32(5):231–40. PubMed PMC

Maute RL, Gordon SR, Mayer AT, McCracken MN, Natarajan A, Ring NG, Kimura R, Tsai JM, Manglik A, Kruse AC, et al. Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging. Proc Natl Acad Sci USA. 2015;112(47):E6506–6514. PubMed PMC

Kamalinia G, Engel BJ, Srinivasamani A, Grindel BJ, Ong JN, Curran MA, Takahashi TT, Millward SW, Roberts RW. mRNA display discovery of a novel programmed death ligand 1 (PD-L1) binding peptide (a peptide ligand for PD-L1). ACS Chem Biol. 2020;15(6):1630–41. PubMed PMC

Donnelly DJ, Smith RA, Morin P, Lipovsek D, Gokemeijer J, Cohen D, Lafont V, Tran T, Cole EL, Wright M, et al. Synthesis and biologic evaluation of a novel (18)F-Labeled adnectin as a PET radioligand for imaging PD-L1 expression. J Nuclear Medicine: Official Publication Soc Nuclear Med. 2018;59(3):529–35. PubMed

Stutvoet TS, van der Veen EL, Kol A, Antunes IF, de Vries EFJ, Hospers GAP, de Vries EGE, de Jong S, Lub-de Hooge MN. Molecular imaging of PD-L1 expression and dynamics with the Adnectin-Based PET tracer (18)F-BMS-986192. J Nuclear Medicine: Official Publication Soc Nuclear Med. 2020;61(12):1839–44. PubMed

Zhou H, Bao G, Wang Z, Zhang B, Li D, Chen L, Deng X, Yu B, Zhao J, Zhu X. PET imaging of an optimized anti-PD-L1 probe (68)Ga-NODAGA-BMS986192 in immunocompetent mice and non-human primates. EJNMMI Res. 2022;12(1):35. PubMed PMC

Robu S, Richter A, Gosmann D, Seidl C, Leung D, Hayes W, Cohen D, Morin P, Donnelly DJ, Lipovšek D, et al. Synthesis and preclinical evaluation of a (68)Ga-Labeled adnectin, (68)Ga-BMS-986192, as a PET agent for imaging PD-L1 expression. J Nuclear Medicine: Official Publication Soc Nuclear Med. 2021;62(9):1228–34. PubMed PMC

Wang Y, Liu Z, Li Y, Wang K, Yuan C, Shi J, Ren J, Wang S, Wang J, Zhao M, et al. Peptide-based PET/CT imaging visualizes PD-L1-driven radioresistance in glioblastoma. Drug Resist Updates: Reviews Commentaries Antimicrob Anticancer Chemother. 2025;79:101202. PubMed

Zhou M, Xiang S, Zhao Y, Tang Y, Yang J, Yin X, Tian J, Hu S, Du Y. [(68)Ga]Ga-AUNP-12 PET imaging to assess the PD-L1 status in preclinical and first-in-human study. Eur J Nucl Med Mol Imaging. 2024;51(2):369–79. PubMed

Shima Y, Sato Y, Morimoto T, Hara S, Hirabayashi R, Nagata K, Nakagawa A, Tachikawa R, Hamakawa H, Takahashi Y, et al. Predictive performance of PD-L1 tumor proportion score for nivolumab response evaluated using archived specimens in patients with non-small cell lung cancer experiencing a postoperative recurrence. Invest New Drugs. 2023;41(1):35–43. PubMed

Lawson NL, Dix CI, Scorer PW, Stubbs CJ, Wong E, Hutchinson L, McCall EJ, Schimpl M, DeVries E, Walker J, et al. Mapping the binding sites of antibodies utilized in programmed cell death ligand-1 predictive immunohistochemical assays for use with immuno-oncology therapies. Mod Pathology: Official J United States Can Acad Pathol Inc. 2020;33(4):518–30. PubMed PMC

Tan SG, Liu KF, Chai Y, Zhang CWH, Gao S, Gao G, Qi JX. Distinct PD-L1 binding characteristics of therapeutic monoclonal antibody durvalumab. Protein Cell. 2018;9(1):135–9. PubMed PMC

Chen Y, Pei Y, Luo J, Huang Z, Yu J, Meng X. Looking for the optimal PD-1/PD-L1 inhibitor in Cancer treatment: A comparison in basic structure, function, and clinical practice. Front Immunol. 2020;11:1088. PubMed PMC

Benicky J, Sanda M, Brnakova Kennedy Z, Grant OC, Woods RJ, Zwart A, Goldman R. PD-L1 glycosylation and its impact on binding to clinical antibodies. J Proteome Res. 2021;20(1):485–97. PubMed PMC

Zanello A, Bortolotti M, Maiello S, Bolognesi A, Polito L. Anti-PD-L1 immunoconjugates for cancer therapy: are available antibodies good carriers for toxic payload delivering? Front Pharmacol. 2022;13:972046. PubMed PMC

Adam J, Le Stang N, Rouquette I, Cazes A, Badoual C, Pinot-Roussel H, Tixier L, Danel C, Damiola F, Damotte D, et al. Multicenter harmonization study for PD-L1 IHC testing in non-small-cell lung cancer. Ann Oncol. 2018;29(4):953–8. PubMed

Parra ER, Villalobos P, Mino B, Rodriguez-Canales J. Comparison of different antibody clones for immunohistochemistry detection of programmed cell death ligand 1 (PD-L1) on Non-Small cell lung carcinoma. Appl Immunohistochem Mol Morphology: AIMM. 2018;26(2):83–93. PubMed PMC

Rimm DL, Han G, Taube JM, Yi ES, Bridge JA, Flieder DB, Homer R, West WW, Wu H, Roden AC et al. A Prospective, Multi-institutional, Pathologist-Based Assessment of 4 Immunohistochemistry Assays for PD-L1 Expression in Non-Small Cell Lung Cancer. JAMA Oncol. 2017; 3(8):1051–1058. PubMed PMC

Tretiakova M, Fulton R, Kocherginsky M, Long T, Ussakli C, Antic T, Gown A. Concordance study of PD-L1 expression in primary and metastatic bladder carcinomas: comparison of four commonly used antibodies and RNA expression. Mod Pathol. 2018;31(4):623–32. PubMed

Shu Z, Dwivedi B, Switchenko JM, Yu DS, Deng X. PD-L1 deglycosylation promotes its nuclear translocation and accelerates DNA double-strand-break repair in cancer. Nat Commun. 2024;15(1):6830. PubMed PMC

Wang YN, Lee HH, Hsu JL, Yu D, Hung MC. The impact of PD-L1 N-linked glycosylation on cancer therapy and clinical diagnosis. J Biomed Sci. 2020;27(1):77. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...