Arbuscular mycorrhizal fungi strongly influence the endorhizosphere of grapevine rootstock with soil type as a key factor

. 2025 Mar 05 ; 35 (2) : 17. [epub] 20250305

Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40044917

Grantová podpora
CZ.02.1.01/0.0/0.0/16_025/0007314 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_025/0007314 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_025/0007314 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_025/0007314 Ministerstvo Školství, Mládeže a Tělovýchovy
IGA-ZF/2022-ST2-004 Internal Grant Agency, Mendel university in Brno
IGA-ZF/2022-ST2-004 Internal Grant Agency, Mendel university in Brno

Odkazy

PubMed 40044917
PubMed Central PMC11882661
DOI 10.1007/s00572-025-01194-8
PII: 10.1007/s00572-025-01194-8
Knihovny.cz E-zdroje

Arbuscular mycorrhizal fungi (AMF) play a crucial role in enhancing the health and productivity of host plants, including grapevine. By forming symbiotic relationships with plant roots, AMF significantly improve water uptake and nutrient absorption, particularly phosphorus (P) and nitrogen (N). This study evaluated the microbiome composition and AMF colonization in the grapevine endorhizosphere across five wine-growing sub-regions in the Czech Republic. In all five sub-regions, in terms of composition of the fungal microbiome, the phyla Ascomycetes and Basidiomycetes were most numerous. Additionally, the study confirmed that LSU primers are more sensitive than ITS primers for AMF sequencing. While the representation of the phylum Glomeromycetes ranged from 0.07% to 5.65% in the ITS library, it was significantly higher, ranging from 83.74% to 98.71%, in the LSU library. The most significant difference compared to other sub-regions was observed in the Slovácko sub-region, where the soil had a low pH, a different texture (sandy loam), reduced micronutrient concentration, and low organic matter. The application of chemical plant protection products to grapevines also could have played a significant role, with 49 applications recorded in the Slovácko sub-region during the three years preceding sample collection. In other sub-regions, chemical treatments were conducted only 19-26 times. These factors resulted in only trace amounts of AMF being detected in Slovácko. Furthermore, it was demonstrated that AMF positively influenced the phosphorus concentration in the soil and reduced the presence of certain fungal pathogens.

Zobrazit více v PubMed

Abarenkov K, Nilsson RH, Larsson K-H et al (2024) The UNITE database for molecular identification and taxonomic communication of fungi and other eukaryotes: sequences, taxa and classifications reconsidered. Nucleic Acids Res 52:D791–D797. 10.1093/nar/gkad1039 PubMed PMC

Afgan E, Nekrutenko A, Grüning BA et al (2022) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Res 50:W345–W351. 10.1093/nar/gkac247 PubMed PMC

Aguilar MO, Gobbi A, Browne PD et al (2020) Influence of vintage, geographic location and cultivar on the structure of microbial communities associated with the grapevine rhizosphere in vineyards of San Juan Province. Argentina PLOS ONE 15:e0243848. 10.1371/journal.pone.0243848 PubMed PMC

Aliasgharzad N, Mårtensson LM, Olsson PA (2010) Acidification of a sandy grassland favours bacteria and disfavours fungal saprotrophs as estimated by fatty acid profiling. Soil Biol Biochem 42:1058–1064. 10.1016/j.soilbio.2010.02.025

Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42. 10.1007/s005720100097

Balestrini R, Magurno F, Walker C et al (2010) Cohorts of arbuscular mycorrhizal fungi (AMF) in Vitis vinifera, a typical Mediterranean fruit crop. Environ Microbiol Rep 2:594–604. 10.1111/j.1758-2229.2010.00160.x PubMed

Bavaresco L, Poni S (2003) Effect of Calcareous Soil on Photosynthesis Rate, Mineral Nutrition, and Source-Sink Ratio of Table Grape. J Plant Nutr 26:2123–2135. 10.1081/PLN-120024269

Bokulich NA, Collins TS, Masarweh C et al (2016) Associations among Wine Grape Microbiome, Metabolome, and Fermentation Behavior Suggest Microbial Contribution to Regional Wine Characteristics. mBio 7:e00631–16. 10.1128/mBio.00631-16 PubMed PMC

Bona E, Marsano F, Massa N et al (2011) Proteomic analysis as a tool for investigating arsenic stress in Pteris vittata roots colonized or not by arbuscular mycorrhizal symbiosis. J Proteomics 74:1338–1350. 10.1016/j.jprot.2011.03.027 PubMed

Cameron DD, Neal AL, Van Wees SCM, Ton J (2013) Mycorrhiza-induced resistance: more than the sum of its parts? Trends Plant Sci 18:539–545. 10.1016/j.tplants.2013.06.004 PubMed PMC

Coller E, Cestaro A, Zanzotti R et al (2019) Microbiome of vineyard soils is shaped by geography and management. Microbiome 7:140. 10.1186/s40168-019-0758-7 PubMed PMC

Combs SM, Denning JL, Frank KD (1998) Sulphate-Sulfur. In: Recommended Chemical Soil Test Procedures for the North Central Region, Missouri Agric. Expt. Sta. Publication No. 221 (Revised). Extension and Agricultural Information, I-98 Agricultural Building, University of Missouri, Columbia, pp 35–59

Dhariwal A, Chong J, Habib S et al (2017) MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res 45:W180–W188. 10.1093/nar/gkx295 PubMed PMC

Drouineau G (1942) Dosage rapide du calcaire actif du sol. Nouvelles donn6es sur la r6o6tition et la nature des fractions calcaires. Ann Agron 441–450

Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. 10.1093/bioinformatics/btq461 PubMed

Faust K, Raes J (2016) CoNet app: inference of biological association networks using Cytoscape. F1000Research 5:1519. 10.12688/f1000research.9050.2 PubMed PMC

García JAL, Barbas C, Probanza A et al (2001) Low molecular weight organic acids and fatty acids in root exudates of two Lupinus cultivars at flowering and fruiting stages. Phytochem Anal 12:305–311. 10.1002/pca.596 PubMed

Gilbert JA, van der Lelie D, Zarraonaindia I (2014) Microbial terroir for wine grapes. Proc Natl Acad Sci 111:5–6. 10.1073/pnas.1320471110 PubMed PMC

Gobbi A, Acedo A, Imam N et al (2022) A global microbiome survey of vineyard soils highlights the microbial dimension of viticultural terroirs. Commun Biol 5:241. 10.1038/s42003-022-03202-5 PubMed PMC

Göhre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122. 10.1007/s00425-006-0225-0 PubMed

Grant C, Bittman S, Montreal M et al (2005) Soil and fertilizer phosphorus: Effects on plant P supply and mycorrhizal development. Can J Plant Sci 85:3–14. 10.4141/P03-182

Gupta VVSR, Bramley RGV, Greenfield P et al (2019) Vineyard Soil Microbiome Composition Related to Rotundone Concentration in Australian Cool Climate ‘Peppery’ Shiraz Grapes. Front Microbiol 10:1607. 10.3389/fmicb.2019.01607 PubMed PMC

Holland TC, Bowen P, Bogdanoff C, Hart MM (2014) How distinct are arbuscular mycorrhizal fungal communities associating with grapevines? Biol Fertil Soils 50:667–674. 10.1007/s00374-013-0887-2

Ihrmark K, Bödeker ITM, Cruz-Martinez K et al (2012) New primers to amplify the fungal ITS2 region - evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol 82:666–677. 10.1111/j.1574-6941.2012.01437.x PubMed

Katoh K, Asimenos G, Toh H (2009) Multiple Alignment of DNA Sequences with MAFFT. In: Posada D (ed) Bioinformatics for DNA Sequence Analysis. Humana Press, Totowa, NJ, pp 39–64 PubMed

Kettler TA, Doran JW, Gilbert TL (2001) Simplified Method for Soil Particle-Size Determination to Accompany Soil-Quality Analyses. Soil Sci Soc Am J 65:849–852. 10.2136/sssaj2001.653849x

Khalil HA (2013) Influence of Vesicular-arbuscula Mycorrhizal Fungi (Glomus spp.) on the Response of Grapevines Rootstocks to Salt Stress. Asian J Crop Sci 5:393–404. 10.3923/ajcs.2013.393.404

Komárek M, Čadková E, Chrastný V et al (2010) Contamination of vineyard soils with fungicides: A review of environmental and toxicological aspects. Environ Int 36:138–151. 10.1016/j.envint.2009.10.005 PubMed

Likar M, Hančević K, Radić T, Regvar M (2013) Distribution and diversity of arbuscular mycorrhizal fungi in grapevines from production vineyards along the eastern Adriatic coast. Mycorrhiza 23:209–219. 10.1007/s00572-012-0463-x PubMed

Lindsay WL, Norvell WA (1978) Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper. Soil Sci Soc Am J 42:421–428.10.2136/sssaj1978.03615995004200030009x

Lumini E, Orgiazzi A, Borriello R et al (2010) Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ Microbiol 12:2165–2179. 10.1111/j.1462-2920.2009.02099.x PubMed

Martínez-Diz MDP, Andrés-Sodupe M, Bujanda R et al (2019) Soil-plant compartments affect fungal microbiome diversity and composition in grapevine. Fungal Ecol 41:234–244. 10.1016/j.funeco.2019.07.003

Massa N, Bona E, Novello G et al (2020) AMF communities associated to Vitis vinifera in an Italian vineyard subjected to integrated pest management at two different phenological stages. Sci Rep 10:9197. 10.1038/s41598-020-66067-w PubMed PMC

Meier S, Azcón R, Cartes P et al (2011) Alleviation of Cu toxicity in Oenothera picensis by copper-adapted arbuscular mycorrhizal fungi and treated agrowaste residue. Appl Soil Ecol 48:117–124. 10.1016/j.apsoil.2011.04.005

Menge JA, Raski DJ, Lider LA et al (1983) Interactions Between Mycorrhizal Fungi, Soil Fumigation, and Growth of Grapes in California. Am J Enol Vitic 34:117–121. 10.5344/ajev.1983.34.2.117

Moukarzel R, Ridgway HJ, Guerin-Laguette A, Jones EE (2021) Grapevine rootstocks drive the community structure of arbuscular mycorrhizal fungi in New Zealand vineyards. J Appl Microbiol 131:2941–2956. 10.1111/jam.15160 PubMed

Moukarzel R, Ridgway HJ, Liu J et al (2022) AMF Community Diversity Promotes Grapevine Growth Parameters under High Black Foot Disease Pressure. J Fungi 8:250. 10.3390/jof8030250 PubMed PMC

Moukarzel R, Ridgway HJ, Waller L et al (2023) Soil Arbuscular Mycorrhizal Fungal Communities Differentially Affect Growth and Nutrient Uptake by Grapevine Rootstocks. Microb Ecol 86:1035–1049. 10.1007/s00248-022-02160-z PubMed

Nguyen NH, Song Z, Bates ST et al (2016) FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248. 10.1016/j.funeco.2015.06.006

Ninkov J, Paprić Đ, Sekulić P et al (2012) Copper content of vineyard soils at Sremski Karlovci (Vojvodina Province, Serbia) as affected by the use of copper-based fungicides. Int J Environ Anal Chem 92:592–600. 10.1080/03067310903428743

Nogales A, Aguirreolea J, Santa María E et al (2009) Response of mycorrhizal grapevine to Armillaria mellea inoculation: disease development and polyamines. Plant Soil 317:177–187. 10.1007/s11104-008-9799-6

Novello G, Gamalero E, Bona E et al (2017) The Rhizosphere Bacterial Microbiota of Vitis vinifera cv. Pinot Noir in an Integrated Pest Management Vineyard. Front Microbiol 8:1528. 10.3389/fmicb.2017.01528 PubMed PMC

Pansu M, Gautheyrou J (2006) Cation Exchange Capacity. Handbook of Soil Analysis. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 709–754

Parihar M, Rakshit A, Singh HB, Rana K (2019) Diversity of arbuscular mycorrhizal fungi in alkaline soils of hot sub humid eco-region of Middle Gangetic Plains of India. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science 69:386–397. 10.1080/09064710.2019.1582692

Parsons RF, Uren NC (2007) The relationship between lime chlorosis, trace elements and Mundulla Yellows. Australas Plant Pathol 36:415–418. 10.1071/AP07043

Petit E, Barriault E, Baumgartner K et al (2011) Cylindrocarpon Species Associated with Black-Foot of Grapevine in Northeastern United States and Southeastern Canada. Am J Enol Vitic 62:177–183. 10.5344/ajev.2011.10112

Popescu GC (2016) Arbuscular mycorrhizal fungi - an essential tool to sustainable vineyard development: a review. Curr Trends Nat Sci 5:107–116

Reid DA (1964) Notes on some fungi of Michigan—I. “Cyhellaceae.” Pers Mol Phylog Evol Fungi 3:97–154a

Řezáčová V, Gryndler M, Bukovská P et al (2016) Molecular community analysis of arbuscular mycorrhizal fungi—Contributions of PCR primer and host plant selectivity to the detected community profiles. Pedobiologia 59:179–187. 10.1016/j.pedobi.2016.04.002

Schreiner RP (2005) Spatial and Temporal Variation of Roots, Arbuscular Mycorrhizal Fungi, and Plant and Soil Nutrients in a Mature Pinot Noir (Vitis vinifera L.) Vineyard in Oregon, USA. Plant Soil 276:219–234. 10.1007/s11104-005-4895-0

Schreiner RP (2007) Effects of native and nonnative arbuscular mycorrhizal fungi on growth and nutrient uptake of ‘Pinot noir’ (Vitis vinifera L.) in two soils with contrasting levels of phosphorus. Appl Soil Ecol 36:205–215. 10.1016/j.apsoil.2007.03.002

Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res 13:2498–2504. 10.1101/gr.1239303 PubMed PMC

Špetík M, Balík J, Híc P et al (2022) Lignans Extract from Knotwood of Norway Spruce—A Possible New Weapon against GTDs. J Fungi 8:357. 10.3390/jof8040357 PubMed PMC

Todeschini V, AitLahmidi N, Mazzucco E et al (2018) Impact of Beneficial Microorganisms on Strawberry Growth, Fruit Production, Nutritional Quality, and Volatilome. Front Plant Sci 9:1611. 10.3389/fpls.2018.01611 PubMed PMC

Trouvelot S, Bonneau L, Redecker D et al (2015) Arbuscular mycorrhiza symbiosis in viticulture: a review. Agron Sustain Dev 35:1449–1467. 10.1007/s13593-015-0329-7

Větrovský T, Baldrian P (2013) Analysis of soil fungal communities by amplicon pyrosequencing: current approaches to data analysis and the introduction of the pipeline SEED. Biol Fertil Soils 49:1027–1037. 10.1007/s00374-013-0801-y

Wagg C, Jansa J, Stadler M et al (2011) Mycorrhizal fungal identity and diversity relaxes plant–plant competition. Ecology 92:1303–1313. 10.1890/10-1915.1 PubMed

Walkley A, Black IA (1934) An Examination of the Degtjareff Method for Determining Soil Organic Matter and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci 37:29–38. 10.1097/00010694-193401000-00003

Wang B, Qiu Y-L (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363. 10.1007/s00572-005-0033-6 PubMed

White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR protocols a guide to methods and applications. In: PCR Protocols. Elsevier, pp 315–322

Zarraonaindia I, Owens SM, Weisenhorn P, et al (2015) The Soil Microbiome Influences Grapevine-Associated Microbiota. mBio 6:e02527–14. 10.1128/mBio.02527-14 PubMed PMC

Zuccarini P (2010) Biological and technological strategies against soil and water salinization II—plant. J Plant Nutr 33:1489–1505. 10.1080/01904167.2010.489986

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...