Satellite DNA in Neotropical Deer Species
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33478071
PubMed Central
PMC7835801
DOI
10.3390/genes12010123
PII: genes12010123
Knihovny.cz E-zdroje
- Klíčová slova
- Cervidae, FISH, comparative cytogenetics, satellite DNA, sequencing,
- MeSH
- fibroblasty MeSH
- fylogeneze * MeSH
- genetické markery MeSH
- hybridizace in situ fluorescenční MeSH
- kultivované buňky MeSH
- kůže cytologie MeSH
- primární buněčná kultura MeSH
- satelitní DNA genetika MeSH
- vysoká zvěř klasifikace genetika MeSH
- vznik druhů (genetika) MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- genetické markery MeSH
- satelitní DNA MeSH
The taxonomy and phylogenetics of Neotropical deer have been mostly based on morphological criteria and needs a critical revision on the basis of new molecular and cytogenetic markers. In this study, we used the variation in the sequence, copy number, and chromosome localization of satellite I-IV DNA to evaluate evolutionary relationships among eight Neotropical deer species. Using FISH with satI-IV probes derived from Mazama gouazoubira, we proved the presence of satellite DNA blocks in peri/centromeric regions of all analyzed deer. Satellite DNA was also detected in the interstitial chromosome regions of species of the genus Mazama with highly reduced chromosome numbers. In contrast to Blastocerus dichotomus, Ozotoceros bezoarticus, and Odocoileus virginianus, Mazama species showed high abundance of satIV DNA by FISH. The phylogenetic analysis of the satellite DNA showed close relationships between O. bezoarticus and B. dichotomus. Furthermore, the Neotropical and Nearctic populations of O. virginianus formed a single clade. However, the satellite DNA phylogeny did not allow resolving the relationships within the genus Mazama. The high abundance of the satellite DNA in centromeres probably contributes to the formation of chromosomal rearrangements, thus leading to a fast and ongoing speciation in this genus, which has not yet been reflected in the satellite DNA sequence diversification.
Deer Research and Conservation Center 14884 900 Jaboticabal Brazil
Institute of Vertebrate Biology Czech Academy of Sciences Kvetna 8 603 65 Brno Czech Republic
Zobrazit více v PubMed
Wilson D.E., Reeder D.M. Mammal Species of the World: A Taxonomic and Geographic Reference. Johns Hopkins University Press; Baltimore, MD, USA: 2005.
Chen L., Qiu Q., Jiang Y., Wang K., Lin Z., Li Z., Bibi F., Yang Y., Wang J., Nie W., et al. Large-Scale Ruminant Genome Sequencing Provides Insights into Their Evolution and Distinct Traits. Science. 2019;364 doi: 10.1126/science.aav6202. PubMed DOI
Gutiérrez E.E., Helgen K.M., McDonough M.M., Bauer F., Hawkins M.T.R., Escobedo-Morales L.A., Patterson B.D., Maldonado J.E. A Gene-Tree Test of the Traditional Taxonomy of American Deer: The Importance of Voucher Specimens, Geographic Data, and Dense Sampling. ZooKeys. 2017;697:87–131. doi: 10.3897/zookeys.697.15124. PubMed DOI PMC
Duarte J.M.B., González S., Maldonado J.E. The Surprising Evolutionary History of South American Deer. Mol. Phylogenet. Evol. 2008;49:17–22. doi: 10.1016/j.ympev.2008.07.009. PubMed DOI
Groves C., Grubb P. Ungulate Taxonomy. 1st ed. Johns Hopkins University Press; Baltimore, MD, USA: 2011.
Fontana F., Rubini M. Chromosomal Evolution in Cervidae. BioSystems. 1990;24:157–174. doi: 10.1016/0303-2647(90)90008-O. PubMed DOI
Duarte J.M.B., Jorge W. Morphologic and Cytogenetic Description of the Small Red Brocket (Mazama Bororo Duarte,1996) in Brazil. Mammalia. 2009;67:403–410. doi: 10.1515/mamm.2003.67.3.403. DOI
Huang L., Chi J., Nie W., Wang J., Yang F. Phylogenomics of Several Deer Species Revealed by Comparative Chromosome Painting with Chinese Muntjac Paints. Genetica. 2006;127:25–33. doi: 10.1007/s10709-005-2449-5. PubMed DOI
Nietzel H. Chromosome Evolution of Cervidae: Karyotypic and Molecular Aspects. In: Obe G., Basler A., editors. Cytogenetics: Basic and Applied Aspects. Springer; Berlin/Heidelberg, Germany: 1987.
Cifuentes-Rincón A., Morales-Donoso J.A., Sandoval E.D.P., Tomazella I.M., Mantellatto A.M.B., de Thoisy B., Duarte J.M.B. Designation of a Neotype for Mazama Americana (Artiodactyla, Cervidae) Reveals a Cryptic New Complex of Brocket Deer Species. ZooKeys. 2020;958:143–164. doi: 10.3897/zookeys.958.50300. PubMed DOI PMC
Cursino M.S., Salviano M.B., Abril V.V., Zanetti E., dos S., Duarte J.M. The Role of Chromosome Variation in the Speciation of the Red Brocket Deer Complex: The Study of Reproductive Isolation in Females. BMC Evol. Biol. 2014;14:40. doi: 10.1186/1471-2148-14-40. PubMed DOI PMC
Abril V.V., Carnelossi E.A.G., González S., Duarte J.M.B. Elucidating the Evolution of the Red Brocket Deer Mazama Americana Complex (Artiodactyla; Cervidae) Cytogenet. Genome Res. 2010;128:177–187. doi: 10.1159/000298819. PubMed DOI
Plohl M., Luchetti A., Mestrović N., Mantovani B. Satellite DNAs between Selfishness and Functionality: Structure, Genomics and Evolution of Tandem Repeats in Centromeric (Hetero)Chromatin. Gene. 2008;409:72–82. doi: 10.1016/j.gene.2007.11.013. PubMed DOI
Ugarković D., Plohl M. Variation in Satellite DNA Profiles—Causes and Effects. EMBO J. 2002;21:5955–5959. doi: 10.1093/emboj/cdf612. PubMed DOI PMC
Schalch T., Steiner F.A. Structure of Centromere Chromatin: From Nucleosome to Chromosomal Architecture. Chromosoma. 2017;126:443–455. doi: 10.1007/s00412-016-0620-7. PubMed DOI PMC
Kunze B., Traut W., Garagna S., Weichenhan D., Redi C.A., Winking H. Pericentric Satellite DNA and Molecular Phylogeny in Acomys (Rodentia) Chromosome Res. 1999;7:131. doi: 10.1023/A:1009251202340. PubMed DOI
Louzada S., Vieira-da-Silva A., Mendes-da-Silva A., Kubickova S., Rubes J., Adega F., Chaves R. A Novel Satellite DNA Sequence in the Peromyscus Genome (PMSat): Evolution via Copy Number Fluctuation. Mol. Phylogenet. Evol. 2015;92:193–203. doi: 10.1016/j.ympev.2015.06.008. PubMed DOI
Baicharoen S., Miyabe-Nishiwaki T., Arsaithamkul V., Hirai Y., Duangsa-ard K., Siriaroonrat B., Domae H., Srikulnath K., Koga A., Hirai H. Locational Diversity of Alpha Satellite DNA and Intergeneric Hybridization Aspects in the Nomascus and Hylobates Genera of Small Apes. PLoS ONE. 2014;9:e109151. doi: 10.1371/journal.pone.0109151. PubMed DOI PMC
Vozdova M., Kubickova S., Cernohorska H., Fröhlich J., Vodicka R., Rubes J. Comparative Study of the Bush Dog (Speothos venaticus) Karyotype and Analysis of Satellite DNA Sequences and Their Chromosome Distribution in Six Species of Canidae. Cytogenet. Genome Res. 2019;159:88–96. doi: 10.1159/000503082. PubMed DOI
Vozdova M., Kubickova S., Cernohorska H., Fröhlich J., Rubes J. Satellite DNA Sequences in Canidae and Their Chromosome Distribution in Dog and Red Fox. Cytogenet. Genome Res. 2016;150:118–127. doi: 10.1159/000455081. PubMed DOI
Jobse C., Buntjer J.B., Haagsma N., Breukelman H.J., Beintema J.J., Lenstra J.A. Evolution and Recombination of Bovine DNA Repeats. J. Mol. Evol. 1995;41:277–283. doi: 10.1007/BF01215174. PubMed DOI
Kopecna O., Kubickova S., Cernohorska H., Cabelova K., Vahala J., Martinkova N., Rubes J. Tribe-Specific Satellite DNA in Non-Domestic Bovidae. Chromosome Res. 2014;22:277–291. doi: 10.1007/s10577-014-9401-4. PubMed DOI
Chaves R., Guedes-Pinto H., Heslop-Harrison J.S. Phylogenetic Relationships and the Primitive X Chromosome Inferred from Chromosomal and Satellite DNA Analysis in Bovidae. Proc. Biol. Sci. 2005;272:2009–2016. doi: 10.1098/rspb.2005.3206. PubMed DOI PMC
Vozdova M., Kubickova S., Cernohorska H., Fröhlich J., Martínková N., Rubes J. Sequence Analysis and FISH Mapping of Four Satellite DNA Families among Cervidae. Genes. 2020;11:584. doi: 10.3390/genes11050584. PubMed DOI PMC
Slamovits H.C., Cook J.A., Lessa E.P., Rossi M.S. Recurrent Amplifications and Deletions of Satellite DNA Accompanied Chromosomal Diversification in South American Tuco-Tucos (Genus Ctenomys, Rodentia: Octodontidae): A Phylogenetic Approach. Mol. Biol. Evol. 2001;18:1708–1719. doi: 10.1093/oxfordjournals.molbev.a003959. PubMed DOI
Bachmann L., Sperlich D. Gradual Evolution of a Specific Satellite DNA Family in Drosophila Ambigua, D. Tristis, and D. Obscura. Mol. Biol. Evol. 1993;10:647–659. PubMed
Garrido-Ramos M.A., de la Herrán R., Jamilena M., Lozano R., Ruiz Rejón C., Ruiz Rejón M. Evolution of Centromeric Satellite DNA and Its Use in Phylogenetic Studies of the Sparidae Family (Pisces, Perciformes) Mol. Phylogenet. Evol. 1999;12:200–204. doi: 10.1006/mpev.1998.0609. PubMed DOI
Lee C., Court D.R., Cho C., Haslett J.L., Lin C.C. Higher-Order Organization of Subrepeats and the Evolution of Cervid Satellite I DNA. J. Mol. Evol. 1997;44:327–335. doi: 10.1007/PL00006150. PubMed DOI
Li Y.-C., Lin C.-C. Cervid Satellite DNA and Karyotypic Evolution of Indian Muntjac. Genes Genom. 2012;34:7–11. doi: 10.1007/s13258-011-0179-x. DOI
Liu Y., Nie W., Huang L., Wang J., Su W., Lin C., Yang F. Cloning, Characterization, and FISH Mapping of Four Satellite DNAs from Black Muntjac (Muntiacus crinifrons) and Fea’s Muntjac (M. feae) Zoolog. Res. 2008;2008:225–235. doi: 10.3724/SP.J.1141.2008.00225. DOI
Lin C.C., Li Y.C. Chromosomal Distribution and Organization of Three Cervid Satellite DNAs in Chinese Water Deer (Hydropotes inermis) Cytogenet. Genome Res. 2006;114:147–154. doi: 10.1159/000093331. PubMed DOI
Li Y.C., Lee C., Chang W.S., Li S.-Y., Lin C.C. Isolation and Identification of a Novel Satellite DNA Family Highly Conserved in Several Cervidae Species. Chromosoma. 2002;111:176–183. doi: 10.1007/s00412-002-0200-x. PubMed DOI
Blake R.D., Wang J.Z., Beauregard L. Repetitive Sequence Families in Alces Alces Americana. J. Mol. Evol. 1997;44:509–520. doi: 10.1007/PL00006175. PubMed DOI
Li Y.C., Lee C., Hseu T.H., Li S.Y., Lin C.C., Hsu T.H. Direct Visualization of the Genomic Distribution and Organization of Two Cervid Centromeric Satellite DNA Families. Cytogenet. Cell Genet. 2000;89:192–198. doi: 10.1159/000015611. PubMed DOI
Płucienniczak A., Skowroński J., Jaworski J. Nucleotide Sequence of Bovine 1.715 Satellite DNA and Its Relation to Other Bovine Satellite Sequences. J. Mol. Biol. 1982;158:293–304. doi: 10.1016/0022-2836(82)90434-X. PubMed DOI
Masumoto H., Masukata H., Muro Y., Nozaki N., Okazaki T. A Human Centromere Antigen (CENP-B) Interacts with a Short Specific Sequence in Alphoid DNA, a Human Centromeric Satellite. J. Cell Biol. 1989;109:1963–1973. doi: 10.1083/jcb.109.5.1963. PubMed DOI PMC
Grant C.E., Bailey T.L., Noble W.S. FIMO: Scanning for Occurrences of a given Motif. Bioinformatics. 2011;27:1017–1018. doi: 10.1093/bioinformatics/btr064. PubMed DOI PMC
Katoh K., Rozewicki J., Yamada D.K. MAFFT Online Service: Multiple Sequence Alignment, Interactive Sequence Choice and Visualization. Brief. Bioinform. 2019;20:1160–1166. doi: 10.1093/bib/bbx108. PubMed DOI PMC
Katoh K., Kuma K., Toh H., Miyata T. MAFFT Version 5: Improvement in Accuracy of Multiple Sequence Alignment. Nucleic Acids Res. 2005;33:511–518. doi: 10.1093/nar/gki198. PubMed DOI PMC
Machado D.J., Castroviejo-Fisher S., Grant T. Evidence of Absence Treated as Absence of Evidence: The Effects of Variation in the Number and Distribution of Gaps Treated as Missing Data on the Results of Standard Maximum Likelihood Analysis. Mol. Phylogenet. Evol. 2021;154:106966. doi: 10.1016/j.ympev.2020.106966. PubMed DOI
Lefort V., Longueville J.-E., Gascuel O. SMS: Smart Model Selection in PhyML. Mol. Biol. Evol. 2017;34:2422–2424. doi: 10.1093/molbev/msx149. PubMed DOI PMC
Guindon S., Dufayard J.-F., Lefort V., Anisimova M., Hordijk W., Gascuel O. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3. Syst. Biol. 2010;59:307–321. doi: 10.1093/sysbio/syq010. PubMed DOI
Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A., Huelsenbeck J.P. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice across a Large Model Space. Syst. Biol. 2012;61:539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2020.
Paradis E., Schliep K. Ape 5.0: An Environment for Modern Phylogenetics and Evolutionary Analyses in R. Bioinformatics. 2019;35:526–528. doi: 10.1093/bioinformatics/bty633. PubMed DOI
Wang L.-G., Lam T.T.-Y., Xu S., Dai Z., Zhou L., Feng T., Guo P., Dunn C.W., Jones B.R., Bradley T., et al. Treeio: An R Package for Phylogenetic Tree Input and Output with Richly Annotated and Associated Data. Mol. Biol. Evol. 2020;37:599–603. doi: 10.1093/molbev/msz240. PubMed DOI PMC
Revell L.J. Phytools: An R Package for Phylogenetic Comparative Biology (and Other Things) Methods Ecol. Evol. 2012;3:217–223. doi: 10.1111/j.2041-210X.2011.00169.x. DOI
Neuwirth E. RColorBrewer: ColorBrewer Palettes. [(accessed on 7 December 2014)];2014 Available online: https://CRAN.R-project.org/package=RColorBrewer.
Barbanti Duarte J.M., González S. Neotropical Cervidology, Biology and Medicine of Latin American Deer. [(accessed on 23 November 2020)]; Available online: https://www.iucn.org/content/neotropical-cervidology.
Bogenberger J.M., Neumaier P.S., Fittler F. The Muntjak Satellite IA Sequence Is Composed of 31-Base-Pair Internal Repeats That Are Highly Homologous to the 31-Base-Pair Subrepeats of the Bovine Satellite 1. Eur. J. Biochem. 1985;148:55–59. doi: 10.1111/j.1432-1033.1985.tb08806.x. PubMed DOI
Vafa O., Shelby R.D., Sullivan K.F. CENP-A Associated Complex Satellite DNA in the Kinetochore of the Indian Muntjac. Chromosoma. 1999;108:367–374. doi: 10.1007/s004120050388. PubMed DOI
Carroll C.W., Silva M.C.C., Godek K.M., Jansen L.E.T., Straight A.F. Centromere Assembly Requires the Direct Recognition of CENP-A Nucleosomes by CENP-N. Nat. Cell Biol. 2009;11:896–902. doi: 10.1038/ncb1899. PubMed DOI PMC
Suntronpong A., Kugou K., Masumoto H., Srikulnath K., Ohshima K., Hirai H., Koga A. CENP-B Box, a Nucleotide Motif Involved in Centromere Formation, Occurs in a New World Monkey. Biol. Lett. 2016;12 doi: 10.1098/rsbl.2015.0817. PubMed DOI PMC
Ruiz-Ruano F.J., López-León M.D., Cabrero J., Camacho J.P.M. High-Throughput Analysis of the Satellitome Illuminates Satellite DNA Evolution. Sci. Rep. 2016;6 doi: 10.1038/srep28333. PubMed DOI PMC
Mestrović N., Plohl M., Mravinac B., Ugarković D. Evolution of Satellite DNAs from the Genus Palorus--Experimental Evidence for the “Library” Hypothesis. Mol. Biol. Evol. 1998;15:1062–1068. doi: 10.1093/oxfordjournals.molbev.a026005. PubMed DOI
Palacios-Gimenez O.M., Milani D., Song H., Marti D.A., López-León M.D., Ruiz-Ruano F.J., Camacho J.P.M., Cabral-de-Mello D.C. Eight Million Years of Satellite DNA Evolution in Grasshoppers of the Genus Schistocerca Illuminate the Ins and Outs of the Library Hypothesis. Genome Biol. Evol. 2020;12:88–102. doi: 10.1093/gbe/evaa018. PubMed DOI PMC
Fry K., Salser W. Nucleotide Sequences of HS-α Satellite DNA from Kangaroo Rat Dipodomys Ordii and Characterization of Similar Sequences in Other Rodents. Cell. 1977;12:1069–1084. doi: 10.1016/0092-8674(77)90170-2. PubMed DOI
Walsh J.B. Persistence of Tandem Arrays: Implications for Satellite and Simple-Sequence DNAs. Genetics. 1987;115:553–567. doi: 10.1093/genetics/115.3.553. PubMed DOI PMC
Okumura K., Kiyama R., Oishi M. Sequence Analyses of Extrachromosomal Sau3A and Related Family DNA: Analysis of Recombination in the Excision Event. Nucleic Acids Res. 1987;15:7477–7489. doi: 10.1093/nar/15.18.7477. PubMed DOI PMC
Alkan C., Eichler E.E., Bailey J.A., Sahinalp S.C., Tüzün E. The Role of Unequal Crossover in Alpha-Satellite DNA Evolution: A Computational Analysis. J. Comput. Biol. 2004;11:933–944. doi: 10.1089/cmb.2004.11.933. PubMed DOI
Stephan W. Recombination and the Evolution of Satellite DNA. Genet. Res. 1986;47:167–174. doi: 10.1017/S0016672300023089. PubMed DOI
Dover G.A. Molecular Drive in Multigene Families: How Biological Novelties Arise, Spread and Are Assimilated. Trends Genet. 1986;2:159–165. doi: 10.1016/0168-9525(86)90211-8. DOI
Lorite P., Muñoz-López M., Carrillo J.A., Sanllorente O., Vela J., Mora P., Tinaut A., Torres M.I., Palomeque T. Concerted Evolution, a Slow Process for Ant Satellite DNA: Study of the Satellite DNA in the Aphaenogaster Genus (Hymenoptera, Formicidae) Org. Divers. Evol. 2017;17:595–606. doi: 10.1007/s13127-017-0333-7. DOI
Durfy S.J., Willard H.F. Concerted Evolution of Primate Alpha Satellite DNA: Evidence for an Ancestral Sequence Shared by Gorilla and Human X Chromosome Alpha Satellite. J. Mol. Biol. 1990;216:555–566. doi: 10.1016/0022-2836(90)90383-W. PubMed DOI
Mravinac B., Plohl M. Parallelism in Evolution of Highly Repetitive DNAs in Sibling Species. Mol. Biol. Evol. 2010;27:1857–1867. doi: 10.1093/molbev/msq068. PubMed DOI
Mantellatto A.M.B., González S., Duarte J.M.B. Molecular Identification of Mazama Species (Cervidae: Artiodactyla) from Natural History Collections. Genet. Mol. Biol. 2020;43 doi: 10.1590/1678-4685-gmb-2019-0008. PubMed DOI PMC
Escobedo-Morales L.A., Mandujano S., Eguiarte L.E., Rodríguez-Rodríguez M.A., Maldonado J.E. First Phylogenetic Analysis of Mesoamerican Brocket Deer Mazama Pandora and Mazama Temama (Cetartiodactyla: Cervidae) Based on Mitochondrial Sequences: Implications for Neotropical Deer Evolution. Mammal. Biol. 2016;81:303–313. doi: 10.1016/j.mambio.2016.02.003. DOI
Heckeberg N.S. The Systematics of the Cervidae: A Total Evidence Approach. PeerJ. 2020;8:e8114. doi: 10.7717/peerj.8114. PubMed DOI PMC
Carrillo J.D., Faurby S., Silvestro D., Zizka A., Jaramillo C., Bacon C.D., Antonelli A. Disproportionate Extinction of South American Mammals Drove the Asymmetry of the Great American Biotic Interchange. Proc. Natl. Acad. Sci. USA. 2020;117:26281–26287. doi: 10.1073/pnas.2009397117. PubMed DOI PMC
Carrizo L.V., Tulli M.J., Santos D.A.D., Abdala V. Interplay between Postcranial Morphology and Locomotor Types in Neotropical Sigmodontine Rodents. J. Anat. 2014;224:469–481. doi: 10.1111/joa.12152. PubMed DOI PMC
Pečnerová P., Moravec J.C., Martínková N. A Skull Might Lie: Modeling Ancestral Ranges and Diet from Genes and Shape of Tree Squirrels. Syst. Biol. 2015;64:1074–1088. doi: 10.1093/sysbio/syv054. PubMed DOI
Barra V., Fachinetti D. The Dark Side of Centromeres: Types, Causes and Consequences of Structural Abnormalities Implicating Centromeric DNA. Nat. Commun. 2018;9:4340. doi: 10.1038/s41467-018-06545-y. PubMed DOI PMC
Puppo I.L., Saifitdinova A.F., Tonyan Z.N. The Role of Satellite DNA in Causing Structural Rearrangements in Human Karyotype. Russ. J. Genet. 2020;56:41–47. doi: 10.1134/S1022795419080155. DOI
Aquino C.I., Abril V.V., Duarte J.M.B. Meiotic Pairing of B Chromosomes, Multiple Sexual System, and Robertsonian Fusion in the Red Brocket Deer Mazama Americana (Mammalia, Cervidae) Genet. Mol. Res. GMR. 2013;12:3566–3574. doi: 10.4238/2013.September.13.1. PubMed DOI
Abril V.V., Duarte J.M.B. Chromosome Polymorphism in the Brazilian Dwarf Brocket Deer, Mazama Nana (Mammalia, Cervidae) Genet. Mol. Biol. 2008;31:53–57. doi: 10.1590/S1415-47572008000100011. DOI
Valeri P.M., Tomazella I.M., Duarte J.M.B. Intrapopulation Chromosomal Polymorphism in Mazama Gouazoubira (Cetartiodactyla; Cervidae): The Emergence of a New Species? Cytogenet. Genome Res. 2018;154:147–152. doi: 10.1159/000488377. PubMed DOI
Li Y.C., Lee C., Sanoudou D., Hseu T.H., Li S.Y., Lin C.C., Hsu T.H. Interstitial Colocalization of Two Cervid Satellite DNAs Involved in the Genesis of the Indian Muntjac Karyotype. Chrom. Res. 2000;8:363–373. doi: 10.1023/A:1009203518144. PubMed DOI
Yang F., O’Brien P.C., Wienberg J., Neitzel H., Lin C.C., Ferguson-Smith M.A. Chromosomal Evolution of the Chinese Muntjac (Muntiacus Reevesi) Chromosoma. 1997;106:37–43. doi: 10.1007/s004120050222. PubMed DOI
Hartmann N., Scherthan H. Characterization of Ancestral Chromosome Fusion Points in the Indian Muntjac Deer. Chromosoma. 2004;112:213–220. doi: 10.1007/s00412-003-0262-4. PubMed DOI
Fiorillo B.F., Sarria-Perea J.A., Abril V.V., Duarte J.M.B. Cytogenetic Description of the Amazonian Brown Brocket Mazama Nemorivaga (Artiodactyla, Cervidae) Comp. cytogenet. 2013;7:25–31. doi: 10.3897/compcytogen.v7i1.4314. PubMed DOI PMC
Yang F., Carter N.P., Shi L., Ferguson-Smith M.A. A Comparative Study of Karyotypes of Muntjacs by Chromosome Painting. Chromosoma. 1995;103:642–652. doi: 10.1007/BF00357691. PubMed DOI
Yang F., O’Brien P.C., Wienberg J., Ferguson-Smith M.A. A Reappraisal of the Tandem Fusion Theory of Karyotype Evolution in Indian Muntjac Using Chromosome Painting. Chrom. Res. 1997;5:109–117. doi: 10.1023/A:1018466107822. PubMed DOI
Ashley T. X-Autosome Translocations, Meiotic Synapsis, Chromosome Evolution and Speciation. Cytogenet. Genome Res. 2002;96:33–39. doi: 10.1159/000063030. PubMed DOI
Cotton A.M., Chen C.-Y., Lam L.L., Wasserman W.W., Kobor M.S., Brown C.J. Spread of X-Chromosome Inactivation into Autosomal Sequences: Role for DNA Elements, Chromatin Features and Chromosomal Domains. Hum. Mol. Genet. 2014;23:1211–1223. doi: 10.1093/hmg/ddt513. PubMed DOI PMC
Kalz-Füller B., Sleegers E., Schwanitz G., Schubert R. Characterisation, Phenotypic Manifestations and X-Inactivation Pattern in 14 Patients with X-Autosome Translocations. Clin. Genet. 1999;55:362–366. doi: 10.1034/j.1399-0004.1999.550511.x. PubMed DOI
Dobigny G., Ozouf-Costaz C., Bonillo C., Volobouev V. Viability of X-Autosome Translocations in Mammals: An Epigenomic Hypothesis from a Rodent Case-Study. Chromosoma. 2004;113:34–41. doi: 10.1007/s00412-004-0292-6. PubMed DOI
Ratomponirina C., Viegas-Péquignot E., Dutrillaux B., Petter F., Rumpler Y. Synaptonemal Complexes in Gerbillidae: Probable Role of Intercalated Heterochromatin in Gonosome-Autosome Translocations. Cytogenet. Cell Genet. 1986;43:161–167. doi: 10.1159/000132315. PubMed DOI
Vozdova M., Ruiz-Herrera A., Fernandez J., Cernohorska H., Frohlich J., Sebestova H., Kubickova S., Rubes J. Meiotic Behaviour of Evolutionary Sex-Autosome Translocations in Bovidae. Chrom. Res. 2016;24:325–338. doi: 10.1007/s10577-016-9524-x. PubMed DOI
Camacho J.P., Sharbel T.F., Beukeboom L.W. B-Chromosome Evolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2000;355:163–178. doi: 10.1098/rstb.2000.0556. PubMed DOI PMC
Trifonov V.A., Dementyeva P.V., Larkin D.M., O’Brien P.C.M., Perelman P.L., Yang F., Ferguson-Smith M.A., Graphodatsky A.S. Transcription of a Protein-Coding Gene on B Chromosomes of the Siberian Roe Deer (Capreolus pygargus) BMC Biol. 2013;11:90. doi: 10.1186/1741-7007-11-90. PubMed DOI PMC
Duke Becker S.E., Thomas R., Trifonov V.A., Wayne R.K., Graphodatsky A.S., Breen M. Anchoring the Dog to Its Relatives Reveals New Evolutionary Breakpoints across 11 Species of the Canidae and Provides New Clues for the Role of B Chromosomes. Chrom. Res. 2011;19:685–708. doi: 10.1007/s10577-011-9233-4. PubMed DOI
Makunin A.I., Kichigin I.G., Larkin D.M., O’Brien P.C.M., Ferguson-Smith M.A., Yang F., Proskuryakova A.A., Vorobieva N.V., Chernyaeva E.N., O’Brien S.J., et al. Contrasting Origin of B Chromosomes in Two Cervids (Siberian Roe Deer and Grey Brocket Deer) Unravelled by Chromosome-Specific DNA Sequencing. BMC Genom. 2016;17:618. doi: 10.1186/s12864-016-2933-6. PubMed DOI PMC