Sequence Analysis and FISH Mapping of Four Satellite DNA Families among Cervidae
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32456268
PubMed Central
PMC7288315
DOI
10.3390/genes11050584
PII: genes11050584
Knihovny.cz E-zdroje
- Klíčová slova
- FISH, centromere, cervid phylogeny, satellite DNA, sequencing,
- MeSH
- centromera genetika MeSH
- heterochromatin genetika MeSH
- hybridizace in situ fluorescenční metody MeSH
- lidé MeSH
- přežvýkavci genetika MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- satelitní DNA genetika MeSH
- variabilita počtu kopií segmentů DNA genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- heterochromatin MeSH
- satelitní DNA MeSH
Centromeric and pericentromeric chromosome regions are occupied by satellite DNA. Satellite DNAs play essential roles in chromosome segregation, and, thanks to their extensive sequence variability, to some extent, they can also be used as phylogenetic markers. In this paper, we isolated and sequenced satellite DNA I-IV in 11 species of Cervidae. The obtained satellite DNA sequences and their chromosomal distribution were compared among the analysed representatives of cervid subfamilies Cervinae and Capreolinae. Only satI and satII sequences are probably present in all analysed species with high abundance. On the other hand, fluorescence in situ hybridisation (FISH) with satIII and satIV probes showed signals only in a part of the analysed species, indicating interspecies copy number variations. Several indices, including FISH patterns, the high guanine and cytosine (GC) content, and the presence of centromere protein B (CENP-B) binding motif, suggest that the satII DNA may represent the most important satellite DNA family that might be involved in the centromeric function in Cervidae. The absence or low intensity of satellite DNA FISH signals on biarmed chromosomes probably reflects the evolutionary reduction of heterochromatin following the formation of chromosome fusions. The phylogenetic trees constructed on the basis of the satellite I-IV DNA relationships generally support the present cervid taxonomy.
Zobrazit více v PubMed
Wilson D.E., Reeder D.M. Mammal Species of the World: A Taxonomic and Geographic Reference. 1st ed. Johns Hopkins University Press; Baltimore, MD, USA: 2005.
Groves C., Grubb P. Ungulate Taxonomy. 1st ed. Johns Hopkins University Press; Baltimore, MD, USA: 2011.
Wurster D.H., Benirschke K. Indian muntjac, Muntiacus muntjak: A deer with a low diploid chromosome number. Science. 1970;168:1364–1366. doi: 10.1126/science.168.3937.1364. PubMed DOI
Nietzel H. Chromosome evolution of cervidae: Karyotypic and molecular aspects. In: Obe G., Basler A., editors. Cytogenetics: Basic and Applied Aspects. 1st ed. Springer; Berlin/Heidelberg, Germany: 1987. pp. 90–112.
Fontana F., Rubini M. Chromosomal evolution in cervidae. Biosystems. 1990;24:157–174. doi: 10.1016/0303-2647(90)90008-O. PubMed DOI
Yang F., O’Brien P.C., Wienberg J., Neitzel H., Lin C.C., Ferguson-Smith M.A. Chromosomal evolution of the Chinese muntjac (Muntiacus reevesi) Chromosoma. 1997;106:37–43. doi: 10.1007/s004120050222. PubMed DOI
Bonnet-Garnier A., Claro F., Thévenon S., Gautier M., Hayes H. Identification by R-banding and FISH of chromosome arms involved in Robertsonian translocations in several deer species. Chromosome Res. 2003;11:649–663. doi: 10.1023/A:1025981508867. PubMed DOI
Chi J.X., Huang L., Nie W., Wang J., Su B., Yang F. Defining the orientation of the tandem fusions that occurred during the evolution of Indian muntjac chromosomes by BAC mapping. Chromosoma. 2005;114:167–172. doi: 10.1007/s00412-005-0004-x. PubMed DOI
Beridze T. Satellite DNA. Springer; Berlin/Heidelberg, Germany: 1986.
Modi W.S., Gallagher D.S., Womack J.E. Evolutionary histories of highly repeated DNA families among the artiodactyla (mammalia) J. Mol. Evol. 1996;42:337–349. doi: 10.1007/BF02337544. PubMed DOI
Li Y.C., Lee C., Hseu T.H., Li S.Y., Lin C.C., Hsu T.H. Direct visualization of the genomic distribution and organization of two cervid centromeric satellite DNA families. Cytogenet. Cell Genet. 2000;89:192–198. doi: 10.1159/000015611. PubMed DOI
Lee C., Court D.R., Cho C., Haslett J.L., Lin C.C. Higher-order organization of subrepeats and the evolution of cervid satellite I DNA. J. Mol. Evol. 1997;44:327–335. doi: 10.1007/PL00006150. PubMed DOI
O’Neill M.J., O’Neill R.J. Sex chromosome repeats tip the balance towards speciation. Mol. Ecol. 2018;27:3783–3798. doi: 10.1111/mec.14577. PubMed DOI
Buntjer J.B., Nijman I.J., Zijlstra C., Lenstra J.A. A satellite DNA element specific for roe deer (Capreolus capreolus) Chromosoma. 1998;107:1–5. doi: 10.1007/s004120050276. PubMed DOI
Levinson G., Gutman G.A. Slipped-strand mispairing: A major mechanism for DNA sequence evolution. Mol. Biol. Evol. 1987;4:203–221. PubMed
Charlesworth B., Sniegowski P., Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994;371:215–220. doi: 10.1038/371215a0. PubMed DOI
Nijman I.J., Lenstra J.A. Mutation and recombination in cattle satellite DNA: A feedback model for the evolution of satellite DNA repeats. J. Mol. Evol. 2001;52:361–371. doi: 10.1007/s002390010166. PubMed DOI
Jobse C., Buntjer J.B., Haagsma N., Breukelman H.J., Beintema J.J., Lenstra J.A. Evolution and recombination of bovine DNA repeats. J. Mol. Evol. 1995;41:277–283. doi: 10.1007/BF01215174. PubMed DOI
Bachmann L., Sperlich D. Gradual evolution of a specific satellite DNA family in Drosophila ambigua, D. tristis, and D. obscura. Mol. Biol. Evol. 1993;10:647–659. PubMed
Garrido-Ramos M.A., de la Herrán R., Jamilena M., Lozano R., Ruiz Rejón C., Ruiz Rejón M. Evolution of centromeric satellite DNA and its use in phylogenetic studies of the Sparidae family (Pisces, Perciformes) Mol. Phylogenet. Evol. 1999;12:200–204. doi: 10.1006/mpev.1998.0609. PubMed DOI
Li Y.C., Lee C., Sanoudou D., Hseu T.H., Li S.Y., Lin C.C. Interstitial colocalization of two cervid satellite DNAs involved in the genesis of the Indian muntjac karyotype. Chromosome Res. 2000;8:363–373. doi: 10.1023/A:1009203518144. PubMed DOI
Slamovits C.H., Cook J.A., Lessa E.P., Rossi M.S. Recurrent amplifications and deletions of satellite DNA accompanied chromosomal diversification in South American tuco-tucos (genus Ctenomys, Rodentia: Octodontidae): A phylogenetic approach. Mol. Biol. Evol. 2001;18:1708–1719. doi: 10.1093/oxfordjournals.molbev.a003959. PubMed DOI
Plohl M., Luchetti A., Mestrović N., Mantovani B. Satellite DNAs between selfishness and functionality: Structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Gene. 2008;409:72–82. doi: 10.1016/j.gene.2007.11.013. PubMed DOI
Kopecna O., Kubickova S., Cernohorska H., Cabelova K., Vahala J., Martinkova N., Rubes J. Tribe-specific satellite DNA in non-domestic Bovidae. Chromosome Res. 2014;22:277–291. doi: 10.1007/s10577-014-9401-4. PubMed DOI
Vozdova M., Kubickova S., Cernohorska H., Fröhlich J., Rubes J. Satellite DNA sequences in Canidae and their chromosome distribution in dog and red fox. Cytogenet. Genome Res. 2016;150:118–127. doi: 10.1159/000455081. PubMed DOI
Vozdova M., Kubickova S., Cernohorska H., Fröhlich J., Vodicka R., Rubes J. Comparative study of the bush dog (Speothos venaticus) karyotype and analysis of satellite DNA sequences and their chromosome distribution in six species of Canidae. Cytogenet. Genome Res. 2019;159:88–96. doi: 10.1159/000503082. PubMed DOI
Ugarković D., Plohl M. Variation in satellite DNA profiles—Causes and effects. EMBO J. 2002;21:5955–5959. doi: 10.1093/emboj/cdf612. PubMed DOI PMC
Chaves R., Guedes-Pinto H., Heslop-Harrison J., Schwarzacher T. The species and chromosomal distribution of the centromeric alpha-satellite I sequence from sheep in the tribe Caprini and other Bovidae. Cytogenet. Cell Genet. 2000;91:62–66. doi: 10.1159/000056820. PubMed DOI
Chaves R., Guedes-Pinto H., Heslop-Harrison J.S. Phylogenetic relationships and the primitive X chromosome inferred from chromosomal and satellite DNA analysis in Bovidae. Proc. Biol. Sci. 2005;272:2009–2016. doi: 10.1098/rspb.2005.3206. PubMed DOI PMC
Li Y.-C., Cheng Y.-M., Hsieh L.-J., Ryder O.A., Yang F., Liao S.-J., Hsiao K.-M., Tsai F.-J., Tsai C.-H., Lin C.C. Karyotypic evolution of a novel cervid satellite DNA family isolated by microdissection from the Indian muntjac Y-chromosome. Chromosoma. 2005;114:28–38. doi: 10.1007/s00412-005-0335-7. PubMed DOI
Li Y.-C., Lin C.-C. Cervid satellite DNA and karyotypic evolution of Indian muntjac. Genes Genomics. 2012;34:7–11. doi: 10.1007/s13258-011-0179-x. DOI
Hsieh L.-J., Cheng Y.-M., Wang Y.-C., Lin C.-C., Li Y.-C. Organization and evolution of a novel cervid satellite DNA with yeast CDEI-like repeats. Zool. Stud. 2014;53:25. doi: 10.1186/s40555-014-0025-3. DOI
Cernohorska H., Kubickova S., Vahala J., Robinson T.J., Rubes J. Cytotypes of Kirk’s dik-dik (Madoqua kirkii, Bovidae) show multiple tandem fusions. Cytogenet. Genome Res. 2011;132:255–263. doi: 10.1159/000322483. PubMed DOI
Grant C.E., Bailey T.L., Noble W.S. FIMO: Scanning for occurrences of a given motif. Bioinformatics. 2011;27:1017–1018. doi: 10.1093/bioinformatics/btr064. PubMed DOI PMC
Płucienniczak A., Skowroński J., Jaworski J. Nucleotide sequence of bovine 1.715 satellite DNA and its relation to other bovine satellite sequences. J. Mol. Biol. 1982;158:293–304. doi: 10.1016/0022-2836(82)90434-X. PubMed DOI
Katoh K., Rozewicki J., Yamada K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 2019;20:1160–1166. doi: 10.1093/bib/bbx108. PubMed DOI PMC
Katoh K., Kuma K., Toh H., Miyata T. MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005;33:511–518. doi: 10.1093/nar/gki198. PubMed DOI PMC
Guindon S., Dufayard J.-F., Lefort V., Anisimova M., Hordijk W., Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010;59:307–321. doi: 10.1093/sysbio/syq010. PubMed DOI
Lefort V., Longueville J.-E., Gascuel O. SMS: Smart model selection in PhyML. Mol. Biol. Evol. 2017;34:2422–2424. doi: 10.1093/molbev/msx149. PubMed DOI PMC
Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A., Huelsenbeck J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012;61:539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC
Revell L.J. Phytools: An R package for phylogenetic comparative biology (and other things) Methods Ecol. Evol. 2012;3:217–223. doi: 10.1111/j.2041-210X.2011.00169.x. DOI
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2020. [(accessed on 17 March 2020)]. Available online: https://www.r-project.org/
Lin C.C., Sasi R., Fan Y.S., Chen Z.Q. New evidence for tandem chromosome fusions in the karyotypic evolution of Asian muntjacs. Chromosoma. 1991;101:19–24. doi: 10.1007/BF00360682. PubMed DOI
Cheng Y.-M., Li T.-S., Hsieh L.-J., Hsu P.-C., Li Y.-C., Lin C.-C. Complex genomic organization of Indian muntjac centromeric DNA. Chromosome Res. 2009;17:1051–1062. doi: 10.1007/s10577-009-9097-z. PubMed DOI
Bogenberger J.M., Neitzel H., Fittler F. A highly repetitive DNA component common to all Cervidae: Its organization and chromosomal distribution during evolution. Chromosoma. 1987;95:154–161. doi: 10.1007/BF00332189. PubMed DOI
Scherthan H. Characterisation of a tandem repetitive sequence cloned from the deer Capreolus capreolus and its chromosomal localisation in two muntjac species. Hereditas. 1991;115:43–49. doi: 10.1111/j.1601-5223.1991.tb00345.x. PubMed DOI
Denome R.M., O’Callaghan B., Luitjens C., Harper E., Bianco R. Characterization of a satellite DNA from Antilocapra americana. Gene. 1994;145:257–259. doi: 10.1016/0378-1119(94)90016-7. PubMed DOI
Goss R.J. Deer Antlers: Regeneration, Function and Evolution. 1st ed. Academic Press; Cambridge, MA, USA: 1983.
Blake R.D., Wang J.Z., Beauregard L. Repetitive sequence families in Alces alces americana. J. Mol. Evol. 1997;44:509–520. doi: 10.1007/PL00006175. PubMed DOI
Ropiquet A., Gerbault-Seureau M., Deuve J.L., Gilbert C., Pagacova E., Chai N., Rubes J., Hassanin A. Chromosome evolution in the subtribe Bovina (Mammalia, Bovidae): The karyotype of the Cambodian banteng (Bos javanicus birmanicus) suggests that Robertsonian translocations are related to interspecific hybridization. Chromosome Res. 2008;16:1107–1118. doi: 10.1007/s10577-008-1262-2. PubMed DOI
Rubes J., Kubickova S., Pagacova E., Cernohorska H., Di Berardino D., Antoninova M., Vahala J., Robinson T.J. Phylogenomic study of spiral-horned antelope by cross-species chromosome painting. Chromosome Res. 2008;16:935–947. doi: 10.1007/s10577-008-1250-6. PubMed DOI
Louzada S., Vieira-da-Silva A., Mendes-da-Silva A., Kubickova S., Rubes J., Adega F., Chaves R. A novel satellite DNA sequence in the Peromyscus genome (PMSat): Evolution via copy number fluctuation. Mol. Phylogenet. Evol. 2015;92:193–203. doi: 10.1016/j.ympev.2015.06.008. PubMed DOI
Buckland R.A., Evans H.J. Cytogenetic aspects of phylogeny in the Bovidae. I. G-banding. Cytogenet. Cell Genet. 1978;21:42–63. doi: 10.1159/000130877. PubMed DOI
Burkin D.J., Broad T.E., Jones C. The chromosomal distribution and organization of sheep satellite I and II centromeric DNA using characterized sheep-hamster somatic cell hybrids. Chromosome Res. 1996;4:49–55. doi: 10.1007/BF02254945. PubMed DOI
Tanaka K., Matsuda Y., Masangkay J.S., Solis C.D., Anunciado R.V., Kuro-o M., Namikawa T. Cytogenetic analysis of the tamaraw (Bubalus mindorensis): A comparison of R-banded karyotype and chromosomal distribution of centromeric satellite DNAs, telomeric sequence, and 18S-28S rRNA genes with domestic water buffaloes. J. Hered. 2000;91:117–121. doi: 10.1093/jhered/91.2.117. PubMed DOI
Qureshi S.A., Blake R.D. Sequence characteristics of a cervid DNA repeat family. J. Mol. Evol. 1995;40:400–404. doi: 10.1007/BF00164026. PubMed DOI
Li Y.C., Lee C., Chang W.S., Li S.-Y., Lin C.C. Isolation and identification of a novel satellite DNA family highly conserved in several Cervidae species. Chromosoma. 2002;111:176–183. doi: 10.1007/s00412-002-0200-x. PubMed DOI
Buckland R. Sequence and evolution of related bovine and caprine satellite DNAs. Identification of a short DNA-sequence potentially involved in satellite DNA amplification. J. Mol. Biol. 1985;186:25–30. doi: 10.1016/0022-2836(85)90253-0. PubMed DOI
Tanaka K., Matsuda Y., Masangkay J.S., Solis C.D., Anunciado R.V.P., Namikawa T. Characterization and chromosomal distribution of satellite DNA sequences of the water buffalo (Bubalus bubalis) J. Hered. 1999;90:418–422. doi: 10.1093/jhered/90.3.418. PubMed DOI
Lin C.C., Li Y.C. Chromosomal distribution and organization of three cervid satellite DNAs in Chinese water deer (Hydropotes inermis) Cytogenet. Genome Res. 2006;114:147–154. doi: 10.1159/000093331. PubMed DOI
Frohlich J., Kubickova S., Musilova P., Cernohorska H., Muskova H., Vodicka R., Rubes J. Karyotype relationships among selected deer species and cattle revealed by bovine FISH probes. PLoS ONE. 2017;12:e0187559. doi: 10.1371/journal.pone.0187559. PubMed DOI PMC
Cerutti F., Gamba R., Mazzagatti A., Piras F.M., Cappelletti E., Belloni E., Nergadze S.G., Raimondi E., Giulotto E. The major horse satellite DNA family is associated with centromere competence. Mol. Cytogenet. 2016;9:35. doi: 10.1186/s13039-016-0242-z. PubMed DOI PMC
Vafa O., Shelby R.D., Sullivan K.F. CENP-A associated complex satellite DNA in the kinetochore of the Indian muntjac. Chromosoma. 1999;108:367–374. doi: 10.1007/s004120050388. PubMed DOI
Carroll C.W., Silva M.C.C., Godek K.M., Jansen L.E.T., Straight A.F. Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N. Nat. Cell Biol. 2009;11:896–902. doi: 10.1038/ncb1899. PubMed DOI PMC
Schalch T., Steiner F.A. Structure of centromere chromatin: From nucleosome to chromosomal architecture. Chromosoma. 2017;126:443–455. doi: 10.1007/s00412-016-0620-7. PubMed DOI PMC
Escudeiro A., Adega F., Robinson T.J., Heslop-Harrison J.S., Chaves R. Conservation, divergence, and functions of centromeric satellite DNA families in the Bovidae. Genome Biol. Evol. 2019;11:1152–1165. doi: 10.1093/gbe/evz061. PubMed DOI PMC
López-Flores I., de la Herrán R., Garrido-Ramos M.A., Boudry P., Ruiz-Rejón C., Ruiz-Rejón M. The molecular phylogeny of oysters based on a satellite DNA related to transposons. Gene. 2004;339:181–188. doi: 10.1016/j.gene.2004.06.049. PubMed DOI
Plohl M., Meštrović N., Mravinac B. Centromere identity from the DNA point of view. Chromosoma. 2014;123:313–325. doi: 10.1007/s00412-014-0462-0. PubMed DOI PMC
Chaves R., Ferreira D., Mendes-da-Silva A., Meles S., Adega F. FA-SAT is an old satellite DNA frozen in several bilateria genomes. Genome Biol. Evol. 2017;9:3073–3087. doi: 10.1093/gbe/evx212. PubMed DOI PMC
Liu Y., Nie W.-h., Huang L., Wang J.-h., Su W.-t., Lin C.C., Yang F.-t. Cloning, characterization, and FISH mapping of four satellite DNAs from black muntjac (Muntiacus crinifrons) and Fea’s muntjac (M. feae) Zoological Research. 2008;29:225–235. doi: 10.3724/SP.J.1141.2008.00225. DOI