Tribe-specific satellite DNA in non-domestic Bovidae
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- druhová specificita MeSH
- fylogeneze * MeSH
- genetická variace MeSH
- hospodářská zvířata MeSH
- hybridizace in situ fluorescenční MeSH
- molekulární sekvence - údaje MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- satelitní DNA genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- sekvenční homologie nukleových kyselin MeSH
- skot genetika MeSH
- zvířata MeSH
- Check Tag
- skot genetika MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- satelitní DNA MeSH
Satellite sequences present in the centromeric and pericentric regions of chromosomes represent useful source of information. Changes in satellite DNA composition may coincide with the speciation and serve as valuable markers of phylogenetic relationships. Here, we examined satellite DNA clones isolated by laser microdissection of centromeric regions of 38 bovid species and categorized them into three types. Sat I sequences from members of Bovini/Tragelaphini/Boselaphini are similar to the well-documented 1.715 sat I DNA family. Sat I DNA from Caprini/Alcelaphini/Hippotragini/Reduncini/Aepycerotini/Cephalophini/Antilopini/Neotragini/Oreotragini form the second group homologous to the common 1.714 sat I DNA. The analysis of sat II DNAs isolated in our study confirmed conservativeness of these sequences within Bovidae. Newly described centromeric clones from Madoqua kirkii and Strepsiceros strepsiceros were similar in length and repetitive tandem arrangement but showed no similarity to any other satellite DNA in the GenBank database. Phylogenetic analysis of sat I sequences isolated in our study from 38 bovid species enabled the description of relationships at the subfamily and tribal levels. The maximum likelihood and Bayesian inference analyses showed a basal position of sequences from Oreotragini in the subfamily Antilopinae. According to the Bayesian inference analysis based on the indels in a partitioned mixed model, Antilopinae satellite DNA split into two groups with those from Neotragini as a basal tribe, followed by a stepwise, successive branching of Cephalophini, Aepycerotini and Antilopini sequences. In the second group, Reduncini sequences were basal followed by Caprini, Alcelaphini and Hippotragini.
Chromosome Res. 2014 Sep;22(3):439-40 PubMed
Zobrazit více v PubMed
Cytogenet Genome Res. 2006;114(2):140-6 PubMed
Mamm Genome. 1999 Jun;10(6):585-7 PubMed
J Mol Evol. 2004 Apr;58(4):460-5 PubMed
J Mol Evol. 1995 Sep;41(3):277-83 PubMed
Syst Biol. 2011 Jul;60(4):439-50 PubMed
Chromosome Res. 2006;14(6):649-55 PubMed
Syst Biol. 2003 Oct;52(5):696-704 PubMed
Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18644-9 PubMed
J Hered. 1999 May-Jun;90(3):418-22 PubMed
Micron. 2008 Dec;39(8):1149-55 PubMed
J Appl Genet. 2012 Nov;53(4):423-33 PubMed
J Mol Evol. 1996 Mar;42(3):337-49 PubMed
Chromosome Res. 1997 Sep;5(6):375-81 PubMed
Nat Methods. 2012 Jul 30;9(8):772 PubMed
Mol Syst Biol. 2011 Oct 11;7:539 PubMed
J Mol Biol. 1985 Nov 5;186(1):25-30 PubMed
J Mol Evol. 2001 Apr;52(4):361-71 PubMed
Hereditas. 1987;106(1):73-81 PubMed
J Hered. 1992 Jul-Aug;83(4):287-98 PubMed
BMC Evol Biol. 2013 Aug 08;13:166 PubMed
J Appl Genet. 2012 May;53(2):193-202 PubMed
Chromosome Res. 2008;16(7):935-47 PubMed
Cytogenet Cell Genet. 2000;91(1-4):62-6 PubMed
J Mol Evol. 1995 Apr;40(4):400-4 PubMed
J Mol Biol. 1984 Aug 15;177(3):399-416 PubMed
C R Biol. 2012 Jan;335(1):32-50 PubMed
Cytogenet Genome Res. 2011;132(4):255-63 PubMed
Cytogenet Cell Genet. 1978;21(1-2):42-63 PubMed
Syst Biol. 2003 Apr;52(2):206-28 PubMed
J Hered. 2000 Mar-Apr;91(2):117-21 PubMed
Syst Biol. 2012 May;61(3):539-42 PubMed
Chromosome Res. 2002;10(7):571-7 PubMed
Eur J Biochem. 1978 Mar;84(1):179-88 PubMed
Proc Biol Sci. 2005 Oct 7;272(1576):2009-16 PubMed
Bioinformatics. 2006 Nov 1;22(21):2688-90 PubMed
Chromosome Res. 2009;17(8):1051-62 PubMed
Chromosome Res. 1999;7(4):261-5 PubMed
Hum Genet. 1997 Sep;100(3-4):291-304 PubMed
Mol Biol Evol. 2001 Jul;18(7):1220-30 PubMed
Cytogenet Genome Res. 2012;136(3):188-98 PubMed
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W695-9 PubMed
Chromosoma. 1968;25(2):152-71 PubMed
EMBO J. 2002 Nov 15;21(22):5955-9 PubMed
J Comput Biol. 2010 Mar;17(3):337-54 PubMed
Proc Biol Sci. 1999 May 7;266(1422):893-900 PubMed
C R Biol. 2009 Sep;332(9):832-47 PubMed
X Chromosome-Specific Repeats in Non-Domestic Bovidae
Supernumerary Marker Chromosome Identified in Asian Elephant (Elephas maximus)
Satellite DNA in Neotropical Deer Species
Sequence Analysis and FISH Mapping of Four Satellite DNA Families among Cervidae
GENBANK
KF787894, KF787895, KF787896, KF787897, KF787898, KF787899, KF787900, KF787901, KF787902, KF787903, KF787904, KF787905, KF787906, KF787907, KF787908, KF787909, KF787910, KF787911, KF787912, KF787913, KF787914, KF787915, KF787916, KF787917, KF787918, KF787919, KF787920, KF787921, KF787922, KF787923, KF787924, KF787925, KF787926, KF787927, KF787928, KF787929, KF787930, KF787931, KF787932, KF787933, KF787934, KF787935, KF787936, KF787937, KF787938, KF787939, KF787940, KF787941, KF787942, KF787943, KF787944, KF787945, KF787946, KF787947, KF787948, KF787949, KF787950, KF787951, KF787952, KF787953, KF787954, KF787955, KF787956, KF787957, KF787958, KF787959, KF787960, KF787961, KF787962, KF787963, KF787964, KF787965, KF787966, KF787967, KF787968, KF787969, KF787970, KF787971, KF787972, KF787973, KF787974, KF787975, KF787976, KF787977, KF787978, KF787979, KF787980, KF787981, KF787982, KF787983, KF787984, KF787985, KF787986, KF787987, KF787988