Chromosomal evolution in Raphicerus antelope suggests divergent X chromosomes may drive speciation through females, rather than males, contrary to Haldane's rule
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33542477
PubMed Central
PMC7862234
DOI
10.1038/s41598-021-82859-0
PII: 10.1038/s41598-021-82859-0
Knihovny.cz E-zdroje
- MeSH
- antilopy klasifikace genetika MeSH
- chromozom X ultrastruktura MeSH
- heterozygot MeSH
- hybridizace genetická MeSH
- hybridizace in situ fluorescenční MeSH
- karyotyp * MeSH
- meióza MeSH
- modely genetické * MeSH
- rekombinace genetická MeSH
- reprodukční izolace * MeSH
- sexuální faktory MeSH
- tok genů MeSH
- vznik druhů (genetika) * MeSH
- ženská infertilita genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Afrika MeSH
Chromosome structural change has long been considered important in the evolution of post-zygotic reproductive isolation. The premise that karyotypic variation can serve as a possible barrier to gene flow is founded on the expectation that heterozygotes for structurally distinct chromosomal forms would be partially sterile (negatively heterotic) or show reduced recombination. We report the outcome of a detailed comparative molecular cytogenetic study of three antelope species, genus Raphicerus, that have undergone a rapid radiation. The species are largely conserved with respect to their euchromatic regions but the X chromosomes, in marked contrast, show distinct patterns of heterochromatic amplification and localization of repeats that have occurred independently in each lineage. We argue a novel hypothesis that postulates that the expansion of heterochromatic blocks in the homogametic sex can, with certain conditions, contribute to post-zygotic isolation. i.e., female hybrid incompatibility, the converse of Haldane's rule. This is based on the expectation that hybrids incur a selective disadvantage due to impaired meiosis resulting from the meiotic checkpoint network's surveillance of the asymmetric expansions of heterochromatic blocks in the homogametic sex. Asynapsis of these heterochromatic regions would result in meiotic silencing of unsynapsed chromatin and, if this persists, germline apoptosis and female infertility.
Department of Botany and Zoology Stellenbosch University Stellenbosch South Africa
Veterinary Research Institute Hudcova 70 Brno Czech Republic
Zobrazit více v PubMed
White M. Animal Cytology and Evolution. London: Cambridge Univ. Press; 1973.
King M. Species evolution: The role of chromosome change. Cambridge: Cambridge Univ. Press; 1993.
Ayala FJ, Coluzzi M. Chromosome speciation: humans, Drosophila, and mosquitoes. Proc. Natl. Acad. Sci. USA. 2005;102:6535–6542. doi: 10.1073/pnas.0501847102. PubMed DOI PMC
Haldane JBS. Sex ratio and unisexual sterility in hybrid animals. J. Genetics. 1922;12:101–109. doi: 10.1007/BF02983075. DOI
Navarro A, Barton NH. Accumulating postzygotic isolation genes in parapatry: a new twist on chromosomal speciation. Evolution. 2003;57:447–459. doi: 10.1111/j.0014-3820.2003.tb01537.x. PubMed DOI
Faria R, Navarro A. Chromosomal speciation revisited: rearranging theory with pieces of evidence. Trends Ecol. Evol. 2010;25:660–669. doi: 10.1016/j.tree.2010.07.008. PubMed DOI
Brown JD, O’Neill RJ. Chromosomes, conflict, and epigenetics: Chromosomal speciation revisited. Annu. Rev. Genomics Hum. Genet. 2010;11:291–316. doi: 10.1146/annurev-genom-082509-141554. PubMed DOI
Wellenreuther M, Bernatchez L. Eco-evolutionary genomics of chromosomal inversions. Trends Ecol. Evol. 2018;33:427–440. doi: 10.1016/j.tree.2018.04.002. PubMed DOI
Faria R, Johannesson K, Butlin RK, Westram AM. Evolving inversions. Trends Ecol. Evol. 2019;34:239–248. doi: 10.1016/j.tree.2018.12.005. PubMed DOI
Besansky NJ, Krzywinski J, Lehmann T, Simard F, Kern M, Mukabayire O, Fontenille D, Touré Y, Sagnon N. Semipermeable species boundaries between Anopheles gambiae and Anopheles arabiensis: evidence from multilocus DNA sequence variation. Proc. Natl. Acad. Sci. USA. 2003;100:10818–10823. doi: 10.1073/pnas.1434337100. PubMed DOI PMC
Borodin PM, Karamysheva TV, Belonogova NM, Torgasheva AA, Rubtsov NB, Searle JB. Recombination map of the common shrew, Sorex araneus (Eulipotyphla, Mammalia) Genetics. 2008;178:621–632. doi: 10.1534/genetics.107.079665. PubMed DOI PMC
Jones FC, et al. The genomic basis of adaptive evolution in threespine sticklebacks. Nature. 2012;484:55–61. doi: 10.1038/nature10944. PubMed DOI PMC
Farré M, Micheletti D, Ruiz-Herrera A. Recombination rates and genomic shuffling in human and chimpanzee: A new twist in the chromosomal speciation theory. Mol. Biol. Evol. 2013;30:853–864. doi: 10.1093/molbev/mss272. PubMed DOI PMC
Huang K, Rieseberg LH. Frequency, origins, and evolutionary role of chromosomal inversions in plants. Front. Plant. Sci. 2020;11:296. doi: 10.3389/fpls.2020.00296. PubMed DOI PMC
Mihola O, Trachtulec Z, Vlcek C, Schimenti JC, Forejt J. A mouse speciation gene encodes a meiotic histone H3 methyltransferase. Science. 2009;323:373–375. doi: 10.1126/science.1163601. PubMed DOI
Oliver PL, et al. Accelerated evolution of the Prdm9 speciation gene across diverse metazoan taxa. PLoS Genet. 2009;5:1–14. doi: 10.1371/journal.pgen.1000753. PubMed DOI PMC
Noor MAF, Grams KL, Bertucci LA, Reiland J. Chromosomal inversions and the reproductive isolation of species. Proc. Natl Acad. Sci. USA. 2001;98:12084–12088. doi: 10.1073/pnas.221274498. PubMed DOI PMC
O’Neill RJ, Eldridge MD, Metcalfe CJ. Centromere dynamics and chromosome evolution in marsupials. J. Hered. 2004;95:375–381. doi: 10.1093/jhered/esh063. PubMed DOI
Ferree PM, Barbash DA. Species-Specific heterochromatin prevents mitotic chromosome segregation to cause hybrid lethality in Drosophila. PLoS Biol. 2009;7:e1000234. doi: 10.1371/journal.pbio.1000234. PubMed DOI PMC
Hughes SE, Hawley RS. Heterochromatin: a rapidly evolving species barrier. PLoS Biol. 2009;7:e1000233. doi: 10.1371/journal.pbio.1000233. PubMed DOI PMC
O’Neill MJ, O’Neill RJ. Sex chromosome repeats tip the balance towards speciation. Mol. Ecol. 2018;27:3783–3798. doi: 10.1111/mec.14577. PubMed DOI
Dover GA, Strachan T, Coen ES, Brown SD. Molecular drive. Science. 1982;218:1069. doi: 10.1126/science.7146895. PubMed DOI
Charlesworth B, Jarne P, Assimacopoulos S. The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. III. Element abundances in heterochromatin. Genet. Res. 1994;64:183–197. doi: 10.1017/S0016672300032845. PubMed DOI
Ugarkovic D, Plohl M. Variation in satellite DNA profiles-causes and effects. EMBO J. 2002;21:5955–5959. doi: 10.1093/emboj/cdf612. PubMed DOI PMC
Garrido-Ramos MA. Satellite DNA: An evolving topic. Genes. 2017;8:230. doi: 10.3390/genes8090230. PubMed DOI PMC
Escudeiro A, Adega F, Robinson TJ, Heslop-Harrison JS, Chaves R. Conservation, divergence, and functions of centromeric satellite DNA families in the Bovidae. Genome Biol. Evol. 2019;11:1152–1165. doi: 10.1093/gbe/evz061. PubMed DOI PMC
Robinson TJ, Ropiquet A. Examination of hemiplasy, homoplasy and phylogenetic discordance in chromosomal evolution of the Bovidae. Syst. Biol. 2011;60:439–450. doi: 10.1093/sysbio/syr045. PubMed DOI
Rubes J, Musilova P, Kopecna O, Kubickova S, Cernohorska H, Kulemsina AI. Comparative molecular cytogenetics in Cetartiodactyla. Cytogenet. Genome Res. 2012;137:194–207. doi: 10.1159/000338932. PubMed DOI
Gallagher DS, Davis SK, De Donato M, Burzlaff JD, Womack JE, Taylor JF, Kumamoto AT. A molecular cytogenetic analysis of the tribe Bovini (Artiodactyla: Bovidae: Bovinae) with an emphasis on sex chromosome morphology and NOR distribution. Chromosome Res. 1999;7:481–492. doi: 10.1023/A:1009254014526. PubMed DOI
Grubb, P. Genus Raphicerus: Grysboks, Steenbok in The Mammals of Africa Vol VI (eds. Kingdon, J. S. & Hoffmann, M.), 303. (Bloomsbury, London, UK, 2013).
Haltennorth T. Klassifikation der Saügertier: Artiodactyla I. Handbuch der Zoologie. 1963;8:1–167.
Haltenorth T, Diller H. A field guide to the Mammals of Africa including Madagascar. London: Collins; 1980.
Matthee CA, Robinson TJ. Cytochrome b phylogeny of the family bovidae: resolution within the Alcelaphini, Antilopini, Neotragini, and Tragelaphini. Mol. Phylogenet. Evol. 1999;12:31–46. doi: 10.1006/mpev.1998.0573. PubMed DOI
Matthee CA, Davis SK. Molecular insights into the evolution of the family Bovidae: A nuclear DNA perspective. Mol. Biol. Evol. 2001;18:1220–1230. doi: 10.1093/oxfordjournals.molbev.a003908. PubMed DOI
Bärmann E, Rössner G, Wörheide G. A revised phylogeny of Antilopini (Bovidae, Artiodactyla) using combined mitochondrial and nuclear genes. Mol. Phylogenet. Evol. 2013;67:484–493. doi: 10.1016/j.ympev.2013.02.015. PubMed DOI
Nguyen TT, Aniskin VM, Gerbault-Seureau M, Planton H, Renard JP, Nguyen BX, Hassanin A, Volobouev V. Phylogenetic position of the saola (Pseudoryx nghetinhensis) inferred from cytogenetic analysis of eleven species of Bovidae. Cytogenet. Genome Res. 2008;122:41–54. doi: 10.1159/000151315. PubMed DOI
Dobigny G, Ducroz J-F, Robinson TJ, Volobouev V. Cytogenetics and cladistics. Syst. Biol. 2004;53:470–484. doi: 10.1080/10635150490445698. PubMed DOI
Bulazel K, Ferreri GC, Eldridge MD, O’Neill RJ. Species-specific shifts in centromere sequence composition are coincident with breakpoint reuse in karyotypically divergent lineages. Genome Biol. 2007;8:R170. doi: 10.1186/gb-2007-8-8-r170. PubMed DOI PMC
D'Aiuto L, Barsanti P, Mauro S, Cserpan I, Lanave C, Ciccarese S. Physical relationship between satellite I and II DNA in centromeric regions of sheep chromosomes. Chromosome Res. 1997;5:375–381. doi: 10.1023/A:1018444325085. PubMed DOI
Cernohorska H, Kubickova S, Vahala J, Robinson TJ, Rubes J. Cytotype A of Kirk’s dik-dik (Madoqua kirkii) shows multiple tandem fusions. Cytogenet. Genome Res. 2011;132:255–263. doi: 10.1159/000322483. PubMed DOI
Cernohorska H, Kubickova S, Vahala J, Rubes J. Molecular insights into X;BTA5 chromosome rearrangements in the tribe Antilopini (Bovidae) Cytogenet. Genome Res. 2012;136:188–198. doi: 10.1159/000336248. PubMed DOI
Hayes H, Petit E, Dutrillaux B. Comparison of the RGB-banded karyotypes of cattle, sheep and goats. Cytogenet. Cell Genet. 1991;57:51–55. doi: 10.1159/000133114. PubMed DOI
Robinson TJ, Harrison WR, De León FAP, Davis SK, Elder FFB. A molecular cytogenetic analysis of X chromosome repatterning in the Bovidae: transpositions, inversions, and phylogenetic inference. Cytogenet. Cell Genet. 1998;80:179–184. doi: 10.1159/000014976. PubMed DOI
Iannuzzi L, Di Meo GP, Perucatti A, Incarnato D, Schibler L, Cribiu EP. Comparative FISH mapping of bovid X-chromosomes reveals homologies and divergences between the subfamilies Bovinae and Caprinae. Cytogenet. Cell Genet. 2000;89:171–176. doi: 10.1159/000015607. PubMed DOI
Chaves R, Guedes-Pinto H, Heslop-Harrison JS. Phylogenetic relationships and the primitive X chromosome inferred from chromosomal and satellite DNA analysis in Bovidae. Proc. R. Soc. B. 2005;272:2009–2016. doi: 10.1098/rspb.2005.3206. PubMed DOI PMC
Singh AP, Henschel S, Sperling K, Kalscheuer V, Neitzel H. Differences in the meiotic pairing behavior of gonosomal heterochromatin between female and male Microtus agrestis:implications for the mechanism of heterochromatin amplification on the X and Y. Cytogenet. Cell Genet. 2000;91:253–260. doi: 10.1159/000056854. PubMed DOI
Waddell PJ, Kishino H, Ota R. A phylogenetic foundation for comparative mammalian genomics. Genome Inform. 2001;12:141–154. doi: 10.11234/gi1990.12.141. PubMed DOI
Robinson TJ, Ruiz-Herrera A, Avise JC. Hemiplasy and homoplasy in the karyotypic phylogenies of mammals. Proc. Natl. Acad. Sci. USA. 2008;105:14477–14481. doi: 10.1073/pnas.0807433105. PubMed DOI PMC
Kingdon, J. Mammalian evolution in Africa in The Mammals of Africa Vol. 1. (eds. Kingdon, J., Happold, D.C.D., Butynski, T.M., Hoffmann, M., Happold, M. & Kalina, J.) 75–100. (Bloomsbury Publishing, London, 2013).
Lorenzen ED, Heller R, Siegismund HR. Comparative phylogeography of African savannah ungulates. Mol. Ecol. 2012;21:3656–3670. doi: 10.1111/j.1365-294X.2012.05650.x. PubMed DOI
Subramanian VV, Hochwagen A. The meiotic checkpoint network: step-by-step through meiotic prophase. Cold Spring Harb. Perspect. Biol. 2014;6:a016675. doi: 10.1101/cshperspect.a016675. PubMed DOI PMC
Turner JM, Mahadevaiah SK, Fernandez-Capetillo O, Nussenzweig A, Xu X, Deng C-X, Burgoyne PS. Silencing of unsynapsed meiotic chromosomes in the mouse. Nat. Genet. 2005;37:41–47. doi: 10.1038/ng1484. PubMed DOI
Burgoyne PS, Mahadevaiah SK, Turner JM. The consequences of asynapsis for mammalian meiosis. Nat. Rev. Genet. 2009;10:207–216. doi: 10.1038/nrg2505. PubMed DOI
Turner JM. Meiotic silencing in mammals. Annu. Rev. Genet. 2015;49:395–412. doi: 10.1146/annurev-genet-112414-055145. PubMed DOI
Waters PD, Ruiz-Herrera A. Meiotic executioner genes protect the Y from extinction. Trends Genet. 2020;36:728–738. doi: 10.1016/j.tig.2020.06.008. PubMed DOI
Singh AP, Raman R. Mammalian sex chromosomes VI Synapsis in the heterochromatin-rich X chromosomes of four rodent species, Mus dunni, Bandicota bengalensis, Mesocricetus auratus, and Nesokia indica. Genome. 1993;36:195–198. doi: 10.1139/g93-026. PubMed DOI
Stack SM. Heterochromatin, the synaptonemal complex and crossing over. J. Cell Sci. 1984;71:159–176. PubMed
Micklejohn CD, Tau Y. Genetic conflict and sex chromosome evolution. Trends Ecol. Evol. 2009;25:223. doi: 10.1016/j.tree.2009.10.005. PubMed DOI PMC
Patten MM. Selfish X chromosomes and speciation. Mol. Ecol. 2018;27:3772–3782. doi: 10.1111/mec.14471. PubMed DOI
Pfeiffer, R.A. Cell cultures from blood and bone marrow in Methods in Human Cytogenetics (eds Schwarzacher, H.G., Wolf, U. & Passarge, E.) 1–28 (Springer-Verlag, Berlin, 1974).
Wolf, U. Cell cultures from tissue explants in Methods in Human Cytogenetics (eds Schwarzacher, H.G., Wolf, U. & Passarge, E.) 39–57 (Springer-Verlag, Berlin, 1974).
Schnedll, W. Banding patterns in human chromosomes visualized by Giemsa staining after various pretreatments in Methods in Human Cytogenetics (eds Schwarzacher, H.G., Wolf, U. & Passarge, E.) 95–117 (Springer-Verlag, Berlin, 1974).
ISCNDB. International System for Chromosome Nomenclature of Domestic Bovids (ISCNDB Cytogenet. Cell Genet. 2000;92:283–299. doi: 10.1159/000056917(2001). PubMed DOI
Kubickova S, Cernohorska H, Musilova P, Rubes J. The use of laser microdissection for the preparation of chromosome specific painting probes in farm animals. Chromosome Res. 2002;10:571–577. doi: 10.1023/A:1020914702767. PubMed DOI
Kopecna O, Kubickova S, Cernohorska H, Cabelova K, Vahala J, Martinkova N, Rubes J. Tribe-specific satellite DNA in non-domestic Bovidae. Chromosome Res. 2014;22:277–291. doi: 10.1007/s10577-014-9401-4. PubMed DOI
Cernohorska H, Kubickova S, Kopecna O, Vozdova M, Matthee CA, Robinson TJ, Rubes J. Nanger, Eudorcas, Gazella, and Antilope form a well-supported chromosomal clade within Antilopini (Bovidae, Cetartiodactyla) Chromosoma. 2015;124:235–247. doi: 10.1007/s00412-014-0494-5. PubMed DOI
Castley, G. & Lloyd, P. Raphicerus melanotis Cape Grysbok in The Mammals of Africa Vol VI (eds. Kingdon, J. S. & Hoffmann, M.), 304–307 (Bloomsbury, London, 2013).
du Toit, J.T. Raphicerus campestris Steenbok Grysbok in The Mammals of Africa Vol VI (eds. Kingdon, J. S. & Hoffmann, M.), 311–314 (Bloomsbury, London, 2013).
Hoffmann, M. & Wilson, V.J. Raphicerus sharpei Sharp’s Grysbok in The Mammals of Africa Vol VI (eds. Kingdon, J. S. & Hoffmann, M.), 308–310 (Bloomsbury, London, 2013).