Nanger, Eudorcas, Gazella, and Antilope form a well-supported chromosomal clade within Antilopini (Bovidae, Cetartiodactyla)

. 2015 Jun ; 124 (2) : 235-47. [epub] 20141123

Jazyk angličtina Země Rakousko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25416455

The evolutionary clade comprising Nanger, Eudorcas, Gazella, and Antilope, defined by an X;BTA5 translocation, is noteworthy for the many autosomal Robertsonian fusions that have driven the chromosome number variation from 2n = 30 observed in Antilope cervicapra, to the 2n = 58 in present Eudorcas thomsoni and Eudorcas rufifrons. This work reports the phylogenetic relationships within the Antilopini using comprehensive cytogenetic data from A. cervicapra, Gazella leptoceros, Nanger dama ruficollis, and E. thomsoni together with corrected karyotypic data from an additional nine species previously reported in the literature. Fluorescence in situ hybridization using BAC and microdissected cattle painting probes, in conjunction with differential staining techniques, provide the following: (i) a detailed analysis of the E. thomsoni chromosomes, (ii) the identification and fine-scale analysis the BTA3 orthologue in species of Antilopini, and (iii) the location of the pseudoautosomal regions on sex chromosomes of the four species. Our phylogenetic analysis of the chromosomal data supports monophyly of Nanger and Eudorcas and suggests an affiliation between A. cervicapra and some of the Gazella species. This renders Gazella paraphyletic and emphasizes a closer relationship between Antilope and Gazella than what has previously been considered.

Zobrazit více v PubMed

Chromosome Res. 2008;16(8):1107-18 PubMed

Heredity (Edinb). 2014 Mar;112(3):325-32 PubMed

Micron. 2008 Dec;39(8):1149-55 PubMed

Annu Rev Genomics Hum Genet. 2010;11:291-316 PubMed

Cytogenet Genome Res. 2012;136(3):188-98 PubMed

Chromosoma. 2004 Aug;113(1):34-41 PubMed

BMC Evol Biol. 2013 Aug 08;13:166 PubMed

Mol Biol Evol. 1987 Jul;4(4):406-25 PubMed

Cytogenet Cell Genet. 1978;21(1-2):42-63 PubMed

Cytogenet Genome Res. 2008;122(1):41-54 PubMed

Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14477-81 PubMed

Chromosome Res. 2014 Sep;22(3):277-91 PubMed

Heredity (Edinb). 2012 Jan;108(1):59-67 PubMed

Syst Biol. 2008 Jun;57(3):503-7 PubMed

Heredity (Edinb). 2009 Jun;102(6):533-41 PubMed

Syst Biol. 2011 Jul;60(4):439-50 PubMed

C R Biol. 2012 Jan;335(1):32-50 PubMed

C R Biol. 2009 Sep;332(9):832-47 PubMed

Chromosome Res. 2003;11(7):641-8 PubMed

Cytogenet Genome Res. 2002;96(1-4):33-9 PubMed

Mol Biol Evol. 2001 Jul;18(7):1220-30 PubMed

Chromosome Res. 1999;7(6):481-92 PubMed

Curr Opin Cell Biol. 2010 Dec;22(6):772-80 PubMed

Chromosome Res. 2002;10(7):571-7 PubMed

Chromosome Res. 2013 Aug;21(5):447-60 PubMed

Biol Rev Camb Philos Soc. 2005 May;80(2):269-302 PubMed

Mol Phylogenet Evol. 1999 Nov;13(2):227-43 PubMed

Cytogenet Genome Res. 2012;137(2-4):194-207 PubMed

Chromosoma. 1975 Nov 20;53(1):37-50 PubMed

Chromosome Res. 2008;16(7):935-47 PubMed

Hereditas. 1987;106(1):73-81 PubMed

Mol Phylogenet Evol. 2013 May;67(2):484-93 PubMed

J Hered. 1995 May-Jun;86(3):216-27 PubMed

Nature. 2006 Oct 5;443(7111):521-4 PubMed

Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18644-9 PubMed

Mol Phylogenet Evol. 1999 Jul;12(2):87-94 PubMed

Chromosome Res. 2004;12(4):369-82 PubMed

Am J Hum Genet. 2008 Feb;82(2):261-82 PubMed

Trends Ecol Evol. 2000 Nov 1;15(11):454-459 PubMed

Evolution. 2001 Jan;55(1):1-24 PubMed

Mol Biol Evol. 1992 May;9(3):433-46 PubMed

J Hered. 1992 Jul-Aug;83(4):287-98 PubMed

Lancet. 1971 Oct 30;2(7731):971-2 PubMed

Cytogenet Cell Genet. 2001;92(3-4):283-99 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...