Anchoring the CerEla1.0 Genome Assembly to Red Deer (Cervus elaphus) and Cattle (Bos taurus) Chromosomes and Specification of Evolutionary Chromosome Rearrangements in Cervidae
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-22517J
Czech Science Foundation
RO 0520
Ministry of Agriculture of the Czech Republic
LQ1601
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
34573579
PubMed Central
PMC8465983
DOI
10.3390/ani11092614
PII: ani11092614
Knihovny.cz E-zdroje
- Klíčová slova
- BAC mapping, FISH, chromosome fission, chromosome fusion, comparative cytogenetics, genome assembly, karyotype,
- Publikační typ
- časopisecké články MeSH
The family Cervidae groups a range of species with an increasing economic significance. Their karyotypes share 35 evolutionary conserved chromosomal segments with cattle (Bos taurus). Recent publication of the annotated red deer (Cervus elaphus) whole genome assembly (CerEla1.0) has provided a basis for advanced genetic studies. In this study, we compared the red deer CerEla1.0 and bovine ARS-UCD1.2 genome assembly and used fluorescence in situ hybridization with bovine BAC probes to verify the homology between bovine and deer chromosomes, determined the centromere-telomere orientation of the CerEla1.0 C-scaffolds and specified positions of the cervid evolutionary chromosome breakpoints. In addition, we revealed several incongruences between the current deer and bovine genome assemblies that were shown to be caused by errors in the CerEla1.0 assembly. Finally, we verified the centromere-to-centromere orientation of evolutionarily fused chromosomes in seven additional deer species, giving a support to previous studies on their chromosome evolution.
Zobrazit více v PubMed
Wilson D.E., Reeder D.M. Mammal Species of the World: A Taxonomic and Geographic Reference. Johns Hopkins University Press; Baltimore, MD, USA: 2005.
Wurster D.H., Benirschke K. Indian Muntjac, Muntiacus Muntjak: A Deer with a Low Diploid Chromosome Number. Science. 1970;168:1364–1366. doi: 10.1126/science.168.3937.1364. PubMed DOI
Nietzel H. Chromosome Evolution of Cervidae: Karyotypic and Molecular Aspects. In: Obe G., Basler A., editors. Cytogenetics: Basic and Applied Aspects. Springer; Berlin/Heidelberg, Germany: 1987.
Fontana F., Rubini M. Chromosomal Evolution in Cervidae. BioSystems. 1990;24:157–174. doi: 10.1016/0303-2647(90)90008-O. PubMed DOI
Huang L., Chi J., Nie W., Wang J., Yang F. Phylogenomics of Several Deer Species Revealed by Comparative Chromosome Painting with Chinese Muntjac Paints. Genetica. 2006;127:25–33. doi: 10.1007/s10709-005-2449-5. PubMed DOI
Rubini M., Negri E., Fontana F. Standard Karyotype and Chromosomal Evolution of the Fallow Deer (Dama dama L.) Cytobios. 1990;64:155–161. PubMed
Bonnet-Garnier A., Claro F., Thévenon S., Gautier M., Hayes H. Identification by R-Banding and FISH of Chromosome Arms Involved in Robertsonian Translocations in Several Deer Species. Chromosome Res. 2003;11:649–663. doi: 10.1023/A:1025981508867. PubMed DOI
Duarte J.M.B., Jorge W. Morphologic and Cytogenetic Description of the Small Red Brocket (Mazama Bororo Duarte, 1996) in Brazil. Mammalia. 2009;67:403–410. doi: 10.1515/mamm.2003.67.3.403. DOI
Yang F., O’Brien P.C., Wienberg J., Ferguson-Smith M.A. A Reappraisal of the Tandem Fusion Theory of Karyotype Evolution in Indian Muntjac Using Chromosome Painting. Chromosome Res. 1997;5:109–117. doi: 10.1023/A:1018466107822. PubMed DOI
Chi J., Fu B., Nie W., Wang J., Graphodatsky A.S., Yang F. New Insights into the Karyotypic Relationships of Chinese Muntjac (Muntiacus Reevesi), Forest Musk Deer (Moschus berezovskii) and Gayal (Bos frontalis) Cytogenet. Genome Res. 2005;108:310–316. doi: 10.1159/000081520. PubMed DOI
Chi J.X., Huang L., Nie W., Wang J., Su B., Yang F. Defining the Orientation of the Tandem Fusions That Occurred during the Evolution of Indian Muntjac Chromosomes by BAC Mapping. Chromosoma. 2005;114:167–172. doi: 10.1007/s00412-005-0004-x. PubMed DOI
Dementyeva P.V., Trifonov V.A., Kulemzina A.I., Graphodatsky A.S. Reconstruction of the Putative Cervidae Ancestral Karyotype by Chromosome Painting of Siberian Roe Deer (Capreolus pygargus) with Dromedary Probes. Cytogenet. Genome Res. 2010;128:228–235. doi: 10.1159/000298878. PubMed DOI
Frohlich J., Kubickova S., Musilova P., Cernohorska H., Muskova H., Vodicka R., Rubes J. Karyotype Relationships among Selected Deer Species and Cattle Revealed by Bovine FISH Probes. PLoS ONE. 2017;12:e0187559. doi: 10.1371/journal.pone.0187559. PubMed DOI PMC
Bonnet A., Thévenon S., Claro F., Gautier M., Hayes H. Cytogenetic Comparison between Vietnamese Sika Deer and Cattle: R-Banded Karyotypes and FISH Mapping. Chromosome Res. 2001;9:673–687. doi: 10.1023/A:1012908508488. PubMed DOI
De Lorenzi L., Planas J., Rossi E., Malagutti L., Parma P. New Cryptic Karyotypic Differences between Cattle (Bos Taurus) and Goat (Capra hircus) Chromosome Res. 2015;23:225–235. doi: 10.1007/s10577-014-9462-4. PubMed DOI
Bana N.Á., Nyiri A., Nagy J., Frank K., Nagy T., Stéger V., Schiller M., Lakatos P., Sugár L., Horn P., et al. The Red Deer Cervus Elaphus Genome CerEla1.0: Sequencing, Annotating, Genes, and Chromosomes. Mol. Genet. Genom. 2018;293:665–684. doi: 10.1007/s00438-017-1412-3. PubMed DOI
Slate J., Van Stijn T.C., Anderson R.M., McEwan K.M., Maqbool N.J., Mathias H.C., Bixley M.J., Stevens D.R., Molenaar A.J., Beever J.E., et al. A Deer (Subfamily Cervinae) Genetic Linkage Map and the Evolution of Ruminant Genomes. Genetics. 2002;160:1587–1597. doi: 10.1093/genetics/160.4.1587. PubMed DOI PMC
Alkan C., Sajjadian S., Eichler E.E. Limitations of Next-Generation Genome Sequence Assembly. Nat. Methods. 2011;8:61–65. doi: 10.1038/nmeth.1527. PubMed DOI PMC
Ariyadasa R., Stein N. Advances in BAC-Based Physical Mapping and Map Integration Strategies in Plants. J. Biomed. Biotechnol. 2012;2012:184854. doi: 10.1155/2012/184854. PubMed DOI PMC
Damas J., O’Connor R., Farré M., Lenis V.P.E., Martell H.J., Mandawala A., Fowler K., Joseph S., Swain M.T., Griffin D.K., et al. Upgrading Short-Read Animal Genome Assemblies to Chromosome Level Using Comparative Genomics and a Universal Probe Set. Genome Res. 2017;27:875–884. doi: 10.1101/gr.213660.116. PubMed DOI PMC
Lewin H.A., Graves J.A.M., Ryder O.A., Graphodatsky A.S., O’Brien S.J. Precision Nomenclature for the New Genomics. Gigascience. 2019;8:giz086. doi: 10.1093/gigascience/giz086. PubMed DOI PMC
Groves C., Grubb P. Ungulate Taxonomy. 1st ed. Johns Hopkins University Press; Baltimore, MD, USA: 2011.
Cernohorska H., Kubickova S., Vahala J., Robinson T.J., Rubes J. Cytotypes of Kirk’s Dik-Dik (Madoqua Kirkii, Bovidae) Show Multiple Tandem Fusions. Cytogenet. Genome Res. 2011;132:255–263. doi: 10.1159/000322483. PubMed DOI
Cernohorska H., Kubickova S., Vahala J., Rubes J. Molecular Insights into X;BTA5 Chromosome Rearrangements in the Tribe Antilopini (Bovidae) Cytogenet. Genome Res. 2012;136:188–198. doi: 10.1159/000336248. PubMed DOI
Seabright M. A Rapid Banding Technique for Human Chromosomes. Lancet. 1971;2:971–972. doi: 10.1016/S0140-6736(71)90287-X. PubMed DOI
O’Brien S.J., Graphodatsky A.S., Perelman P.L., editors. Atlas of Mammalian Chromosomes. 2nd ed. Wiley-Blackwell; Hoboken, NJ, USA: 2020.
Vozdova M., Kubickova S., Cernohorska H., Fröhlich J., Vodicka R., Rubes J. Comparative Study of the Bush Dog (Speothos Venaticus) Karyotype and Analysis of Satellite DNA Sequences and Their Chromosome Distribution in Six Species of Canidae. Cytogenet. Genome Res. 2019;159:88–96. doi: 10.1159/000503082. PubMed DOI
Proskuryakova A.A., Kulemzina A.I., Perelman P.L., Makunin A.I., Larkin D.M., Farré M., Kukekova A.V., Lynn Johnson J., Lemskaya N.A., Beklemisheva V.R., et al. X Chromosome Evolution in Cetartiodactyla. Genes. 2017;8:216. doi: 10.3390/genes8090216. PubMed DOI PMC
Partipilo G., D’Addabbo P., Lacalandra G.M., Liu G.E., Rocchi M. Refinement of Bos Taurus Sequence Assembly Based on BAC-FISH Experiments. BMC Genom. 2011;12:639. doi: 10.1186/1471-2164-12-639. PubMed DOI PMC
Lorenzi L.D., Parma P. Identification of Some Errors in the Genome Assembly of Bovidae by FISH. CGR. 2020;160:85–93. doi: 10.1159/000506221. PubMed DOI
BAC Resource Consortium T., Cheung V.G., Nowak N., Jang W., Kirsch I.R., Zhao S., Chen X.-N., Furey T.S., Kim U.-J., Kuo W.-L., et al. Integration of Cytogenetic Landmarks into the Draft Sequence of the Human Genome. Nature. 2001;409:953–958. doi: 10.1038/35057192. PubMed DOI PMC
Herzog S. The Karyotype of the Red Deer (Cervus elaphus L.) Caryologia. 1987;40:299–305. doi: 10.1080/00087114.1987.10797832. DOI
Huang L., Chi J., Wang J., Nie W., Su W., Yang F. High-Density Comparative BAC Mapping in the Black Muntjac (Muntiacus Crinifrons): Molecular Cytogenetic Dissection of the Origin of MCR 1p+4 in the X1X2Y1Y2Y3 Sex Chromosome System. Genomics. 2006;87:608–615. doi: 10.1016/j.ygeno.2005.12.008. PubMed DOI
Cernohorska H., Kubickova S., Kopecna O., Kulemzina A.I., Perelman P.L., Elder F.F.B., Robinson T.J., Graphodatsky A.S., Rubes J. Molecular Cytogenetic Insights to the Phylogenetic Affinities of the Giraffe (Giraffa Camelopardalis) and Pronghorn (Antilocapra Americana) Chromosome Res. 2013;21:447–460. doi: 10.1007/s10577-013-9361-0. PubMed DOI
Cernohorska H., Kubickova S., Kopecna O., Vozdova M., Matthee C.A., Robinson T.J., Rubes J. Nanger, Eudorcas, Gazella, and Antilope Form a Well-Supported Chromosomal Clade within Antilopini (Bovidae, Cetartiodactyla) Chromosoma. 2014;124:235–247. doi: 10.1007/s00412-014-0494-5. PubMed DOI
Kiazim L.G., O’Connor R.E., Larkin D.M., Romanov M.N., Narushin V.G., Brazhnik E.A., Griffin D.K. Comparative Mapping of the Macrochromosomes of Eight Avian Species Provides Further Insight into Their Phylogenetic Relationships and Avian Karyotype Evolution. Cells. 2021;10:362. doi: 10.3390/cells10020362. PubMed DOI PMC
Gallagher D.S., Davis S.K., De Donato M., Burzlaff J.D., Womack J.E., Taylor J.F., Kumamoto A.T. A Molecular Cytogenetic Analysis of the Tribe Bovini (Artiodactyla: Bovidae: Bovinae) with an Emphasis on Sex Shromosome Morphology and NOR Distribution. Chromosome Res. 1999;7:481–492. doi: 10.1023/A:1009254014526. PubMed DOI
Rubes J., Musilova P., Kopecna O., Kubickova S., Cernohorska H., Kulemsina A.I. Comparative Molecular Cytogenetics in Cetartiodactyla. Cytogenet. Genome Res. 2012;137:194–207. doi: 10.1159/000338932. PubMed DOI
Gallagher D.S., Jr., Womack J.E. Chromosome Conservation in the Bovidae. J. Hered. 1992;83:287–298. doi: 10.1093/oxfordjournals.jhered.a111215. PubMed DOI
Abril V.V., Duarte J.M.B. Chromosome Polymorphism in the Brazilian Dwarf Brocket Deer, Mazama Nana (Mammalia, Cervidae) Genet. Mol. Biol. 2008;31:53–57. doi: 10.1590/S1415-47572008000100011. DOI
Abril V.V., Carnelossi E.A.G., González S., Duarte J.M.B. Elucidating the Evolution of the Red Brocket Deer Mazama Americana Complex (Artiodactyla; Cervidae) Cytogenet. Genome Res. 2010;128:177–187. doi: 10.1159/000298819. PubMed DOI
Duarte J.M.B., González S. Neotropical Cervidology: Biology and Medicine of Latin American Deer. Funep; Jaboticabal, Brazil: IUCN; Gland, Switzerland: 2010.