Comparative karyotype analysis of the red brocket deer (M. americana sensu lato and M. rufa) complex: evidence of drastic chromosomal evolution and implications on speciation process

. 2024 Sep ; 65 (3) : 601-614. [epub] 20240425

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, srovnávací studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid38662189

Grantová podpora
2017/07014-8 Fundação de Amparo à Pesquisa do Estado de São Paulo
2019/06940-1 Fundação de Amparo à Pesquisa do Estado de São Paulo
2021/14536-6 Fundação de Amparo à Pesquisa do Estado de São Paulo
2021/13187-8 Fundação de Amparo à Pesquisa do Estado de São Paulo
116-2017-FONDECYT Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica
20-22517J Grantová Agentura České Republiky

Odkazy

PubMed 38662189
DOI 10.1007/s13353-024-00861-4
PII: 10.1007/s13353-024-00861-4
Knihovny.cz E-zdroje

Chromosomal rearrangements are often associated with playing a role in the speciation process. However, the underlying mechanism that favors the genetic isolation associated with chromosomal changes remains elusive. In this sense, the genus Mazama is recognized by its high level of karyotype diversity among species with similar morphology. A cryptic species complex has been identified within the genus, with the red brocket deer (Mazama americana and Mazama rufa) being the most impressive example. The chromosome variation was clustered in cytotypes with diploid numbers ranging from 42 to 53 and was correlated with geographical location. We conducted an analysis of chromosome evolution of the red brocket deer complex using comparative chromosome painting and Bacterial Artificial Chromosome (BAC) clones among different cytotypes. The aim was to deepen our understanding of the karyotypic relationships within the red brocket, thereby elucidating the significant chromosome variation among closely related species. This underscores the significance of chromosome changes as a key evolutionary process shaping their genomes. The results revealed the presence of three distinct cytogenetic lineages characterized by significant karyotypic divergence, suggesting the existence of efficient post-zygotic barriers. Tandem fusions constitute the main mechanism driving karyotype evolution, following a few centric fusions, inversion X-autosomal fusions. The BAC mapping has improved our comprehension of the karyotypic relationships within the red brocket deer complex, prompting questions regarding the role of these changes in the speciation process. We propose the red brocket as a model group to investigate how chromosomal changes contribute to isolation and explore the implications of these changes in taxonomy and conservation.

Zobrazit více v PubMed

Abril VV, Carnelossi EAG, González S, Duarte JMB (2010) Elucidating the evolution of the red brocket deer Mazama americana complex (Artiodactyla; Cervidae). Cytogenet Genome Res 128:177–187. https://doi.org/10.1159/000298819 PubMed DOI

Abril VV, Duarte JMB (2008) Chromosome polymorphism in the Brazilian dwarf brocket deer, Mazama nana (Mammalia, Cervidae). Genet Mol Biol 31(1):53–57. https://doi.org/10.1590/S1415-47572008000100011 DOI

Banaszek A, Fedyk S, Szałaj K, Chętnicki W (2000) A comparison of spermatogenesis in homozygotes, simple Robertsonian heterozygotes and complex heterozygotes of the common shrew (Sorex araneus L.). Heredity 85:570–577. https://doi.org/10.1046/j.1365-2540.2000.00701.x DOI

Banaszek A, Fedyk S, Fiedorczuk U, Szałaj KA, Chętnicki W (2002) Meiotic studies of male common shrews (Sorex araneus L.) from a hybrid zone between chromosome races. Cytogenet Genome Res 96:40–44. https://doi.org/10.1159/000063025 PubMed DOI

Bailey JA, Baertsch R, Kent WJ et al (2004) Hotspots of mammalian chromosomal evolution. Genome Biol 5:R23. https://doi.org/10.1186/gb-2004-5-4-r23 PubMed DOI PMC

Basset P, Yannic G, Hausser J (2019) Is it really the chromosomes? In: Searle JB, Polly PD, Zima J (eds) Shrews, chromosomes and speciation. Cambridge University Press, Cambridge, pp 365–383 DOI

Bernegossi AM, Vozdova M, Cernohorska H et al (2022) Cytogenetic mapping of cattle BAC probes for the hypothetical ancestral karyotype of the family Cervidae. Cytogenet Genome Res 162:140–147. https://doi.org/10.1159/000525592 PubMed DOI

Bernegossi AM, Borges CHS, Sandoval EDP et al (2023) Resurrection of the genus Subulo Smith, 1827 for the gray brocket deer, with designation of a neotype. J Mammal. https://doi.org/10.1093/jmammal/gyac068 DOI

Bennett KD, Provan J (2008) What do we mean by ‘refugia’? Quaternary Sc Rev 27(27–28):2449–2455. https://doi.org/10.1007/s00421-008-0955-8 DOI

Carranza J, Roldán M, Duarte JMB (2018) Lack of mate selectivity for genetic compatibility within the red brocket deer Mazama americana complex. Mamm Biol 88:168–175. https://doi.org/10.1016/j.mambio.2017.09.006 DOI

Cernohorska H, Kubickova S, Vahala J, Rubes J (2012) Molecular insights into X;BTA5 chromosome rearrangements in the Tribe Antilopini (Bovidae). Cytogenet Genome Res 136:188–198. https://doi.org/10.1159/000336248 PubMed DOI

Chi JX, Huang L, Nie W, Wang J, Su B, Yang F (2005) Defining the orientation of the tandem fusions that occurred during the evolution of Indian muntjac chromosomes by BAC mapping. Chromosoma 114:167–172. https://doi.org/10.1007/s00412-005-0004-x PubMed DOI

Cifuentes-Rincón A, Morales-Donoso JA, Sandoval EDP et al (2020) Designation of a neotype for Mazama americana (Artiodactyla, Cervidae) reveals a cryptic new complex of brocket deer species. Zookeys 958:143–164. https://doi.org/10.3897/zookeys.958.50300 PubMed DOI PMC

Cursino MS, Salviano MB, Abril VV, Zanetti ES, Duarte JMB (2014) The role of chromosome variation in the speciation of the red brocket deer complex: the study of reproductive isolation in females. BMC Evol Biol 14:40. https://doi.org/10.1186/1471-2148-14-40 PubMed DOI PMC

Damas J, Corbo M, Lewin HA (2021) Vertebrate chromosome evolution. Ann Rev Ani Biosc 9(1):1–27. https://doi.org/10.1146/annurev-animal-020518-114924 DOI

De Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56:879–886. https://doi.org/10.1080/10635150701701083 PubMed DOI

Dementyeva PV, Trifonov VA, Kulemzina AI, Graphodatsky AS (2010) Reconstruction of the putative Cervidae ancestral karyotype by chromosome painting of Siberian roe deer (Capreolus pygargus) with dromedary probes. Cytogenet Genome Res 128:228–235. https://doi.org/10.1159/000298878 PubMed DOI

di Dio C, Longobardi V, Zullo G, Parma P et al (2020) Analysis of meiotic segregation by triple-color fish on both total and motile sperm fractions in a t(1p;18) river buffalo bull. PLoS ONE 15:e0232592. https://doi.org/10.1371/journal.pone.0232592 PubMed DOI PMC

Dobigny G, Britton-Davidian J, Robinson TJ (2017) Chromosomal polymorphism in mammals: an evolutionary perspective. Biol Rev Camb Philos Soc 92:1–21. https://doi.org/10.1111/brv.12213 PubMed DOI

Donaldson B, Villagomez DAF, King WA (2021) Classical, molecular, and genomic cytogenetics of the pig, a clinical perspective. Animals 11:1257. https://doi.org/10.3390/ani11051257 PubMed DOI PMC

Duarte JMB, Jorge W (1996) Chromosomal polymorphism in several populations of deer (genus Mazama) from Brazil. Arch Zootec 45:281–287

Duarte JMB, Jorge W (2003) Morphologic and cytogenetic description of the small red brocket (Mazama bororo Duarte, 1996) in Brazil. Mammalia 67:403–410. https://doi.org/10.1515/mamm.2003.67.3.403 DOI

Duarte JMB, González S, Maldonado JE (2008) The surprising evolutionary history of South American deer. Mol Phylogenet Evol 49:17–22. https://doi.org/10.1016/j.ympev.2008.07.009 PubMed DOI

Duarte JMB, González S (2010) Neotropical cervidology: biology and medicine of Latin American deer. FUNEP/IUCN, Jaboticabal, São Paulo, Brazil.

Duarte JMB, Vogliotti A (2016) Mazama americana. The IUCN Red List of Threatened Species 2016:e.T29619A22154827. https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T29619A22154827.en

Duarte JMB, Boer JA, Sandoval EDP et al (2021) Skin freezing technique for living cell bank. GenProtocols https://genprotocols.genengnews.com/protocols/skin-freezing-technique-for-living-cell-bank/1041 . Accessed 26 August 2022

Erxleben JCP (1777) Systema regni animalis per classes, ordines, genera, species, varietates cum synonymia et historia animalium, Classis 1. Mammalia. Impensis Weygandianis, Lipsiae

Faria R, Navarro A (2010) Chromosomal speciation revisited: rearranging theory with pieces of evidence. Trends Ecol Evol 25:660–669. https://doi.org/10.1016/j.tree.2010.07.008 PubMed DOI

Ferguson-Smith M, Trifonov V (2007) Mammalian karyotype evolution. Nat Rev Genet 8:950–962. https://doi.org/10.1038/nrg2199 PubMed DOI

Fiorillo BF, Sarria-Perea JA, Abril VV, Duarte JMB (2013) Cytogenetic description of the Amazonian brown brocket Mazama nemorivaga (Artiodactyla, Cervidae). Comparative Cytogenetics 7:25–31. https://doi.org/10.3897/CompCytogen.v7i1.4314 PubMed DOI PMC

Fišer C, Robinson CT, Malard F (2018) Cryptic Species as a window into the paradigm shift of the species concept. Mol Ecol 27:613–635. https://doi.org/10.1111/mec.14486 PubMed DOI

Fontana F, Rubini M (1990) Chromosomal Evolution in Cervidae Biosyst 34:157–174. https://doi.org/10.1016/0303-2647(90)90008-o DOI

Frohlich J, Kubickova S, Musilova P, Cernohorska H, Muskova R, Vodicka R, Rubes J (2017) Karyotype relationships among selected deer species and cattle revealed by bovine FISH probes. PLoS ONE 12:1–17. https://doi.org/10.1371/journal.pone.0187559 DOI

Garagna S, Zuccotti M, Searle JB, Redi CA, Wilkinson PJ (1989) Spermatogenesis in heterozygotes for Robertsonian chromosomal rearrangements from natural populations of the common shrew, Sorex araneus. J Reprod Fertil 87:431–438. https://doi.org/10.1530/jrf.0.0870431 PubMed DOI

Garagna S, Page J, Fernandez-Donoso R, Zuccotti M, Searle JB (2014) The Robertsonian phenomenon in the house mouse: mutation, meiosis and speciation. Chromosoma 123(6):529–544. https://doi.org/10.1007/s00412-014-0477-6 PubMed DOI

Galindo DJ, Martins GS, Vozdova M et al (2021a) Chromosomal polymorphism and speciation: the case of the genus Mazama (Cetartiodactyla; Cervidae). Genes (basel) 12(2):165. https://doi.org/10.3390/genes12020165 PubMed DOI

Galindo DJ, Vozdova M, Kubickova S et al (2021b) Sperm chromosome segregation of rob(4;16) and rob(4;16)inv(4) in the brown brocket deer (Mazama gouazoubira). Theriogenology 168:33–40. https://doi.org/10.1016/j.theriogenology.2021.03.024 PubMed DOI

Graphodatsky AS, Trifonov VA, Stanyon R (2011) The genome diversity and karyotype evolution of mammals. Mol Cytogenet 4:22. https://doi.org/10.1186/1755-8166-4-22 PubMed DOI PMC

González S, Duarte JMB (2020) Speciation, evolutionary history and conservation trends of Neotropical deer. Mastozool Neotrop 27:37–47

Gutiérrez EE, Helgen KM, McDonough MM et al (2017) A gene-tree test of the traditional taxonomy of American deer: the importance of voucher specimens, geographic data, and dense sampling. Zookeys 697:87–131. https://doi.org/10.3897/zookeys.697.15124 DOI

Heckeberg NS (2020) The systematics of the Cervidae: a total evidence approach. PeerJ 8:e8114. https://doi.org/10.7717/peerj.8114 PubMed DOI PMC

Hoffman A, Rieseberg LH (2008) Revisiting the impact of inversions in evolution: from population genetic markers to drivers of adaptive shifts and speciation? Annu Rev Ecol Evol Sys 39:21–42. https://doi.org/10.1146/annurev.ecolsys.39.110707.173532 DOI

Hooghiemstra H, van der Hammen T (1998) Neogene and Quaternary development of the neotropical rain forest: the forest refugia hypothesis, and a literature overview. Earth Sci Rev 44(3–4):147–183. https://doi.org/10.1016/S0012-8252(98)00027-0 DOI

Huang L, Wang J, Nie W et al (2006) Tandem chromosome fusions in karyotypic evolution of Muntiacus: evidence from M. feae and M. gongshanensis. Chromosome Res 14:637–647. https://doi.org/10.1007/s10577-006-1073-2 PubMed DOI

Iannuzzi A, Parma P, Iannuzzi L (2021) Chromosome abnormalities and fertility in domestic bovids: a review. Animals 11:802. https://doi.org/10.3390/ani11030802 PubMed DOI PMC

Iannuzzi L, di Meo GP, Perucatti A et al (2000) Comparative FISH mapping of bovid X chromosomes reveals homologies and divergences between the subfamilies Bovinae and Caprinae. Cytogenet Genome Res 89:171–176. https://doi.org/10.1159/000015607 DOI

Iannuzzi L, di Meo GP, Perucatti A et al (2001) A pericentric inversion in the cattle Y chromosome. Cytogenet Cell Genet 94:202–205. https://doi.org/10.1159/000048817 PubMed DOI

Iannuzzi L, King WA, di Berardino D (2009) Chromosome evolution in domestic bovids as revealed by chromosome banding and FISH-mapping techniques. Cytogenet Genome Res 126:49–62. https://doi.org/10.1159/000245906 PubMed DOI

Jadwiszczak KA, Banaszek A (2006) Fertility in the male common shrews, Sorex araneus, from the extremely narrow hybrid zone between chromosome races. Mamm Biol 71:257–267. https://doi.org/10.1016/j.mambio.2006.02.004 DOI

King M (1993) Species evolution: the role of chromosome change. Cambridge University Press, London and New York

Kubickova S, Cernohorska H, Musilova P, Rubes J (2002) The use of laser microdissection for the preparation of chromosome-specific painting probes in farm animals. Chromosome Res 10(7):571–577. https://doi.org/10.1023/A:1020914702767 PubMed DOI

Long SE (1996) Tandem 1;30 translocation: a new structural abnormality in the horse (Equus caballus). Cytogenet Genome Res 72:162–163. https://doi.org/10.1159/000134176 DOI

Makunin AI, Kichigin IG, Larkin DM et al (2016) Contrasting origin of B chromosomes in two cervids (Siberian roe deer and grey brocket deer) unravelled by chromosome-specific DNA sequencing. BMC Genomics 17:618. https://doi.org/10.1186/s12864-016-2933-6 PubMed DOI PMC

Mantellatto AMB, González S, Duarte JMB (2022) Cytochrome b sequence of the Mazama americana jucunda Thomas, 1913 holotype reveals Mazama bororo Duarte, 1996 as its junior synonym. Genet Mol Biol 45:1–6. https://doi.org/10.1590/1678-4685-gmb-2021-0093 DOI

Merico V, Pigozzi MI, Esposito A, Merani MS, Garagna S (2003) Meiotic recombination and spermatogenic impairment in Mus musculus domesticus carrying multiple simple Robertsonian translocations. Cytogenet Genome Res 103:321–329. https://doi.org/10.1159/000076820 PubMed DOI

Merico V, Giménez MD, Vasco C, Zuccotti M, Searle JB, Hauffe HC, Garagna S (2013) Chromosomal speciation in mice: a cytogenetic analysis of recombination. Chromosome Res 21:523–533. https://doi.org/10.1007/s10577-013-9377-5 PubMed DOI

Mudd AB, Bredeson JV, Baum R et al (2020) Analysis of muntjac deer genome and chromatin architecture reveals rapid karyotype evolution. Commun Biol 3:480. https://doi.org/10.1038/s42003-020-1096-9 PubMed DOI PMC

Navarro A, Barton N (2003) Chromosomal speciation and molecular divergence: accelerated evolution in rearranged chromosomes. Science 300:321–324. https://doi.org/10.1126/science.1080600 PubMed DOI

Neitzel H (1987) Chromosome evolution of Cervidae: karyotypic and molecular aspects. In: Obe G, Basler A (eds) Cytogenetics, basic and applied aspects. Springer Verlag, Berlin, pp 90–112

Oliveira Da Silva W, Pieczarka JC, Rodrigues Da Costa MJ et al (2019) Chromosomal phylogeny and comparative chromosome painting among Neacomys species (Rodentia, Sigmodontinae) from eastern Amazonia. BMC Evol Biol 19:184. https://doi.org/10.1186/s12862-019-1515-z PubMed DOI PMC

Olson DM, Dinerstein E, Wikramanayake ED et al (2001) Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51:933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 DOI

Padial JM, Miralle A, De la Riva I, Vences M (2010) The integrative future of taxonomy. Front Zool 7:16. https://doi.org/10.1186/1742-9994-7-16 PubMed DOI PMC

Peres PHF, Luduvério DJ, Bernegossi AM et al (2021) Revalidation of Mazama rufa (Illiger 1815) (Artiodactyla: Cervidae) as a distinct species out of the complex Mazama americana (Erxleben 1777). Front Genet 12:742870. https://doi.org/10.3389/fgene.2021.742870 PubMed DOI PMC

Pillay N, Willan K, Meester J (1995) Post-zygotic reproductive isolation in two populations of the African vlei rat Otomys irroratus. Acta Theriol 40:69–76. https://doi.org/10.4098/AT.arch.95-8 DOI

Potter S, Bragg JG, Blom MPK et al (2017) Chromosomal speciation in the genomics era: disentangling phylogenetic evolution of rock-wallabies. Front Genet 8:10. https://doi.org/10.3389/fgene.2017.00010 PubMed DOI PMC

Potter S, Bragg JG, Turakulov R, Eldridge MDB, Deakin J, Kirkpatrick M, Edwards RJ, Moritz C (2022) Limited introgression between Rock-Wallabies with extensive chromosomal rearrangements. Mol Biol Evol 39(1):msab333. https://doi.org/10.1093/molbev/msab333

Proskuryakova AA, Kulemzina AI, Perelman PL et al (2017) X Chromosome Evolution in Cetartiodactyla. Genes 8:216. https://doi.org/10.3390/genes8090216 PubMed DOI PMC

Raudsepp T, Chowdhary BP (2016) Chromosome aberrations and fertility disorders in domestic animals. Annu Rev Anim Biosci 4:15–43. https://doi.org/10.1146/annurev-animal-021815-111239 PubMed DOI

Rieseberg L (2001) Chromosomal rearrangements and speciation. Trends Ecol Evol 16(7):351–358. https://doi.org/10.1016/s0169-5347(01)02187-5 PubMed DOI

Robinson TJ, Harrison WR, Ponce de León FA et al (1998) A molecular cytogenetic analysis of X chromosome repatterning in the Bovidae: transpositions, inversions, and phylogenetic inference. Cytogenet Cell Genet 80:179–184. https://doi.org/10.1159/000014976 PubMed DOI

Rossi RV (2000). Taxonomia de Mazama Rafinesque, 1817 do Brasil (Artiodactyla, Cervidae). Dissertation, Instituto de Biociências, Universidade de São Paulo

Rubes J, Kubickova S, Pagacova E, Cernohorska H, Di Berardino D, Antoninova M, Vahala J, Robinson TJ (2008) Phylogenomic study of spiral-horned antelope by cross-species chromosome painting. Chromosome Res 16(7):935–947. https://doi.org/10.1007/s10577-008-1250-6 PubMed DOI

Salviano MB, Cursino MS, Zanetti ES et al (2017) Intraspecific chromosome polymorphisms can lead to reproductive isolation and speciation: an example in red brocket deer (Mazama americana). Biol Reprod 96:1279–1287. https://doi.org/10.1093/biolre/iox041 PubMed DOI

Sánchez-Sánchez R, Gómez-Fidalgo E, Pérez-Garnelo S et al (2019) Prevalence of chromosomal aberrations in breeding pigs in Spain. Reprod Domest Anim 54:98–101. https://doi.org/10.1111/rda.13540 PubMed DOI

Sandoval EDP, Rola LD, Morales-Donoso JA, Gallina S, Reyna-Hurtado R, Duarte JMB (2022) Integrative analysis of Mazama temama (Artiodactyla: Cervidae) and designation of a neotype for the species. J Mammal 103(2):447–458. https://doi.org/10.1093/jmammal/gyab169 DOI

Tomazella IM, Abril VV, Duarte JMB (2017) Identifying Mazama gouazoubira (Artiodactyla; Cervidae) chromosomes involved in rearrangements induced by doxorubicin. Genet Mol Biol 40:460–467. https://doi.org/10.1590/1678-4685-gmb-2016-0275 PubMed DOI PMC

Turchetto-Zolet AC, Pinheiro F, Salgueiro F, Palma-Silva C (2013) Phylogeographical patterns shed light on evolutionary process in South America. Mol Ecol 22(5):1193–1213. https://doi.org/10.1111/mec.12164 PubMed DOI

Verma RS, Babu A (1995) Human chromosomes: principles and techniques, 2nd edn. McGraw-Hill, New York

Vozdova M, Kubickova S, Cernohorska H et al (2019) Comparative study of the bush dog (Speothos venaticus) karyotype and analysis of satellite DNA sequences and their chromosome distribution in six species of Canidae. Cytogenet Genome Res 159:88–96. https://doi.org/10.1159/000503082 PubMed DOI

Vozdova M, Kubickova S, Cernohorska H et al (2021) Anchoring the CerEla1.0 genome assembly to red deer (Cervus elaphus) and Cattle (Bos taurus) chromosomes and specification of evolutionary chromosome rearrangements in Cervidae. Animals 11:2614. https://doi.org/10.3390/ani11092614 PubMed DOI PMC

Wallace BMN, Searle JB, Everett CA (1992) Male meiosis and gametogenesis in wild house mice (Mus musculus domesticus) from a chromosomal hybrid zone; a comparison between “simple” Robertsonian heterozygotes and homozygotes. Cytogenet Cell Genet 61:211–220. https://doi.org/10.1159/000133410 PubMed DOI

Wallace BMN, Searle JB, Everett CA (2002) The effect of multiple simple Robertsonian heterozygosity on chromosome pairing and fertility of wild-stock house mice (Mus musculus domesticus). Cytogenet Genome Res 96:276–286. https://doi.org/10.1159/000063054 PubMed DOI

White MJD (1973) Animal cytology and evolution, 3rd edn. Cambridge University, Cambridge

White MJD (1978) Modes of speciation. Freeman, San Francisco

Yang F, Carter NP, Shi L, Ferguson-Smith MA (1995) A comparative study of karyotypes of muntjacs by chromosome painting. Chromosoma 103(9):642–652. https://doi.org/10.1007/BF00357691 PubMed DOI

Yang F, O’Brien PC, Wienberg J et al (1997a) Chromosomal evolution of the Chinese muntjac (Muntiacus reevesi). Chromosoma 106:37–43. https://doi.org/10.1007/s004120050222 PubMed DOI

Yang F, O’Brien PCM, Wienberg J, Ferguson-Smith MA (1997b) A reappraisal of the tandem fusion theory of karyotype evolution in Indian muntjac using chromosome painting. Chromosome Res 5:109–117. https://doi.org/10.1023/a:1018466107822 PubMed DOI

Yin Y, Fan H, Zhou B et al (2021) Molecular mechanisms and topological consequences of drastic chromosomal rearrangements of muntjac deer. Nat Commun 12:6858. https://doi.org/10.1038/s41467-021-27091-0 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...