Revalidation of Mazama rufa (Illiger 1815) (Artiodactyla: Cervidae) as a Distinct Species out of the Complex Mazama americana (Erxleben 1777)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34970296
PubMed Central
PMC8712859
DOI
10.3389/fgene.2021.742870
PII: 742870
Knihovny.cz E-zdroje
- Klíčová slova
- GMYC, Odocoileini, bayesian phylogenetic inference, cytotaxonomy, molecular cytogenetics, non-invasive sampling, scat detection dog,
- Publikační typ
- časopisecké články MeSH
The red brocket deer Mazama americana Erxleben, 1777 is considered a polyphyletic complex of cryptic species with wide chromosomal divergence. Evidence indicates that the observed chromosomal divergences result in reproductive isolation. The description of a neotype for M. americana allowed its genetic characterization and represented a comparative basis to resolve the taxonomic uncertainties of the group. Thus, we designated a neotype for the synonym Mazama rufa Illiger, 1815 and tested its recognition as a distinct species from the M. americana complex with the analysis of morphological, cytogenetic and molecular data. We also evaluated its distribution by sampling fecal DNA in the wild. Morphological data from craniometry and body biometry indicated an overlap of quantitative measurements between M. rufa and the entire M. americana complex. The phylogenetic hypothesis obtained through mtDNA confirmed the reciprocal monophyly relationship between M. americana and M. rufa, and both were identified as distinct molecular operational taxonomic units by the General Mixed Yule Coalescent species delimitation analysis. Finally, classic cytogenetic data and fluorescence in situ hybridization with whole chromosome painting probes showed M. rufa with a karyotype of 2n = 52, FN = 56. Comparative analysis indicate that at least fifteen rearrangements separate M. rufa and M. americana (sensu stricto) karyotypes, which confirmed their substantial chromosomal divergence. This divergence should represent an important reproductive barrier and allow its characterization as a distinct and valid species. Genetic analysis of fecal samples demonstrated a wide distribution of M. rufa in the South American continent through the Atlantic Forest, Cerrado and south region of Amazon. Thus, we conclude for the revalidation of M. rufa as a distinct species under the concept of biological isolation, with its karyotype as the main diagnostic character. The present work serves as a basis for the taxonomic review of the M. americana complex, which should be mainly based on cytogenetic characterization and directed towards a better sampling of the Amazon region, the evaluation of available names in the species synonymy and a multi-locus phylogenetic analysis.
Deer Research and Conservation Center Jaboticabal Brazil
Faculty of Veterinary Medicine National University of San Marcos Lima Peru
Medical School University Center of Adamantina Jaboticabal Brazil
Zobrazit více v PubMed
Abril V. V., Carnelossi E. A. G., González S., Duarte J. M. B. (2010). Elucidating the Evolution of the Red Brocket Deer Mazama A Complex (Artiodactyla; Cervidae). Cytogenet. Genome Res. 128, 177–187. 10.1159/000298819 PubMed DOI
Allen J. A. (1915). Notes on American Deer of the Genus Mazama. Bull. Am. Mus. Nat. Hist. 38, 521–553.
Azara F. (1801). Essais sur l’histoire naturelle des quadrupedes de la province du Paraguay. Paris: Charles Pougens. Traduits sur le manuscrit inédit de l’auteur par M. L. E. Moreau-Saint-Méry.
Cabrera A. (1960). Catálogo de los mamíferos de América del Sur. Buenos Aires: Rev. Mus. Argentino Bernardino Rivadavia, 309–732.
Carranza J., Roldán M., Duarte J. M. B. (2018). Lack of Mate Selectivity for Genetic Compatibility within the Red Brocket Deer Mazama A Complex. Mamm. Biol. 88, 168–175. 10.1016/j.mambio.2017.09.006 DOI
Cassini G. H., Toledo N. (2021). An Ecomorphological Approach to Craniomandibular Integration in Neotropical Deer. J. Mammal Evol. 28, 111–123. 10.1007/s10914-020-09499-5 DOI
Cifuentes-Rincón A., Morales-Donoso J. A., Sandoval E. D. P., Tomazella I. M., Mantellatto A. M. B., de Thoisy B., et al. (2020). Designation of a Neotype for mazama Americana (Artiodactyla, Cervidae) Reveals a Cryptic New Complex of Brocket Deer Species. Zookeys 958, 143–164. 10.3897/zookeys.958.50300 PubMed DOI PMC
Costa E. B. V., de Oliveira M. L., Peres P. H. D. F., Grotta-Neto F., Vogliotti A., Piovezan U., et al. (2017). Low Accuracy of Identifying Neotropical Deer Species by Scat Morphology. Stud. Neotropical Fauna Environ. 52, 37–42. 10.1080/01650521.2016.1263418 DOI
Cracraft J. (1983). “Species Concepts and Speciation Analysis,” in Current Ornithology. Editor Johnston R. F. (Lawrence: University of Kansas; ), 159–187. 10.1007/978-1-4615-6781-3_6 DOI
Cursino M., Salviano M., Abril V., Zanetti E. d., Duarte J. M. (2014). The Role of Chromosome Variation in the Speciation of the Red Brocket Deer Complex: The Study of Reproductive Isolation in Females. BMC Evol. Biol. 14, 40. 10.1186/1471-2148-14-40 PubMed DOI PMC
Czernay S. (1987). Die Spiesshirsche und Pudus. Wittenberg Lutherstadt: Ziemsen.
De Queiroz K. (2007). Species Concepts and Species Delimitation. Syst. Biol. 56, 879–886. 10.1080/10635150701701083 PubMed DOI
Dobigny G., Britton-Davidian J., Robinson T. J. (2017). Chromosomal Polymorphism in Mammals: an Evolutionary Perspective. Biol. Rev. 92, 1–21. 10.1111/brv.12213 PubMed DOI
Dool S. E., Puechmaille S. J., Foley N. M., Allegrini B., Bastian A., Mutumi G. L., et al. (2016). Nuclear Introns Outperform Mitochondrial DNA in Inter-Specific Phylogenetic Reconstruction: Lessons from Horseshoe Bats (Rhinolophidae: Chiroptera). Mol. Phylogenet. Evol. 97, 196–212. 10.1016/j.ympev.2016.01.003 PubMed DOI
Driesch A. (1976). A Guide to the Measurement of Animal Bones from Archaeological Sites. Massachusetts: Peabody Museum Harvard Univ. Massachusetts, 27–57.
Duarte J. M. B., González S., Maldonado J. E. (2008). The Surprising Evolutionary History of South American Deer. Mol. Phylogenet. Evol. 49, 17–22. 10.1016/j.ympev.2008.07.009 PubMed DOI
Duarte J. M. B., Jorge W. (1996). Chromosomal Polymorphism in Several Populations of Deer (Genus Mazama) from Brazil. Arch. Zootec. 45, 281–287.
Duarte J. M. B., Jorge W. (2003). Morphologic and Cytogenetic Description of the Small Red Brocket (Mazama Bororo Duarte,1996) in Brazil. Mammalia 67, 403–410. 10.1515/mamm.2003.67.3.403 DOI
Duarte J. M. B., Ramalho M. F. P. D. T., Lima V. F. H. D., Jorge W. (1999). A Leukocyte Cryopreservation Technique for Cytogenetic Studies. Genet. Mol. Biol. 22, 399–400. 10.1590/S1415-47571999000300019 DOI
Duarte J. M. B., Talarico Â. C., Vogliotti A., Garcia J. E., Oliveira M. L., Maldonado J. E., et al. (2017). Scat Detection Dogs, DNA and Species Distribution Modelling Reveal a Diminutive Geographical Range for the Vulnerable Small Red Brocket Deer Mazama Bororo. Oryx 51, 656–664. 10.1017/S0030605316000405 DOI
Elith J., H. Graham C., P. Anderson R., Dudík M., Ferrier S., Guisan A., et al. (2006). Novel Methods Improve Prediction of Species' Distributions from Occurrence Data. Ecography 29, 129–151. 10.1111/J.2006.0906-7590.04596.X DOI
Erxleben J. C. P. (1777). Systema regni animalis per classes, ordines, genera, species, varietates cum synonymia et history animalium, Classis 1. Mammalia. Impensis Weygandianis.
Escobedo-Morales L. A., Mandujano S., Eguiarte L. E., Rodríguez-Rodríguez M. A., Maldonado J. E. (2016). First Phylogenetic Analysis of Mesoamerican Brocket Deer Mazama Pandora and Mazama Temama (Cetartiodactyla: Cervidae) Based on Mitochondrial Sequences: Implications for Neotropical Deer Evolution. Mamm. Biol. 81, 303–313. 10.1016/j.mambio.2016.02.003 DOI
Fielding A. H., Bell J. F. (1997). A Review of Methods for the Assessment of Prediction Errors in Conservation Presence/absence Models. Envir. Conserv. 24, 38–49. 10.1017/S0376892997000088 DOI
Fischer G. (1814). Zoognosia Tabulis Synopticis Illustrata. Moscow: Typis Nicolai Sergeidis Vsevolozky.
Fišer C., Robinson C. T., Malard F. (2018). Cryptic Species as a Window into the Paradigm Shift of the Species Concept. Mol. Ecol. 27, 613–635. 10.1111/mec.14486 PubMed DOI
Françoso R. D., Brandão R., Nogueira C. C., Salmona Y. B., Machado R. B., Colli G. R. (2015). Habitat Loss and the Effectiveness of Protected Areas in the Cerrado Biodiversity Hotspot. Natureza & Conservação 13, 35–40. 10.1016/j.ncon.2015.04.001 DOI
Frohlich J., Kubickova S., Musilova P., Cernohorska H., Muskova H., Vodicka R., et al. (2017). Karyotype Relationships Among Selected Deer Species and Cattle Revealed by Bovine FISH Probes. PLoS One 12, e0187559. 10.1371/JOURNAL.PONE.0187559 PubMed DOI PMC
Fujita M. K., Leaché A. D., Burbrink F. T., McGuire J. A., Moritz C. (2012). Coalescent-based Species Delimitation in an Integrative Taxonomy. Trends Ecol. Evol. 27, 480–488. 10.1016/j.tree.2012.04.012 PubMed DOI
Galindo D. J., Martins G. S., Vozdova M., Cernohorska H., Kubickova S., Bernegossi A. M., et al. (2021). Chromosomal Polymorphism and Speciation: The Case of the Genus Mazama (Cetartiodactyla; Cervidae). Genes 12, 165. 10.3390/genes12020165 PubMed DOI PMC
Gilbert C., Ropiquet A., Hassanin A. (2006). Mitochondrial and Nuclear Phylogenies of Cervidae (Mammalia, Ruminantia): Systematics, Morphology, and Biogeography. Mol. Phylogenet. Evol. 40, 101–117. 10.1016/j.ympev.2006.02.017 PubMed DOI
González S., Barbanti Duarte J. M. (2020). Speciation, Evolutionary History and Conservation Trends of Neotropical Deer. Mastozool. Neotrop 27(SI), 35–46. 10.31687/saremMN_SI.20.27.1.05 DOI
González S., Maldonado J. E., Ortega J., Talarico A. C., Bidegaray-Batista L., Garcia J. E., et al. (2009). Identification of the Endangered Small Red Brocket Deer (Mazama Bororo) Using Noninvasive Genetic Techniques (Mammalia; Cervidae). Mol. Ecol. Resour. 9, 754–758. 10.1111/j.1755-0998.2008.02390.x PubMed DOI
Gray J. E. (1873). On the Deer of the West Coast of South America, With the Description of a New Species from Peru (Cervus whitelyi). Annal. Mag. Nat. History 4 (12), 161–164.
Gutiérrez E. E., Helgen K. M., McDonough M. M., Bauer F., Hawkins M. T. R., Escobedo-Morales L. A., et al. (2017). A Gene-Tree Test of the Traditional Taxonomy of American Deer: The Importance of Voucher Specimens, Geographic Data, and Dense Sampling. Zookeys 697, 87–131. 10.3897/zookeys.697.15124 PubMed DOI PMC
Gutiérrez E. E., Maldonado J. E., Radosavljevic A., Molinari J., Patterson B. D., Martínez-C. J. M., et al. (2015). The Taxonomic Status of Mazama bricenii and the Significance of the Táchira Depression for Mammalian Endemism in the Cordillera de Mérida, Venezuela. PLoS One 10, e0129113. 10.1371/journal.pone.0129113 PubMed DOI PMC
Hall T. A. (1999). BioEdit: a User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41, 95–98.
Hammer D. A. T., Ryan P. D., Hammer Ø., Harper D. A. T. (2001). Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 4, 178. Available at: http://palaeo-electronica.orghttp//palaeo-electronica.org/2001_1/past/issue1_01.htm (Accessed July 9, 2021).
Hansen M., DeFries R., Townshend J. R. G., Carrol M., Dimiceli C., Sohlberg R. A. (2003). Undefined Global Percent Tree Cover at a Spatial Resolution of 500 Meters: First Results of the MODIS Vegetation Continuous fields Algorithm, journals.ametsoc.org. Earth Interactions 7, 1–15. Available at: https://journals.ametsoc.org/view/journals/eint/7/10/1087-3562_2003_007_0001_gptcaa_2.0.co_2.xml?tab_body=fulltext-display (Accessed July 9, 2021). 10.1175/1087-3562(2003)007<0001:GPTCAA>2.0.CO;2 DOI
Heckeberg N. S., Erpenbeck D., Wörheide G., Rössner G. E. (20162016). Systematic Relationships of Five Newly Sequenced Cervid Species. PeerJ 4, e2307. 10.7717/PEERJ.2307 PubMed DOI PMC
Heckeberg N. S. (2020). The Systematics of the Cervidae: A Total Evidence Approach. PeerJ 8, e8114. 10.7717/peerj.8114 PubMed DOI PMC
Hershkovitz P. (1989). A History of the Recent Mammalogy of the Neotropical Region from 1492 to 1850. Chicago: Field Museum of Natural History.
Hershkovitz P. (1982). Neotropical Deer (Cervidae) : Part I. Pudus, Genus Pudu Gray. 11th ed. Chicago: Field Museum of Natural History. 10.5962/bhl.title.5080 DOI
Hijmans R. J., Cameron S. E., Parra J. L., Jones P. G., Jarvis A. (2005). Very High Resolution Interpolated Climate Surfaces for Global Land Areas. Int. J. Climatol. 25, 1965–1978. 10.1002/JOC.1276 DOI
Howell W. T., Black D. A. (1980). Controlled Silver-Staining of Nucleolus Organizer Regions with a Protective Colloidal Developer: A 1-step Method 1. Experientia 36 (8), 1014–1015. PubMed
Igea J., Aymerich P., Bannikova A. A., Gosálbez J., Castresana J. (2015). Multilocus Species Trees and Species Delimitation in a Temporal Context: Application to the Water Shrews of the Genus Neomys. BMC Evol. Biol. 15, 1–16. 10.1186/s12862-015-0485-z PubMed DOI PMC
Illiger J. K. W. (1815). “Überblick der Säugthiere nach ihrer Vertheilung über die Welttheile,” in Abhandlungen der physikalishe Klasse der Koeniglich-Preussischen (Berlin: Akademie der Wissenschaften; ), 39–159.
Jorge W., Benirschke K. (1977). Centromeric Heterochromatin and G-Banding of the Red Brocket Deer, Mazama americana Temama (Cervoidea, Artiodactyla) with a Probable Non-Robertsonian Translocation. Cytologia 42, 711–721. 10.1508/cytologia.42.711 PubMed DOI
Katoh K., Rozewicki J., Yamada K. D. (2018). MAFFT Online Service: Multiple Sequence Alignment, Interactive Sequence Choice and Visualization. Brief. Bioinform. 20, 1160–1166. 10.1093/bib/bbx108 PubMed DOI PMC
Kerr R. (1792). The Animal Kingdom. Cervus temama, 303.
King M. (1993). Species Evolution the Role of Chromosome Change. New York, New York, USA: Cambridge University Press.
Klink C. A., Machado R. B. (2005). Conservation of the Brazilian Cerrado. Conservation Biol. 19, 707–713. 10.1111/j.1523-1739.2005.00702.x DOI
Kubickova S., Cernohorska H., Musilova P., Rubes J. (20022002). The Use of Laser Microdissection for the Preparation of Chromosome-specific Painting Probes in Farm Animals. Chromosom. Res. 10, 571–577. 10.1023/A:1020914702767 PubMed DOI
Levan A., Fredga K., Sandberg A. A. (1969). Nomenclature for Centromeric Position of Chromosomes. Hereditas (52), 201–219.
Long S. E. (1996). Tandem 1 ;30 Translocation: a New Structural Abnormality in the Horse (Equus caballus). Cytogenet. Cel Genet 72, 162–163. 10.1159/000134176 PubMed DOI
Lydekker R. (1915). Catalogue of the Ungulate Mammals in the British Museum (Natural History), 4. London: The Trustees of the British Museum.
Lydekker R. (1898). The Deer of All Lands: A History of the Family Cervidae Living and Extinct. London: Rowland Ward.
Maddison W., Maddison D. (2019). Mesquite: A Modular System for Evolutionary Analysis.
Mantellatto A. M. B., González S., Duarte J. M. B. (2020). Molecular Identification of Mazama Species (Cervidae: Artiodactyla) from Natural History Collections. Genet. Mol. Biol. 43, e20190008. 10.1590/1678-4685-gmb-2019-0008 PubMed DOI PMC
Markmann M., Tautz D. (2005). Reverse Taxonomy: An Approach towards Determining the Diversity of Meiobenthic Organisms Based on Ribosomal RNA Signature Sequences. Phil. Trans. R. Soc. B 360, 1917–1924. 10.1098/rstb.2005.1723 PubMed DOI PMC
Mayr E. (1942). Systematics and the Origin of Species. New York: Columbia University Press.
Merino M. L., Rossi R. V. (2010). “Origin, Systematics, and Morphological Radiation,” in Neotropical Cervidology, Biology and Medicine of Latin American Deer. Editors Duarte J. M. B., González S. (Jaboticabal/Gland: FUNESP/IUCN; ), 2–11.
Michaloudi E., Papakostas S., Stamou G., Neděla V., Tihlaříková E., Zhang W., et al. (2018). Reverse Taxonomy Applied to the Brachionus Calyciflorus Cryptic Species Complex: Morphometric Analysis Confirms Species Delimitations Revealed by Molecular Phylogenetic Analysis and Allows the (Re)description of Four Species. PLoS One 13, e0203168. 10.1371/journal.pone.0203168 PubMed DOI PMC
Miller M. A., Pfeiffer W., Schwartz T. (2011). “The CIPRES Science Gateway,” in Proc. TeraGrid 2011 Conf. Extrem. Digit. Discov. TG’11, New York. 10.1145/2016741.2016785 DOI
Monaghan M. T., Wild R., Elliot M., Fujisawa T., Balke M., Inward D. J. G., et al. (2009). Accelerated Species Inventory on Madagascar Using Coalescent-Based Models of Species Delineation. Syst. Biol. 58, 298–311. 10.1093/sysbio/syp027 PubMed DOI
Moritz C. (1986). The Population Biology of Gehyra (Gekkonidae): Chromosome Change and Speciation. Syst. Biol. 35, 46–67. 10.1093/SYSBIO/35.1.46 DOI
Mudd A. B., Bredeson J. V., Baum R., Hockemeyer D., Rokhsar D. S. (2020). Analysis of Muntjac Deer Genome and Chromatin Architecture Reveals Rapid Karyotype Evolution. Commun. Biol. 3 (1), 480–510. 10.1038/s42003-020-1096-9 PubMed DOI PMC
Musser G. G., Carleton M. D., Brothers E. M., Gardner A. L. (1998). Systematic Studies of Oryzomyine Rodents (Muridae, Sigmodontinae): Diagnoses and Distributions of Species Formerly Assigned to Oryzomys" Capito". Bull. AMNH, 236.
Nascimento F. O. D., Cheng J., Feijó A. (2021). Taxonomic Revision of the Pampas Cat Leopardus Colocola Complex (Carnivora: Felidae): An Integrative Approach. Zool. J. Linn. Soc. 191 (2), 575–611.
Oliveira M. L., de Faria Peres P. H., Gatti A., Morales-Donoso J. A., Mangini P. R., Duarte J. M. B. (2020). Faecal DNA and Camera Traps Detect an Evolutionarily Significant Unit of the Amazonian Brocket Deer in the Brazilian Atlantic Forest. Eur. J. Wildl. Res. 66, 28. 10.1007/s10344-020-1367-2 DOI
Oliveira M. L., do Couto H. T. Z., Duarte J. M. B. (2019). Distribution of the Elusive and Threatened Brazilian dwarf Brocket Deer Refined by Non-invasive Genetic Sampling and Distribution Modelling. Eur. J. Wildl. Res. 65, 21. 10.1007/s10344-019-1258-6 DOI
Padial J. M., Miralles A., De la Riva I., Vences M. (2010). The Integrative Future of Taxonomy. Front. Zool. 7, 16. 10.1186/1742-9994-7-16 PubMed DOI PMC
Pearson R. G. (2010). Species’ Distribution Modeling for Conservation Educators and Practitioners. Synth. Am. Mus. Nat. Hist 3, 54–89. Available at: http://ncep.amnh.org/linc (Accessed July 9, 2021).
Pereira M. R. D. M. (2013). "Las cosas singulares de piedras, animales, plantas": la formación y el funcionamiento de la red imperial española de remesas centíficas en el Virreinato del Río de la Plata. Mus. Paul. 21, 91–138. 10.1590/s0101-47142013000100008 DOI
Phillips S. J., Anderson R. P., Schapire R. E., Arya S. P. (2006). Maximum Entropy Modeling of Species Geographic Distributions. Ecol. Model. 190, 231–259. 10.1016/J.ECOLMODEL.2005.03.026 DOI
Phillips S. J., Dudík M. (2008). Modeling of Species Distributions with Maxent: New Extensions and a Comprehensive Evaluation. Ecography 31, 161–175. 10.1111/J.0906-7590.2008.5203.X DOI
Phillips S. J., Schapire R. E. (2004). “A Maximum Entropy Approach to Species Distribution Modeling,” in Twenty-first Int. Conf. Mach. Learn. - ICML ’04, Alberta, July 4–8, 2004. 10.1145/1015330 DOI
Pillay N., Willan K., Meester J. (1995). Post-zygotic Reproductive Isolation in Two Populations of the African Vlei Rat Otomys Irroratus. Acta. Theriol. 40 (1), 69–76. 10.4098/at.arch.95-8 DOI
Rafinesque C. S. (1817). New species of Mammifers. American Monthly Magazine 1 (5), 363.
R Core Team (2020). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Available at: https://www.R-project.org/ .
Rees J. W. (1969). Morphologic Variation in the Cranium and Mandible of the white-tailed Deer (Odocoileus Virginianus): A Comparative Study of Geographical and Four Biological Distances. J. Morphol. 128, 95–112. 10.1002/JMOR.1051280105 DOI
Reynolds J., Wesson K., Desbiez A., Ochoa-Quintero J., Leimgruber P. (2016). Using Remote Sensing and Random forest to Assess the Conservation Status of Critical Cerrado Habitats in Mato Grosso Do Sul, Brazil. Land 5, 12. 10.3390/land5020012 DOI
Ribeiro M. C., Metzger J. P., Martensen A. C., Ponzoni F. J., Hirota M. M. (2009). The Brazilian Atlantic Forest: How Much Is Left, and How Is the Remaining forest Distributed? Implications for Conservation. Biol. Conservation 142, 1141–1153. 10.1016/j.biocon.2009.02.021 DOI
Rieseberg L. H. (2001). Chromosomal Rearrangements and Speciation. Trends Ecol. Evol. 16 (7), 351–358. 10.1016/s0169-5347(01)02187-5 PubMed DOI
Rossi R. V. (2000). “Taxonomia de Mazama Rafinesque, 1817 Do Brasil (Artiodactyla, Cervidae). Master’s Thesis. São Paulo (SP): Universidade de São Paulo.
Salviano M. B., Cursino M. S., Zanettidos E. D. S. S., Abril V. V., Duarte J. M. B. (2017). Intraspecific Chromosome Polymorphisms Can lead to Reproductive Isolation and Speciation: An Example in Red Brocket Deer (Mazama A). Biol. Reprod. 96, 1279–1287. 10.1093/biolre/iox041 PubMed DOI
Sambrook J., Fritsch E. F., Maniatis T. (1989). Molecular Cloning: A Laboratory Manual. Mol. Cloning a Lab. Manual.
Santos A. M. D., Silva C. F. A. D., Almeida Junior P. M. D., Rudke A. P., Melo S. N. D. (2021). Deforestation Drivers in the Brazilian Amazon: Assessing New Spatial Predictors. J. Environ. Manage. 294, 113020. 10.1016/J.JENVMAN.2021.113020 PubMed DOI
Seabright M. (1971). A Rapid Banding Technique for Human Chromosomes. The Lancet 298, 971–972. 10.1016/S0140-6736(71)90287-X PubMed DOI
Shaw K. L. (2002). Conflict between Nuclear and Mitochondrial DNA Phylogenies of a Recent Species Radiation: what mtDNA Reveals and Conceals about Modes of Speciation in Hawaiian Crickets. Proc. Natl. Acad. Sci. 99 (25), 16122–16127. 10.1073/pnas.242585899 PubMed DOI PMC
Sumner A. T. (1972). A Simple Technique for Demonstrating Centromeric Heterochromatin. Exp. Cel Res. 75, 304–306. 10.1016/0014-4827(72)90558-7 PubMed DOI
Talavera G., Dincă V., Vila R. (2013). Factors Affecting Species Delimitations with the GMYC Model: Insights from a Butterfly Survey. Methods Ecol. Evol. 4 (12), 1101–1110. 10.1111/2041-210x.12107 DOI
Tang C. Q., Humphreys A. M., Fontaneto D., Barraclough T. G. (2014). Effects of Phylogenetic Reconstruction Method on the Robustness of Species Delimitation Using Single‐Locus Data. Methods Ecol. Evol. 5 (10), 1086–1094. 10.1111/2041-210x.12246 PubMed DOI PMC
Telenius H. k., Carter N. P., Bebb C. E., Nordenskjo¨ld M., Ponder B. A. J., Tunnacliffe A. (1992). Degenerate Oligonucleotide-Primed PCR: General Amplification of Target DNA by a Single Degenerate Primer. Genomics 13, 718–725. 10.1016/0888-7543(92)90147-K PubMed DOI
Thomas O. (1925). The Spedan Lewis South American Exploration. 1. On Mammals From Southern Bolivia. Annal. Mag. Nat. History 9 (15), 575–582.
Tomas W. M., Cáceres N. C., Nunes A. P., Fischer E., Mourão G., Campos Z. (2010). “Mammals in the Pantanal Wetland, Brazil,” in The Pantanal: Ecology, Biodiversity and Sustainable Management of a Large Neotropical Seasonal Wetland. Editors Junk W. J., Da Silva C. J., Nunes da Cunha C., Wantzen K. M. (Sofia-Moscow: Pensoft Publishers; ), 563–595.
Valeriano M. M. (2008). TOPODATA: guia de utilização de dados geomorfométricos locais. São Jospe dos Campos. Available at: http://www.dsr.inpe.br/topodata . (Accessed March 10, 2021).
Verma R., Babu A. (1995). Human Chromosomes: Principles and Techniques. Solid Tumor Cel Cult 29, 75–82. Available at: https://ci.nii.ac.jp/naid/20000523472 (Accessed July 9, 2021).
Villagómez D. A. F., Pinton A. (2008). Chromosomal Abnormalities, Meiotic Behavior and Fertility in Domestic Animals. Cytogenet. Genome Res. 120, 69–80. 10.1159/000118742 PubMed DOI
Voss R. S., Myers P., Catzeflis F., Carmignotto A. P., Barreiro J. (2009). Chapter 11. The Six Opossums of Félix de Azara: Identification, Taxonomic History, Neotype Designations, and Nomenclatural Recommendations. Bull. Am. Mus. Nat. Hist. 331, 406–433. 10.1206/582-11.1 DOI
Vozdova M., Kubickova S., Cernohorska H., Fröhlich J., Vodicka R., Rubes J. (2019). Comparative Study of the Bush Dog (Speothos Venaticus) Karyotype and Analysis of Satellite DNA Sequences and Their Chromosome Distribution in Six Species of Canidae. Cytogenet. Genome Res. 159, 88–96. 10.1159/000503082 PubMed DOI
Vozdova M., Kubickova S., Martínková N., Galindo D. J., Bernegossi A. M., Cernohorska H., et al. (2021). Satellite Dna in Neotropical Deer Species. Genes 12, 123. 10.3390/GENES12010123 PubMed DOI PMC
Weber M., Gonzalez S. (2003). Latin American Deer Diversity and Conservation: A Review of Status and Distribution. Écoscience 10, 443–454. 10.1080/11956860.2003.11682792 DOI
Xia X. (2018). DAMBE7: New and Improved Tools for Data Analysis in Molecular Biology and Evolution. Mol. Biol. Evol. 35, 1550–1552. 10.1093/molbev/msy073 PubMed DOI PMC
Xia X., Xie Z., Salemi M., Chen L., Wang Y. (2003). An index of Substitution Saturation and its Application. Mol. Phylogenet. Evol. 26, 1–7. 10.1016/S1055-7903(02)00326-3 PubMed DOI
Yang F., O’Brien P. C. M., Wienberg J., Ferguson-Smith M. A. (1997). A Reappraisal of the Tandem Fusion Theory of Karyotype Evolution in the Indian Muntjac Using Chromosome Painting. Chromosome Res. 5 (2), 109–117. 10.1023/a:1018466107822 PubMed DOI