Chromosomal Polymorphism and Speciation: The Case of the Genus Mazama (Cetartiodactyla; Cervidae)
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33530376
PubMed Central
PMC7911811
DOI
10.3390/genes12020165
PII: genes12020165
Knihovny.cz E-zdroje
- Klíčová slova
- Neotropical deer, cytogenetics, hybrids, post-zygotic barrier, sperm-FISH,
- MeSH
- chov MeSH
- chromozomy * MeSH
- hybridizace genetická MeSH
- hybridizace in situ fluorescenční MeSH
- malování chromozomů MeSH
- polymorfismus genetický * MeSH
- přežvýkavci genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Chromosomal polymorphism plays a major role in speciation processes in mammals with high rates of karyotypic evolution, as observed in the family Cervidae. One remarkable example is the genus Mazama that comprises wide inter- and intra-specific chromosomal variability. To evaluate the impact of chromosomal polymorphisms as reproductive barriers within the genus Mazama, inter-specific hybrids between Mazama gouazoubira and Mazama nemorivaga (MGO × MNE) and intra-specific hybrids between cytotypes of Mazama americana (MAM) differing by a tandem (TF) or centric fusion (Robertsonian translocations-RT) were evaluated. MGO × MNE hybrid fertility was evaluated by the seminal quality and testicular histology. MAM hybrids estimation of the meiotic segregation products was performed by sperm-FISH analysis. MGO × MNE hybrids analyses showed different degrees of fertility reduction, from severe subfertility to complete sterility. Regarding MAM, RT, and TF carriers showed a mean value for alternate segregation rate of 97.74%, and 67.23%, and adjacent segregation rate of 1.80%, and 29.07%, respectively. Our results suggested an efficient post-zygotic barrier represented by severe fertility reduction for MGO × MNE and MAM with heterozygous TF. Nevertheless, RT did not show a severe effect on the reproductive fitness in MAM. Our data support the validity of MGO and MNE as different species and reveals cryptic species within MAM.
Zobrazit více v PubMed
Dobigny G., Britton-Davidian J., Robinson T.J. Chromosomal polymorphism in mammals: An evolutionary perspective. Biol. Rev. Camb. Philos. Soc. 2017;92:1–21. doi: 10.1111/brv.12213. PubMed DOI
Faria R., Navarro A. Chromosomal speciation revisited: Rearranging theory with pieces of evidence. Trends Ecol. Evol. 2010;25:660–669. doi: 10.1016/j.tree.2010.07.008. PubMed DOI
Farré M., Micheletti D., Ruiz-Herrera A. Recombination rates and genomic shuffling in human and chimpanzee--a new twist in the chromosomal speciation theory. Mol. Biol. Evol. 2013;30:853–864. doi: 10.1093/molbev/mss272. PubMed DOI PMC
Yang F., O’Brien P.C.M., Wienberg J., Ferguson-Smith M.A. A reappraisal of the tandem fusion theory of karyotype evolution in Indian muntjac using chromosome painting. Chromosome Res. 1997;5:109–117. doi: 10.1023/A:1018466107822. PubMed DOI
Yang F., O’Brien P.C.M., Wienberg J., Neitzel H., Lin C.C., Ferguson-Smith M.A. Chromosomal evolution of the Chinese muntjac (Muntiacus reevesi) Chromosoma. 1997;106:37–43. doi: 10.1007/s004120050222. PubMed DOI
Duarte J.M.B., Jorge W. Morphologic and Cytogenetic Description of the Small Red Brocket (Mazama bororo Duarte,1996) in Brazil. Mammalia. 2003;67:403–410. doi: 10.1515/mamm.2003.67.3.403. DOI
Neitzel H. Chromosome Evolution of Cervidae: Karyotypic and Molecular Aspects. In: Obe G., Basler A., editors. Cytogenetics—Basic and Applied Aspects. Springer; Berlin/Heidelberg, Germany: 1987. pp. 90–112.
Fontana F., Rubini M. Chromosomal evolution in cervidae. BioSystems. 1990;24:157–174. doi: 10.1016/0303-2647(90)90008-O. PubMed DOI
Abril V.V., Duarte J.M.B. Chromosome polymorphism in the Brazilian dwarf brocket deer, Mazama nana (Mammalia, Cervidae) Genet. Mol. Biol. 2008;31:53–57. doi: 10.1590/S1415-47572008000100011. DOI
Abril V.V., Carnelossi E.A.G., González S., Duarte J.M.B. Elucidating the Evolution of the Red Brocket Deer Mazama americana Complex (Artiodactyla; Cervidae) Cytogenet. Genome Res. 2010;128:177–187. doi: 10.1159/000298819. PubMed DOI
Fiorillo B.F., Sarria-Perea J.A., Abril V.V., Duarte J.M.B. Cytogenetic description of the Amazonian brown brocket Mazama nemorivaga (Artiodactyla, Cervidae) Comp. Cytogenet. 2013;7:25–31. doi: 10.3897/CompCytogen.v7i1.4314. PubMed DOI PMC
Valeri M.P., Tomazella I.M., Duarte J.M.B. Intrapopulation Chromosomal Polymorphism in Mazama gouazoubira (Cetartiodactyla; Cervidae): The Emergence of a New Species? Cytogenet. Genome Res. 2018;154:147–152. doi: 10.1159/000488377. PubMed DOI
Tomazella I.M. Análise de Polimorfismo Cromossômico em Mazama Gouazoubira (Artiodactyla; Cervidae): Implicações Para a Evolução Cariotípica em Cervidae. Universidade Estadual Paulista; Ilha Solteira, Brazil: 2016. PubMed
Vargas-Munar D.S.F., Sarria-Perea J.A., Duarte J.M.B. Different responses to doxorubicin-induced chromosome aberrations in Brazilian deer species. Genet. Mol. Res. 2010;9:1545–1549. doi: 10.4238/vol9-3gmr822. PubMed DOI
Tomazella I.M., Abril V.V., Duarte J.M.B. Identifying Mazama gouazoubira (Artiodactyla; Cervidae) chromosomes involved in rearrangements induced by doxorubicin. Genet. Mol. Biol. 2017;40:460–467. doi: 10.1590/1678-4685-gmb-2016-0275. PubMed DOI PMC
Duarte J.M.B., González S., Maldonado J.E. The surprising evolutionary history of South American deer. Mol. Phylogenet. Evol. 2008;49:17–22. doi: 10.1016/j.ympev.2008.07.009. PubMed DOI
González S., Barbanti Duarte J.M. Speciation, evolutionary history and conservation trends of Neotropical deer. Mastozoología Neotrop. 2020;27:35–46. doi: 10.31687/saremMN_SI.20.27.1.05. DOI
IUCN The IUCN Red List of Threatened Species. [(accessed on 24 July 2020)]; Version 2020-2. Available online: https://www.iucnredlist.org/
Rossi R.V. Taxonomia de Mazama RAFINESQUE, 1817, do Brasil (Artiodactyla, Cervidae) Universidade de São Paulo; São Paulo, Brazil: 2000.
Morales-Donoso J.A. Caracterização Morfológica, Citogenética e Molecular de Mazama Nemorivaga (Cuvier, 1817) a Partir de um Topótipo Atual. Universidade Estadual Paulista; Ilha Solteira, Brazil: 2017.
Duarte J.M.B., Merino M.L. Taxonomia e Evolução. In: Duarte J.M.B., editor. Biologia e Conservação de Cervídeos Sul—Americanos: Blastocerus, Ozotoceros e Mazama. FUNEP; Jaboticabal, Brazil: 1997. pp. 1–21.
Figueiredo M.G. Filogenia e Taxonomia dos Veados Cinza (Mazama gouazoubira e M. nemorivaga) Universidade Estadual Paulista; Ilha Solteira, Brazil: 2014.
Resende J.P.d.A. Comparação Cariotípica Entre Mazama Gouazoubira e Mazama Nemorivaga (Artiodactyla; Cervidae) por Meio de Marcadores Citogenéticos Clássicos, Fish Telomérica e Pintura Cromossômica. Universidade Estadual Paulista; Ilha Solteira, Brazil: 2012.
King M. Species Evolution The Role of Chromosome Change. Cambridge University Press; Cambridge, UK: 1993.
Salviano M.B., Cursino M.S., Zanetti E.S., Abril V.V., Duarte J.M.B. Intraspecific chromosome polymorphisms can lead to reproductive isolation and speciation: An example in red brocket deer (Mazama americana) Biol. Reprod. 2017;96:1279–1287. doi: 10.1093/biolre/iox041. PubMed DOI
Carranza J., Roldán M., Duarte J.M.B. Lack of mate selectivity for genetic compatibility within the red brocket deer Mazama americana complex. Mamm. Biol. 2018;88:168–175. doi: 10.1016/j.mambio.2017.09.006. DOI
Aquino C.I., Abril V.V., Duarte J.M.B. Meiotic pairing of B chromosomes, multiple sexual system, and Robertsonian fusion in the red brocket deer Mazama americana (Mammalia, Cervidae) Genet. Mol. Res. 2013;12:3566–3574. doi: 10.4238/2013.September.13.1. PubMed DOI
Abril V.V. Evolução Cromossômica no Veado-Mateiro—Mazama Americana (Mammalia; Cervidae) Universidade Estadual Paulista; Ilha Solteira, Brazil: 2009.
Fröhlich J., Kubickova S., Musilova P., Cernohorska H., Muskova H., Rubes J. A Comparative Study of Pygmy Hippopotamus (Choeropsis liberiensis) Karyotype by Cross-Species Chromosome Painting. J. Mamm. Evol. 2017;24:465–474. doi: 10.1007/s10914-016-9358-5. DOI
Kubickova S., Cernohorska H., Musilova P., Rubes J. The use of laser microdissection for the preparation of chromosome-specific painting probes in farm animals. Chromosome Res. 2002;10:571–577. doi: 10.1023/A:1020914702767. PubMed DOI
Telenius H., Carter N.P., Bebb C.E., Nordenskjöld M., Ponder B.A.J., Tunnacliffe A. Degenerate oligonucleotide-primed PCR: General amplification of target DNA by a single degenerate primer. Genomics. 1992;13:718–725. doi: 10.1016/0888-7543(92)90147-K. PubMed DOI
Vozdova M., Kubickova S., Cernohorska H., Fröhlich J., Vodicka R., Rubes J. Comparative Study of the Bush Dog (Speothos venaticus) Karyotype and Analysis of Satellite DNA Sequences and Their Chromosome Distribution in Six Species of Canidae. Cytogenet. Genome Res. 2019;159:88–96. doi: 10.1159/000503082. PubMed DOI
Favoretto S.M., Zanetti E.S., Duarte J.M.B. Cryopreservation of red brocket deer semen (Mazama americana): Comparison between three extenders. J. Zoo Wildl. Med. 2012;43:820–827. doi: 10.1638/2011-0195R1.1. PubMed DOI
Duarte J.M.B., Garcia J.M. Assistant Reproduction in Brazilian Cervidae. Rev. Bras. Reprod. Anim. 1995;19:111–121.
Alvarez M.C.L., Rola L.D., Duarte J.M.B. Comparison Between Three Cryoprotectants in the Freezing of Mazama americana Semen Collected by Artificial Vagina. Biopreserv. Biobank. 2020 doi: 10.1089/bio.2020.0012. PubMed DOI
BLOM E. Interpretation of spermatic cytology in bulls. Fertil. Steril. 1950;1:223–238. doi: 10.1016/S0015-0282(16)30183-2. PubMed DOI
Rubes J., Vozdová M., Kubícková S. Aneuploidy in pig sperm: Multicolor fluorescence in situ hybridization using probes for chromosomes 1, 10, and Y. Cytogenet. Cell Genet. 1999;85:200–204. doi: 10.1159/000015293. PubMed DOI
R Core Team . R: A Lenguage and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2020.
Cursino M.S., Duarte J.M.B. Using sperm morphometry and multivariate analysis to differentiate species of gray Mazama. R. Soc. Open Sci. 2016;3:1–9. doi: 10.1098/rsos.160345. PubMed DOI PMC
Vozdova M., Sebestova H., Kubickova S., Cernohorska H., Awadova T., Vahala J., Rubes J. Impact of Robertsonian translocation on meiosis and reproduction: An impala (Aepyceros melampus) model. J. Appl. Genet. 2014;55:249–258. doi: 10.1007/s13353-014-0193-1. PubMed DOI
Pinton A., Faraut T., Yerle M., Gruand J., Pellestor F., Ducos A. Comparison of male and female meiotic segregation patterns in translocation heterozygotes: A case study in an animal model (Sus scrofa domestica L.) Hum. Reprod. 2005;20:2476–2482. doi: 10.1093/humrep/dei067. PubMed DOI
Bonnet-Garnier A., Lacaze S., Beckers J.F., Berland H.M., Pinton A., Yerle M., Ducos A. Meiotic segregation analysis in cows carrying the t(1;29) Robertsonian translocation. Cytogenet. Genome Res. 2008;120:91–96. doi: 10.1159/000118744. PubMed DOI
Massip K., Yerle M., Billon Y., Ferchaud S., Bonnet N., Calgaro A., Mary N., Dudez A.-M., Sentenac C., Plard C., et al. Studies of male and female meiosis in inv(4)(p1.4;q2.3) pig carriers. Chromosom. Res. 2010;18:925–938. doi: 10.1007/s10577-010-9162-7. PubMed DOI
Zackowski J.L., Martin-DeLeon P.A. Segregation products of male mice doubly heterozygous for the RB(6.16) and RB(16.17) translocations: Influence of sperm karyotype on fertilizing competence under varying mating frequencies. Gamete Res. 1989;22:93–107. doi: 10.1002/mrd.1120220110. PubMed DOI
Sánchez-Sánchez R., Gómez-Fidalgo E., Pérez-Garnelo S., Martín-Lluch M., De la Cruz-Vigo P. Prevalence of chromosomal aberrations in breeding pigs in Spain. Reprod. Domest. Anim. 2019;54:98–101. doi: 10.1111/rda.13540. PubMed DOI
Yang F., Carter N.P., Shi L., Ferguson-Smith M.A. A comparative study of karyotypes of muntjacs by chromosome painting. Chromosoma. 1995;103:642–652. doi: 10.1007/BF00357691. PubMed DOI
Duarte J.M.B., Jorge W. Chromosomal polymorphism in several populations of deer (Genus Mazama) from Brazil. Arch. Zootec. 1996;45:281–287.
Grize S.A., Wilwert E., Searle J.B., Lindholm A.K. Measurements of hybrid fertility and a test of mate preference for two house mouse races with massive chromosomal divergence. BMC Evol. Biol. 2019;19:25. doi: 10.1186/s12862-018-1322-y. PubMed DOI PMC
Oka A., Mita A., Takada Y., Koseki H., Shiroishi T. Reproductive isolation in hybrid mice due to spermatogenesis defects at three meiotic stages. Genetics. 2010;186:339–351. doi: 10.1534/genetics.110.118976. PubMed DOI PMC
Li X.C., Barringer B.C., Barbash D.A. The pachytene checkpoint and its relationship to evolutionary patterns of polyploidization and hybrid sterility. Heredity. 2009;102:24–30. doi: 10.1038/hdy.2008.84. PubMed DOI
Switoński M., Stranzinger G. Studies of synaptonemal complexes in farm mammals—A review. J. Hered. 1998;89:473–480. doi: 10.1093/jhered/89.6.473. PubMed DOI
Barrozo L.A., Toniolo G.H., Duarte J.M.B., Pinho M.P., Oliveira J.A. Padrão anual de variação da testosterona sérica, volume testicular e aspectos seminais de veados-catingueiros (Mazama gouazoubira) em cativeiro. Rev. Bras. Reprod. Anim. 2001;25:210–211.
Benirschke K. Comparative Aspects of Reproductive Failure. Springer; Berlin/Heidelberg, Germany: 1967. Sterility and Fertility of Interspecific Mammalian Hybrids; pp. 218–234.
Ashley T. An integration of old and new perspectives of mammalian meiotic sterility. Results Probl. Cell Differ. 2000;28:131–173. doi: 10.1007/978-3-540-48461-5_6. PubMed DOI
Wishart W.D., Hrudka F., Schmutz S.M., Flood P.F. Observations on spermatogenesis, sperm phenotype, and fertility in white-tailed × mule deer hybrids and a yak × cow hybrid. Can. J. Zool. 1988;66:1664–1671. doi: 10.1139/z88-240. DOI
McEntee K. Reproductive Pathology of Domestic Mammals. Academic Press; San Diego, CA, USA: 1990.
Britton-Davidian J., Fel-Clair F., Lopez J., Alibert P., Boursot P. Postzygotic isolation between the two European subspecies of the house mouse: Estimates from fertility patterns in wild and laboratory-bred hybrids. Biol. J. Linn. Soc. 2005;84:379–393. doi: 10.1111/j.1095-8312.2005.00441.x. DOI
McGovern P.T. The barriers to interspecific hybridization in domestic and laboratory mammals. II. Hybrid sterility. Br. Vet. J. 1976;132:68–75. doi: 10.1016/S0007-1935(17)34790-5. PubMed DOI
Jadwiszczak K.A., Banaszek A. Fertility in the male common shrews, Sorex araneus, from the extremely narrow hybrid zone between chromosome races. Mamm. Biol. 2006;71:257–267. doi: 10.1016/j.mambio.2006.02.004. DOI
Trujillo J.M., Ohno S., Jardine J.H., Atkins N.B. Spermatogenesis in a male hinny: Histological and cytological studies. J. Hered. 1969;60:79–84. doi: 10.1093/oxfordjournals.jhered.a107940. PubMed DOI
Chandley A.C., Jones R.C., Dott H.M., Allen W.R., Short R.V. Meiosis in interspecific equine hybrids. I. The male mule (Equus asinus X E. caballus) and hinny (E. caballus X E. asinus) Cytogenet. Cell Genet. 1974;13:330–341. doi: 10.1159/000130284. PubMed DOI
Gray A.P. Mammalian Hybrids. A Check-List with Bibliography. Commonwealth Agricultural Bureaux International; Buckinghamshire, UK: 1954.
Carranza J., Roldán M., de Fátima Carvalho Peroni E., Duarte J.M.B. Weak premating isolation between two parapatric brocket deer species. Mamm. Biol. 2017;87:17–26. doi: 10.1016/j.mambio.2017.02.009. DOI
Bonnet-Garnier A., Pinton A., Berland H.M., Khireddine B., Eggen A., Yerle M., Darré R., Ducos A. Sperm nuclei analysis of 1/29 Robertsonian translocation carrier bulls using fluorescence in situ hybridization. Cytogenet. Genome Res. 2006;112:241–247. doi: 10.1159/000089877. PubMed DOI
Barasc H., Mouney-Bonnet N., Peigney C., Calgaro A., Revel C., Mary N., Ducos A., Pinton A. Analysis of Meiotic Segregation Pattern and Interchromosomal Effects in a Bull Heterozygous for a 3/16 Robertsonian Translocation. Cytogenet. Genome Res. 2018;156:197–203. doi: 10.1159/000494289. PubMed DOI
Pinton A., Calgaro A., Bonnet N., Ferchaud S., Billoux S., Dudez A.M., Mary N., Massip K., Bonnet-Garnier A., Yerle M., et al. Influence of sex on the meiotic segregation of a t(13;17) Robertsonian translocation: A case study in the pig. Hum. Reprod. 2009;24:2034–2043. doi: 10.1093/humrep/dep118. PubMed DOI
Manieu C., González M., López-Fenner J., Page J., Ayarza E., Fernández-Donoso R., Berríos S. Aneuploidy in spermatids of Robertsonian (Rb) chromosome heterozygous mice. Chromosome Res. 2014;22:545–557. doi: 10.1007/s10577-014-9443-7. PubMed DOI PMC
Wiland E., Olszewska M., Woźniak T., Kurpisz M. How much, if anything, do we know about sperm chromosomes of Robertsonian translocation carriers? Cell. Mol. Life Sci. 2020 doi: 10.1007/s00018-020-03560-5. PubMed DOI PMC
Switoński M., Gustavsson I., Plöen L. The nature of the 1;29 translocation in cattle as revealed by synaptonemal complex analysis using electron microscopy. Cytogenet. Cell Genet. 1987;44:103–111. doi: 10.1159/000132353. PubMed DOI
Kingswood S.C., Kumamoto A.T., Sudman P.D., Fletcher K.C., Greenbaum I.F. Meiosis in chromosomally heteromorphic goitered gazelle, Gazella subgutturosa (Artiodactyla, Bovidae) Chromosome Res. 1994;2:37–46. doi: 10.1007/BF01539452. PubMed DOI
Moritz C. The Population Biology of Gehyra (Gekkonidae): Chromosome Change and Speciation. Syst. Biol. 1986;35:46–67. doi: 10.1093/sysbio/35.1.46. DOI
Long S.E. Tandem 1;30 translocation: A new structural abnormality in the horse (Equus caballus) Cytogenet. Genome Res. 1996;72:162–163. doi: 10.1159/000134176. PubMed DOI
Pillay N., Willan K., Meester J. Post-zygotic reproductive isolation in two populations of the African vlei rat Otomys irroratus. Acta Theriol. 1995;40:69–76. doi: 10.4098/AT.arch.95-8. DOI
White M., Blackith R., Blackith R., Cheney J. Cytogenetics of the viatica group morabine grasshoppers. I. The coastal species. Aust. J. Zool. 1967;15:263. doi: 10.1071/ZO9670263. DOI
Cursino M.S., Salviano M.B., Abril V.V., dos Santos Zanetti E., Duarte J.M.B. The role of chromosome variation in the speciation of the red brocket deer complex: The study of reproductive isolation in females. BMC Evol. Biol. 2014;14:40. doi: 10.1186/1471-2148-14-40. PubMed DOI PMC