Impact of Robertsonian translocation on meiosis and reproduction: an impala (Aepyceros melampus) model

. 2014 May ; 55 (2) : 249-58. [epub] 20140126

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24464333

The captive bred animal populations showing centric fusion polymorphism can serve as a model for analysis of the impact of the rearrangement on meiosis and reproduction. The synapsis of homologous chromosomes and the frequency and distribution of meiotic recombination events were studied in pachytene spermatocytes of captive bred male impalas (Aepyceros melampus) polymorphic for der(14;20) by immunofluorescent analysis and fluorescence in situ hybridization. The chromosomes 14 and 20 involved in the centric fusion were significantly shorter due to the loss of sat I repeats indicating ancient origin of the rearrangement. The fused chromosome and the normal acrocentric chromosomes 14 and 20 formed trivalent in pachynema which showed either protruding proximal ends of the acrocentric chromosomes or single axis with synaptic adjustment in the pericentromeric region. There was no significant difference in the number of recombination events per cell between the group of translocation heterozygotes and the animals with normal karyotype. A significant reduction in the number of recombination events was observed in the trivalent chromosomes compared to the normal chromosomes 14 and 20. The level of the recombination reduction was related to the trivalent configuration. The centric fusion der(14;20) was not apparently demonstrated by any spermatogenic defects or reproductive impairment in heterozygous impalas. However, the high incidence of the chromosomal polymorphism within the captive bred population shows the importance of cytogenetic examinations in captive breeding and wildlife conservation programs, especially in the case of reintroduction of the endangered species.

Zobrazit více v PubMed

J Mol Evol. 1996 Mar;42(3):337-49 PubMed

Int J Androl. 2012 Aug;35(4):541-9 PubMed

Proc Natl Acad Sci U S A. 1986 Nov;83(21):8245-8 PubMed

Genetics. 1993 Mar;133(3):649-67 PubMed

Cytogenet Genome Res. 2006;112(3-4):241-7 PubMed

Cytogenet Genome Res. 2008;120(1-2):106-11 PubMed

Theriogenology. 1997 Mar;47(4):815-23 PubMed

Hum Reprod. 2009 Aug;24(8):2034-43 PubMed

Chromosome Res. 2008;16(8):1107-18 PubMed

Eur J Hum Genet. 1998 Jul-Aug;6(4):350-8 PubMed

Cytogenet Genome Res. 2008;120(1-2):102-5 PubMed

Chromosome Res. 1994 Jan;2(1):37-46 PubMed

Chromosome Res. 2008;16(7):935-47 PubMed

Chromosome Res. 2008;16(5):709-19 PubMed

Cytogenet Genome Res. 2008;120(1-2):91-6 PubMed

Hum Reprod. 2006 Sep;21(9):2335-9 PubMed

Am J Hum Genet. 2004 Mar;74(3):521-31 PubMed

Cytogenet Genome Res. 2013;140(1):36-45 PubMed

Res Vet Sci. 1978 Jul;25(1):7-12 PubMed

Chromosoma. 1982;84(4):457-74 PubMed

Cytogenet Cell Genet. 2000;91(1-4):62-6 PubMed

Hum Reprod. 2008 Apr;23(4):988-95 PubMed

J Reprod Fertil. 1978 Sep;54(1):159-65 PubMed

Cytogenet Genome Res. 2008;120(1-2):147-9 PubMed

Hereditas. 1979;90(2):281-9 PubMed

Hum Mol Genet. 2008 Sep 1;17(17):2583-94 PubMed

Cytogenet Genome Res. 2005;111(3-4):291-6 PubMed

PLoS Genet. 2009 Aug;5(8):e1000625 PubMed

Theriogenology. 1991 Apr;35(4):705-14 PubMed

Chromosome Res. 2002;10(7):571-7 PubMed

Cytogenet Genome Res. 2008;120(1-2):112-6 PubMed

Nat Rev Genet. 2009 Mar;10(3):207-16 PubMed

J Assist Reprod Genet. 2013 Mar;30(3):391-405 PubMed

Genetics. 1999 Apr;151(4):1569-79 PubMed

Cytogenet Genome Res. 2012;136(3):188-98 PubMed

Cytogenet Cell Genet. 1993;63(3):151-5 PubMed

J Hered. 1994 May-Jun;85(3):204-10 PubMed

Am J Hum Genet. 2005 Oct;77(4):556-66 PubMed

Hum Reprod. 1991 Mar;6(3):376-81 PubMed

Chromosoma. 1968;25(2):152-71 PubMed

Zygote. 2005 Feb;13(1):31-4 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace