Effect of species-specific differences in chromosome morphology on chromatin compaction and the frequency and distribution of RAD51 and MLH1 foci in two bovid species: cattle (Bos taurus) and the common eland (Taurotragus oryx)
Jazyk angličtina Země Rakousko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26194101
DOI
10.1007/s00412-015-0533-x
PII: 10.1007/s00412-015-0533-x
Knihovny.cz E-zdroje
- Klíčová slova
- Immunofluorescence, MLH1, Meiosis, RAD51, Recombination, SCP3, Spermatocyte, Synaptonemal complex,
- MeSH
- antilopy genetika MeSH
- DNA metabolismus MeSH
- druhová specificita MeSH
- dvouřetězcové zlomy DNA MeSH
- enzymy opravy DNA genetika metabolismus MeSH
- meióza genetika MeSH
- regulace genové exprese MeSH
- rekombinace genetická MeSH
- rekombinasa Rad51 genetika metabolismus MeSH
- savčí chromozomy genetika metabolismus ultrastruktura MeSH
- sbalení DNA * MeSH
- skot MeSH
- synaptonemální komplex MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- enzymy opravy DNA MeSH
- rekombinasa Rad51 MeSH
Meiotic recombination between homologous chromosomes is crucial for their correct segregation into gametes and for generating diversity. We compared the frequency and distribution of MLH1 foci and RAD51 foci, synaptonemal complex (SC) length and DNA loop size in two related Bovidae species that share chromosome arm homology but show an extreme difference in their diploid chromosome number: cattle (Bos taurus, 2n = 60) and the common eland (Taurotragus oryx, 2nmale = 31). Compared to cattle, significantly fewer MLH1 foci per cell were observed in the common eland, which can be attributed to the lower number of initial double-strand breaks (DSBs) detected as RAD51 foci in leptonema. Despite the significantly shorter total autosomal SC length and longer DNA loop size of the common eland bi-armed chromosomes compared to those of bovine acrocentrics, the overall crossover density in the common eland was still lower than in cattle, probably due to the reduction in the number of MLH1 foci in the proximal regions of the bi-armed chromosomes. The formation of centric fusions during karyotype evolution of the common eland accompanied by meiotic chromatin compaction has greater implications in the reduction in the number of DSBs in leptonema than in the decrease of MLH1 foci number in pachynema.
Zobrazit více v PubMed
Genetics. 2008 Feb;178(2):621-32 PubMed
Mamm Genome. 2001 Apr;12(4):318-22 PubMed
Genetics. 1986 Nov;114(3):769-89 PubMed
PLoS One. 2014 Jun 11;9(6):e99123 PubMed
J Cell Biol. 1999 Oct 18;147(2):207-20 PubMed
Am J Hum Genet. 2004 Mar;74(3):521-31 PubMed
Chromosome Res. 2008;16(5):709-19 PubMed
Hum Mol Genet. 2008 Sep 1;17(17):2583-94 PubMed
Chromosome Res. 2013 Aug;21(5):523-33 PubMed
Am J Hum Genet. 2005 Oct;77(4):556-66 PubMed
Cell. 1992 May 1;69(3):457-70 PubMed
Cell. 1997 Feb 7;88(3):375-84 PubMed
Genetica. 2002;114(1):35-40 PubMed
J Insect Sci. 2013;13:43 PubMed
Chromosoma. 2011 Oct;120(5):521-30 PubMed
Cytogenet Genome Res. 2013;140(1):36-45 PubMed
Genetics. 1930 Jul;15(4):347-99 PubMed
Nat Genet. 2001 Mar;27(3):271-6 PubMed
Heredity (Edinb). 2015 Jan;114(1):56-64 PubMed
Chromosome Res. 2002;10(7):571-7 PubMed
Genetica. 2000;109(1-2):105-11 PubMed
Hereditas. 2001;134(3):245-54 PubMed
Ann N Y Acad Sci. 2012 Sep;1267:18-23 PubMed
PLoS One. 2013 Dec 20;8(12 ):e85075 PubMed
J Mol Evol. 1996 Mar;42(3):337-49 PubMed
Genetics. 2011 Mar;187(3):643-57 PubMed
Proc Biol Sci. 2014 Jul 7;281(1786):null PubMed
Am J Hum Genet. 2002 Dec;71(6):1353-68 PubMed
EMBO J. 1992 Dec;11(13):5091-100 PubMed
Proc Biol Sci. 2013 Sep 25;280(1771):20131945 PubMed
PLoS Genet. 2008 Sep 12;4(9):e1000186 PubMed
Cytogenet Cell Genet. 2000;91(1-4):128-33 PubMed
Genetics. 2002 Nov;162(3):1355-66 PubMed
Trends Genet. 2007 Nov;23(11):539-42 PubMed
PLoS Genet. 2014 Jan 30;10 (1):e1004125 PubMed
Cytogenet Cell Genet. 1999;86(1):74-80 PubMed
Hereditas. 1996;124(3):223-7 PubMed
J Appl Genet. 2014 May;55(2):249-58 PubMed
Trends Biochem Sci. 1998 Jul;23(7):247-51 PubMed
Chromosome Res. 2008;16(7):935-47 PubMed
Nat Cell Biol. 2012 Mar 04;14(4):424-30 PubMed
Dev Cell. 2008 Sep;15(3):401-15 PubMed
Cytogenet Genome Res. 2009;124(2):132-8 PubMed
Chromosoma. 2006 Jun;115(3):241-9 PubMed
Genetics. 1999 Apr;151(4):1569-79 PubMed
Mol Ecol. 2005 Aug;14(9):2621-35 PubMed
Eur J Hum Genet. 1998 Jul-Aug;6(4):350-8 PubMed
Proc Natl Acad Sci U S A. 2014 Sep 16;111(37):13415-20 PubMed
Heredity (Edinb). 2001 Sep;87(Pt 3):305-13 PubMed
Science. 2011 Feb 18;331(6019):916-20 PubMed
Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12592-7 PubMed
PLoS One. 2011 Apr 29;6(4):e19255 PubMed
J Hered. 1992 Jul-Aug;83(4):287-98 PubMed
Science. 2002 Jun 21;296(5576):2222-5 PubMed
J Cell Biol. 1996 Sep;134(5):1109-25 PubMed
Cytogenet Cell Genet. 2001;92(3-4):283-99 PubMed
Hum Mol Genet. 2006 Aug 1;15(15):2376-91 PubMed
Mol Hum Reprod. 2006 Feb;12(2):123-33 PubMed
Cytogenet Genome Res. 2004;107(3-4):208-15 PubMed
J Hered. 1994 May-Jun;85(3):204-10 PubMed
Trends Genet. 2003 Nov;19(11):623-8 PubMed
Meiotic behaviour of evolutionary sex-autosome translocations in Bovidae