Recombination correlates with synaptonemal complex length and chromatin loop size in bovids-insights into mammalian meiotic chromosomal organization

. 2017 Oct ; 126 (5) : 615-631. [epub] 20170118

Jazyk angličtina Země Rakousko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28101670

Grantová podpora
P502/11/0719 Grantová Agentura České Republiky (CZ)
ED1.1.00/02.0068 European Regional Development Fund
CGL-2010-20170 Secretaría de Estado de Investigación, Desarrollo e Innovación
CGL-2014-54317-P Secretaría de Estado de Investigación, Desarrollo e Innovación
BFU2015-71786-REDT Secretaría de Estado de Investigación, Desarrollo e Innovación
CEITEC 2020 project LQ1601 Ministry of Education, Youth and Sports of the Czech Republic

Odkazy

PubMed 28101670
DOI 10.1007/s00412-016-0624-3
PII: 10.1007/s00412-016-0624-3
Knihovny.cz E-zdroje

Homologous chromosomes exchange genetic information through recombination during meiosis, a process that increases genetic diversity, and is fundamental to sexual reproduction. In an attempt to shed light on the dynamics of mammalian recombination and its implications for genome organization, we have studied the recombination characteristics of 112 individuals belonging to 28 different species in the family Bovidae. In particular, we analyzed the distribution of RAD51 and MLH1 foci during the meiotic prophase I that serve, respectively, as proxies for double-strand breaks (DSBs) which form in early stages of meiosis and for crossovers. In addition, synaptonemal complex length and meiotic DNA loop size were estimated to explore how genome organization determines DSBs and crossover patterns. We show that although the number of meiotic DSBs per cell and recombination rates observed vary between individuals of the same species, these are correlated with diploid number as well as with synaptonemal complex and DNA loop sizes. Our results illustrate that genome packaging, DSB frequencies, and crossover rates tend to be correlated, while meiotic chromosomal axis length and DNA loop size are inversely correlated in mammals. Moreover, axis length, DSB frequency, and crossover frequencies all covary, suggesting that these correlations are established in the early stages of meiosis.

Zobrazit více v PubMed

Cytogenet Genome Res. 2015;146(3):211-21 PubMed

Cytogenet Genome Res. 2012;136(3):188-98 PubMed

Genes Dev. 2008 Feb 1;22(3):286-92 PubMed

Cytogenet Cell Genet. 1991;57(1):51-5 PubMed

Genome Dyn. 2009;5:128-36 PubMed

Mamm Genome. 2001 Apr;12(4):318-22 PubMed

Cell. 1994 Dec 16;79(6):1081-92 PubMed

BMC Genomics. 2010 Sep 28;11:524 PubMed

PLoS One. 2014 Jun 11;9(6):e99123 PubMed

Genes Dev. 2013 Apr 15;27(8):873-86 PubMed

Heredity (Edinb). 2011 Dec;107(6):496-508 PubMed

Annu Rev Genet. 1999;33:603-754 PubMed

Chromosome Res. 2016 Sep;24(3):325-38 PubMed

Cell. 2010 Apr 2;141(1):94-106 PubMed

Hum Genet. 2005 Feb;116(3):172-8 PubMed

Proc Natl Acad Sci U S A. 2006 Jun 20;103(25):9607-12 PubMed

Nature. 1995 Apr 6;374(6522):566-9 PubMed

Nat Genet. 1996 Jul;13(3):336-42 PubMed

Mol Cell. 2004 Aug 13;15(3):437-51 PubMed

Cell. 1997 Feb 7;88(3):375-84 PubMed

Annu Rev Genomics Hum Genet. 2010;11:45-64 PubMed

Syst Biol. 2011 Jul;60(4):439-50 PubMed

Mol Biol Evol. 2013 Apr;30(4):853-64 PubMed

Nature. 2011 Apr 21;472(7343):375-8 PubMed

Chromosoma. 2011 Oct;120(5):521-30 PubMed

Chromosome Res. 2007;15(5):565-77 PubMed

Chromosoma. 2016 Mar;125(1):137-49 PubMed

Cytogenet Genome Res. 2013;140(1):36-45 PubMed

Nat Genet. 2015 Jul;47(7):727-735 PubMed

Chromosome Res. 2002;10(7):571-7 PubMed

Anim Genet. 2012 Oct;43(5):620-3 PubMed

Chromosoma. 2006 Jun;115(3):175-94 PubMed

PLoS One. 2013 Dec 20;8(12 ):e85075 PubMed

Genetics. 2011 Mar;187(3):643-57 PubMed

Proc Biol Sci. 2014 Jul 7;281(1786):null PubMed

Genes Dev. 2000 May 1;14(9):1085-97 PubMed

Am J Hum Genet. 2002 Dec;71(6):1353-68 PubMed

Proc Biol Sci. 2013 Sep 25;280(1771):20131945 PubMed

Nat Rev Genet. 2013 Nov;14(11):794-806 PubMed

Trends Ecol Evol. 2016 Mar;31(3):226-36 PubMed

Nat Genet. 2002 Aug;31(4):385-90 PubMed

Cytogenet Genome Res. 2016;150(1):1-16 PubMed

Mol Phylogenet Evol. 1999 Nov;13(2):227-43 PubMed

Cytogenet Genome Res. 2012;137(2-4):194-207 PubMed

Mol Biol Evol. 2016 Apr;33(4):928-45 PubMed

J Appl Genet. 2014 May;55(2):249-58 PubMed

Chromosome Res. 2008;16(7):935-47 PubMed

Nat Cell Biol. 2012 Mar 04;14(4):424-30 PubMed

Cytogenet Genome Res. 2009;124(2):132-8 PubMed

Cell Cycle. 2015;14(3):305-14 PubMed

Genetics. 1999 Apr;151(4):1569-79 PubMed

Mol Ecol. 2005 Aug;14(9):2621-35 PubMed

FASEB J. 2000 Aug;14 (11):1539-47 PubMed

Cold Spring Harb Perspect Biol. 2015 May 18;7(6):null PubMed

Science. 2011 Feb 18;331(6019):916-20 PubMed

Nat Genet. 2005 Apr;37(4):429-34 PubMed

BMC Bioinformatics. 2011 Jan 20;12:27 PubMed

Nature. 2010 Oct 28;467(7319):1099-103 PubMed

Cold Spring Harb Perspect Biol. 2014 Oct 16;7(1):a016634 PubMed

Cold Spring Harb Perspect Biol. 2015 Oct 28;7(12 ):null PubMed

Cytogenet Genome Res. 2011;132(4):255-63 PubMed

Science. 2012 Apr 13;336(6078):193-8 PubMed

Science. 2010 Mar 5;327(5970):1254-8 PubMed

Genetics. 2002 Sep;162(1):297-306 PubMed

Science. 2002 Jun 21;296(5576):2222-5 PubMed

Annu Rev Genet. 2013;47:563-99 PubMed

Nat Rev Genet. 2001 Apr;2(4):280-91 PubMed

Science. 2005 Oct 14;310(5746):321-4 PubMed

Mol Hum Reprod. 2006 Feb;12(2):123-33 PubMed

Chromosoma. 2006 Jun;115(3):220-34 PubMed

Cytogenet Genome Res. 2004;107(3-4):208-15 PubMed

Trends Genet. 2003 Nov;19(11):623-8 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Meiotic chromosome dynamics and double strand break formation in reptiles

. 2022 ; 10 () : 1009776. [epub] 20221012

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...