Recombination correlates with synaptonemal complex length and chromatin loop size in bovids-insights into mammalian meiotic chromosomal organization
Jazyk angličtina Země Rakousko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
P502/11/0719
Grantová Agentura České Republiky (CZ)
ED1.1.00/02.0068
European Regional Development Fund
CGL-2010-20170
Secretaría de Estado de Investigación, Desarrollo e Innovación
CGL-2014-54317-P
Secretaría de Estado de Investigación, Desarrollo e Innovación
BFU2015-71786-REDT
Secretaría de Estado de Investigación, Desarrollo e Innovación
CEITEC 2020 project LQ1601
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
28101670
DOI
10.1007/s00412-016-0624-3
PII: 10.1007/s00412-016-0624-3
Knihovny.cz E-zdroje
- Klíčová slova
- Bovidae, Crossovers, MLH1, Meiosis, RAD51, Recombination,
- MeSH
- dvouřetězcové zlomy DNA MeSH
- meióza * MeSH
- MutL homolog 1 MeSH
- myši MeSH
- přežvýkavci genetika metabolismus MeSH
- rekombinace genetická * MeSH
- rekombinasa Rad51 MeSH
- savčí chromozomy metabolismus ultrastruktura MeSH
- synaptonemální komplex metabolismus ultrastruktura MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- MutL homolog 1 MeSH
- rekombinasa Rad51 MeSH
Homologous chromosomes exchange genetic information through recombination during meiosis, a process that increases genetic diversity, and is fundamental to sexual reproduction. In an attempt to shed light on the dynamics of mammalian recombination and its implications for genome organization, we have studied the recombination characteristics of 112 individuals belonging to 28 different species in the family Bovidae. In particular, we analyzed the distribution of RAD51 and MLH1 foci during the meiotic prophase I that serve, respectively, as proxies for double-strand breaks (DSBs) which form in early stages of meiosis and for crossovers. In addition, synaptonemal complex length and meiotic DNA loop size were estimated to explore how genome organization determines DSBs and crossover patterns. We show that although the number of meiotic DSBs per cell and recombination rates observed vary between individuals of the same species, these are correlated with diploid number as well as with synaptonemal complex and DNA loop sizes. Our results illustrate that genome packaging, DSB frequencies, and crossover rates tend to be correlated, while meiotic chromosomal axis length and DNA loop size are inversely correlated in mammals. Moreover, axis length, DSB frequency, and crossover frequencies all covary, suggesting that these correlations are established in the early stages of meiosis.
Zobrazit více v PubMed
Cytogenet Genome Res. 2015;146(3):211-21 PubMed
Cytogenet Genome Res. 2012;136(3):188-98 PubMed
Genes Dev. 2008 Feb 1;22(3):286-92 PubMed
Cytogenet Cell Genet. 1991;57(1):51-5 PubMed
Genome Dyn. 2009;5:128-36 PubMed
Mamm Genome. 2001 Apr;12(4):318-22 PubMed
Cell. 1994 Dec 16;79(6):1081-92 PubMed
BMC Genomics. 2010 Sep 28;11:524 PubMed
PLoS One. 2014 Jun 11;9(6):e99123 PubMed
Genes Dev. 2013 Apr 15;27(8):873-86 PubMed
Heredity (Edinb). 2011 Dec;107(6):496-508 PubMed
Annu Rev Genet. 1999;33:603-754 PubMed
Chromosome Res. 2016 Sep;24(3):325-38 PubMed
Cell. 2010 Apr 2;141(1):94-106 PubMed
Hum Genet. 2005 Feb;116(3):172-8 PubMed
Proc Natl Acad Sci U S A. 2006 Jun 20;103(25):9607-12 PubMed
Nature. 1995 Apr 6;374(6522):566-9 PubMed
Nat Genet. 1996 Jul;13(3):336-42 PubMed
Mol Cell. 2004 Aug 13;15(3):437-51 PubMed
Cell. 1997 Feb 7;88(3):375-84 PubMed
Annu Rev Genomics Hum Genet. 2010;11:45-64 PubMed
Syst Biol. 2011 Jul;60(4):439-50 PubMed
Mol Biol Evol. 2013 Apr;30(4):853-64 PubMed
Nature. 2011 Apr 21;472(7343):375-8 PubMed
Chromosoma. 2011 Oct;120(5):521-30 PubMed
Chromosome Res. 2007;15(5):565-77 PubMed
Chromosoma. 2016 Mar;125(1):137-49 PubMed
Cytogenet Genome Res. 2013;140(1):36-45 PubMed
Nat Genet. 2015 Jul;47(7):727-735 PubMed
Chromosome Res. 2002;10(7):571-7 PubMed
Anim Genet. 2012 Oct;43(5):620-3 PubMed
Chromosoma. 2006 Jun;115(3):175-94 PubMed
PLoS One. 2013 Dec 20;8(12 ):e85075 PubMed
Genetics. 2011 Mar;187(3):643-57 PubMed
Proc Biol Sci. 2014 Jul 7;281(1786):null PubMed
Genes Dev. 2000 May 1;14(9):1085-97 PubMed
Am J Hum Genet. 2002 Dec;71(6):1353-68 PubMed
Proc Biol Sci. 2013 Sep 25;280(1771):20131945 PubMed
Nat Rev Genet. 2013 Nov;14(11):794-806 PubMed
Trends Ecol Evol. 2016 Mar;31(3):226-36 PubMed
Nat Genet. 2002 Aug;31(4):385-90 PubMed
Cytogenet Genome Res. 2016;150(1):1-16 PubMed
Mol Phylogenet Evol. 1999 Nov;13(2):227-43 PubMed
Cytogenet Genome Res. 2012;137(2-4):194-207 PubMed
Mol Biol Evol. 2016 Apr;33(4):928-45 PubMed
J Appl Genet. 2014 May;55(2):249-58 PubMed
Chromosome Res. 2008;16(7):935-47 PubMed
Nat Cell Biol. 2012 Mar 04;14(4):424-30 PubMed
Cytogenet Genome Res. 2009;124(2):132-8 PubMed
Cell Cycle. 2015;14(3):305-14 PubMed
Genetics. 1999 Apr;151(4):1569-79 PubMed
Mol Ecol. 2005 Aug;14(9):2621-35 PubMed
FASEB J. 2000 Aug;14 (11):1539-47 PubMed
Cold Spring Harb Perspect Biol. 2015 May 18;7(6):null PubMed
Science. 2011 Feb 18;331(6019):916-20 PubMed
Nat Genet. 2005 Apr;37(4):429-34 PubMed
BMC Bioinformatics. 2011 Jan 20;12:27 PubMed
Nature. 2010 Oct 28;467(7319):1099-103 PubMed
Cold Spring Harb Perspect Biol. 2014 Oct 16;7(1):a016634 PubMed
Cold Spring Harb Perspect Biol. 2015 Oct 28;7(12 ):null PubMed
Cytogenet Genome Res. 2011;132(4):255-63 PubMed
Science. 2012 Apr 13;336(6078):193-8 PubMed
Science. 2010 Mar 5;327(5970):1254-8 PubMed
Genetics. 2002 Sep;162(1):297-306 PubMed
Science. 2002 Jun 21;296(5576):2222-5 PubMed
Annu Rev Genet. 2013;47:563-99 PubMed
Nat Rev Genet. 2001 Apr;2(4):280-91 PubMed
Science. 2005 Oct 14;310(5746):321-4 PubMed
Mol Hum Reprod. 2006 Feb;12(2):123-33 PubMed
Chromosoma. 2006 Jun;115(3):220-34 PubMed
Cytogenet Genome Res. 2004;107(3-4):208-15 PubMed
Trends Genet. 2003 Nov;19(11):623-8 PubMed
Meiotic chromosome dynamics and double strand break formation in reptiles