Recombination plasticity in response to temperature variation in reptiles
Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
40758762
PubMed Central
PMC12342296
DOI
10.1371/journal.pgen.1011772
PII: PGENETICS-D-24-01507
Knihovny.cz E-resources
- MeSH
- Crossing Over, Genetic MeSH
- DNA Breaks, Double-Stranded MeSH
- Lizards * genetics MeSH
- Meiosis genetics MeSH
- Meiotic Prophase I genetics MeSH
- Recombination, Genetic * genetics MeSH
- Spermatocytes metabolism MeSH
- Temperature MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
The survival of species depends on their ability to adapt to environmental changes. While organisms are known to activate common transcriptional pathways in response to temperature variations, the impact of temperature on recombination, a key source of genetic variability, remains largely unexplored. Previous studies in model species have shown that the frequency of recombination during meiotic prophase I can be influenced by extreme temperatures. Yet, it remains unclear whether this effect is also conserved in non-model vertebrates. In this study, we investigated the effect of temperature on recombination in the Guibé's ground gecko (Paroedura guibeae), an ectotherm species. We analyzed the formation of double-strand breaks (DSBs) and crossovers (COs) by immunolocalizing the meiotic proteins involved in these processes. Furthermore, we determined the frequency and chromosomal location of COs and the levels of CO interference (COI). Our findings show the presence of hyper-COs spermatocytes in individuals exposed to both high and low temperatures. Notably, this significant increase in COs was associated with a decrease in chromosome axis lengths and elevated levels of meiotic DSBs in later stages of prophase I. In conclusion, our results provide new insights into the effects of environmental temperatures on meiotic recombination in ectothermic species, underscoring the intricate interplay between environmental factors and genetic processes.
See more in PubMed
Mizoguchi BA, Valenzuela N. Ecotoxicological Perspectives of Sex Determination. Sex Dev. 2016;10(1):45–57. doi: 10.1159/000444770 PubMed DOI
Topping NE, Valenzuela N. Turtle Nest-Site Choice, Anthropogenic Challenges, and Evolutionary Potential for Adaptation. Front Ecol Evol. 2021;9:1–12. doi: 10.3389/fevo.2021.808621 DOI
Waters PD, Graves JAM, Whiteley SL, Georges A, Ruiz-Herrera A. Three dimensions of thermolabile sex determination. Bioessays. 2023;45(2):e2200123. doi: 10.1002/bies.202200123 PubMed DOI
Valenzuela N, Lance VA. Temperature-dependent sex determination in vertebrates. Smithsonian Institution; 2004.
Bomblies K, Higgins JD, Yant L. Meiosis evolves: adaptation to external and internal environments. New Phytol. 2015;208(2):306–23. doi: 10.1111/nph.13499 PubMed DOI
Henderson IR, Bomblies K. Evolution and Plasticity of Genome-Wide Meiotic Recombination Rates. Annu Rev Genet. 2021;55:23–43. doi: 10.1146/annurev-genet-021721-033821 PubMed DOI
Lloyd A, Morgan C, H Franklin FC, Bomblies K. Plasticity of Meiotic Recombination Rates in Response to Temperature in Arabidopsis. Genetics. 2018;208(4):1409–20. doi: 10.1534/genetics.117.300588 PubMed DOI PMC
Wang S, Veller C, Sun F, Ruiz-Herrera A, Shang Y, Liu H, et al. Per-Nucleus Crossover Covariation and Implications for Evolution. Cell. 2019;177(2):326-338.e16. doi: 10.1016/j.cell.2019.02.021 PubMed DOI PMC
Keeney S, Giroux CN, Kleckner N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell. 1997;88(3):375–84. doi: 10.1016/s0092-8674(00)81876-0 PubMed DOI
Romanienko PJ, Camerini-Otero RD. The mouse Spo11 gene is required for meiotic chromosome synapsis. Mol Cell. 2000;6(5):975–87. doi: 10.1016/s1097-2765(00)00097-6 PubMed DOI
Zickler D, Kleckner N. Meiosis: Dances Between Homologs. Annu Rev Genet. 2023;57:1–63. doi: 10.1146/annurev-genet-061323-044915 PubMed DOI
Baker SM, Plug AW, Prolla TA, Bronner CE, Harris AC, Yao X, et al. Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nat Genet. 1996;13(3):336–42. doi: 10.1038/ng0796-336 PubMed DOI
Kneitz B, Cohen PE, Avdievich E, Zhu L, Kane MF, Hou H Jr, et al. MutS homolog 4 localization to meiotic chromosomes is required for chromosome pairing during meiosis in male and female mice. Genes Dev. 2000;14(9):1085–97. doi: 10.1101/gad.14.9.1085 PubMed DOI PMC
Santucci‐Darmanin S, Walpita D, Lespinasse F, Desnuelle C, Ashley T, Paquis‐Flucklinger V. MSH4 acts in conjunction with MLH1 during mammalian meiosis. FASEB J. 2000;14(11):1539–47. doi: 10.1096/fj.99-0851com PubMed DOI
Lipkin SM, Moens PB, Wang V, Lenzi M, Shanmugarajah D, Gilgeous A, et al. Meiotic arrest and aneuploidy in MLH3-deficient mice. Nat Genet. 2002;31(4):385–90. doi: 10.1038/ng931 PubMed DOI
Snowden T, Acharya S, Butz C, Berardini M, Fishel R. hMSH4-hMSH5 recognizes Holliday Junctions and forms a meiosis-specific sliding clamp that embraces homologous chromosomes. Mol Cell. 2004;15(3):437–51. doi: 10.1016/j.molcel.2004.06.040 PubMed DOI
Youds JL, Mets DG, McIlwraith MJ, Martin JS, Ward JD, ONeil NJ, et al. RTEL-1 enforces meiotic crossover interference and homeostasis. Science. 2010;327(5970):1254–8. doi: 10.1126/science.1183112 PubMed DOI PMC
Cole F, Kauppi L, Lange J, Roig I, Wang R, Keeney S, et al. Homeostatic control of recombination is implemented progressively in mouse meiosis. Nat Cell Biol. 2012;14(4):424–30. doi: 10.1038/ncb2451 PubMed DOI PMC
Baudat F, de Massy B. Regulating double-stranded DNA break repair towards crossover or non-crossover during mammalian meiosis. Chromosome Res. 2007;15(5):565–77. doi: 10.1007/s10577-007-1140-3 PubMed DOI
Svetlanov A, Baudat F, Cohen PE, de Massy B. Distinct functions of MLH3 at recombination hot spots in the mouse. Genetics. 2008;178(4):1937–45. doi: 10.1534/genetics.107.084798 PubMed DOI PMC
Qu W, Liu C, Xu Y-T, Xu Y-M, Luo M-C. The formation and repair of DNA double-strand breaks in mammalian meiosis. Asian J Androl. 2021;23(6):572–9. doi: 10.4103/aja202191 PubMed DOI PMC
Baudat F, Buard J, Grey C, Fledel-Alon A, Ober C, Przeworski M, et al. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science. 2010;327(5967):836–40. doi: 10.1126/science.1183439 PubMed DOI PMC
Li J, Zhang MQ, Zhang X. A new method for detecting human recombination hotspots and its applications to the HapMap ENCODE data. Am J Hum Genet. 2006;79(4):628–39. doi: 10.1086/508066 PubMed DOI PMC
Minin VN, Dorman KS, Fang F, Suchard MA. Phylogenetic mapping of recombination hotspots in human immunodeficiency virus via spatially smoothed change-point processes. Genetics. 2007;175(4):1773–85. doi: 10.1534/genetics.106.066258 PubMed DOI PMC
Paul P, Nag D, Chakraborty S. Recombination hotspots: Models and tools for detection. DNA Repair. 2016;40:47–56. doi: 10.1016/j.dnarep.2016.02.005 PubMed DOI
Myers S, Bottolo L, Freeman C, McVean G, Donnelly P. A fine-scale map of recombination rates and hotspots across the human genome. Science. 2005;310(5746):321–4. doi: 10.1126/science.1117196 PubMed DOI
Lange J, Yamada S, Tischfield SE, Pan J, Kim S, Zhu X, et al. The Landscape of Mouse Meiotic Double-Strand Break Formation, Processing, and Repair. Cell. 2016;167(3):695-708.e16. doi: 10.1016/j.cell.2016.09.035 PubMed DOI PMC
Farré M, Micheletti D, Ruiz-Herrera A. Recombination rates and genomic shuffling in human and chimpanzee-a new twist in the chromosomal speciation theory. Mol Biol Evol. 2013;30(4):853–64. doi: 10.1093/molbev/mss272 PubMed DOI PMC
Segura J, Ferretti L, Ramos-Onsins S, Capilla L, Farré M, Reis F, et al. Evolution of recombination in eutherian mammals: insights into mechanisms that affect recombination rates and crossover interference. Proc Biol Sci. 2013;280(1771):20131945. doi: 10.1098/rspb.2013.1945 PubMed DOI PMC
Ullastres A, Farré M, Capilla L, Ruiz-Herrera A. Unraveling the effect of genomic structural changes in the rhesus macaque - implications for the adaptive role of inversions. BMC Genomics. 2014;15(1):530. doi: 10.1186/1471-2164-15-530 PubMed DOI PMC
Ruiz-Herrera A, Vozdova M, Fernández J, Sebestova H, Capilla L, Frohlich J, et al. Recombination correlates with synaptonemal complex length and chromatin loop size in bovids-insights into mammalian meiotic chromosomal organization. Chromosoma. 2017;126(5):615–31. doi: 10.1007/s00412-016-0624-3 PubMed DOI
Vara C, Paytuví-Gallart A, Cuartero Y, Álvarez-González L, Marín-Gual L, Garcia F, et al. The impact of chromosomal fusions on 3D genome folding and recombination in the germ line. Nat Commun. 2021;12(1):2981. doi: 10.1038/s41467-021-23270-1 PubMed DOI PMC
Marín-Gual L, González-Rodelas L, M Garcias M, Kratochvíl L, Valenzuela N, Georges A, et al. Meiotic chromosome dynamics and double strand break formation in reptiles. Front Cell Dev Biol. 2022;10:1009776. doi: 10.3389/fcell.2022.1009776 PubMed DOI PMC
Marín-García C, Álvarez-González L, Marín-Gual L, Casillas S, Picón J, Yam K, et al. Multiple Genomic Landscapes of Recombination and Genomic Divergence in Wild Populations of House Mice-The Role of Chromosomal Fusions and Prdm9. Mol Biol Evol. 2024;41(4):msae063. doi: 10.1093/molbev/msae063 PubMed DOI PMC
Hollingsworth NM, Brill SJ, Brook S, Brook S, York N. The Mus81 solution to resolution: generating meiotic crossovers without Holliday junctions. Genes Dev. 2004;18(2):117–25. doi: 10.1101/gad.1165904 PubMed DOI PMC
Phadnis N, Hyppa RW, Smith GR. New and old ways to control meiotic recombination. Trends Genet. 2011;27(10):411–21. doi: 10.1016/j.tig.2011.06.007 PubMed DOI PMC
Berchowitz LE, Copenhaver GP. Genetic interference: don’t stand so close to me. Curr Genomics. 2010;11(2):91–102. doi: 10.2174/138920210790886835 PubMed DOI PMC
Hillers KJ, Villeneuve AM. Chromosome-wide control of meiotic crossing over in C. elegans. Curr Biol. 2003;13(18):1641–7. doi: 10.1016/j.cub.2003.08.026 PubMed DOI
Lambie EJ, Roeder GS. Repression of meiotic crossing over by a centromere (CEN3) in Saccharomyces cerevisiae. Genetics. 1986;114(3):769–89. doi: 10.1093/genetics/114.3.769 PubMed DOI PMC
Koehler KE, Hawley RS, Sherman S, Hassold T. Recombination and nondisjunction in humans and flies. Hum Mol Genet. 1996;5 Spec No:1495–504. doi: 10.1093/hmg/5.supplement_1.1495 PubMed DOI
Hassold T, Abruzzo M, Adkins K, Griffin D, Merrill M, Millie E, et al. Human aneuploidy: Incidence, origin, and etiology. Environ Mol Mutagen. 1996;28(3):167–75. doi: 10.1002/(sici)1098-2280(1996)28:3<167::aid-em2>3.0.co;2-b PubMed DOI
Girard C, Zwicker D, Mercier R. The regulation of meiotic crossover distribution: a coarse solution to a century-old mystery? Biochem Soc Trans. 2023;51(3):1179–90. doi: 10.1042/BST20221329 PubMed DOI PMC
Plough HH. The effect of temperature on crossingover in Drosophila. J Exp Zool. 1917;24(2):147–209. doi: 10.1002/jez.1400240202 DOI
Smith HF. Influence of Temperature on Crossing-over in Drosophila. Nature. 1936;138(3486):329–30. doi: 10.1038/138329b0 DOI
Dowrick GJ. The influence of temperature on meiosis. Heredity. 1957;11(1):37–49. doi: 10.1038/hdy.1957.4 DOI
Wilson JY. Chiasma frequency in relation to temperature. Genetica. 1959;29(1):290–303. doi: 10.1007/bf01535715 DOI
Rybnikov SR, Frenkel Z, Hübner S, Weissman DB, Korol AB. Modeling the evolution of recombination plasticity: A prospective review. Bioessays. 2023;45(8):e2200237. doi: 10.1002/bies.202200237 PubMed DOI
Warner DA. Sex Determination in Reptiles. Hormones and Reproduction of Vertebrates. 2011. doi: 10.1016/b978-0-12-374932-1.00025-1 DOI
Ezaz T, Sarre SD, O’Meally D, Graves JAM, Georges A. Sex chromosome evolution in lizards: independent origins and rapid transitions. Cytogenet Genome Res. 2009;127(2–4):249–60. doi: 10.1159/000300507 PubMed DOI
King M, Hayman D. Seasonal variation of chiasma frequency in Phyllodactylus marmoratus (Gray) (Gekkonidae - Reptilia). Chromosoma. 1978;69(2):131–54. doi: 10.1007/bf00329913 PubMed DOI
Starostová Z, Kubicka L, Kratochvíl L. Macroevolutionary pattern of sexual size dimorphism in geckos corresponds to intraspecific temperature-induced variation. J Evol Biol. 2010;23(4):670–7. doi: 10.1111/j.1420-9101.2010.01933.x PubMed DOI
Mezzasalma M, Macirella R, Odierna G, Brunelli E. Karyotype Diversification and Chromosome Rearrangements in Squamate Reptiles. Genes. 2024;15(3):371. doi: 10.3390/genes15030371 PubMed DOI PMC
Zhang L, Liang Z, Hutchinson J, Kleckner N. Crossover patterning by the beam-film model: analysis and implications. PLoS Genet. 2014;10(1):e1004042. doi: 10.1371/journal.pgen.1004042 PubMed DOI PMC
Wang S, Zickler D, Kleckner N, Zhang L. Meiotic crossover patterns: obligatory crossover, interference and homeostasis in a single process. Cell Cycle. 2015;14(3):305–14. doi: 10.4161/15384101.2014.991185 PubMed DOI PMC
Lynn A, Ashley T, Hassold T. Variation in human meiotic recombination. Annu Rev Genomics Hum Genet. 2004;5:317–49. doi: 10.1146/annurev.genom.4.070802.110217 PubMed DOI
de Boer E, Stam P, Dietrich AJJ, Pastink A, Heyting C. Two levels of interference in mouse meiotic recombination. Proc Natl Acad Sci U S A. 2006;103(25):9607–12. doi: 10.1073/pnas.0600418103 PubMed DOI PMC
Jones GH, Franklin FCH. Meiotic crossing-over: obligation and interference. Cell. 2006;126(2):246–8. doi: 10.1016/j.cell.2006.07.010 PubMed DOI
Bishop DK. RecA homologs Dmc1 and Rad51 interact to form multiple nuclear complexes prior to meiotic chromosome synapsis. Cell. 1994;79(6):1081–92. doi: 10.1016/0092-8674(94)90038-8 PubMed DOI
Chan Y-L, Zhang A, Weissman BP, Bishop DK. RPA resolves conflicting activities of accessory proteins during reconstitution of Dmc1-mediated meiotic recombination. Nucleic Acids Res. 2019;47(2):747–61. doi: 10.1093/nar/gky1160 PubMed DOI PMC
Yoon S, Choi E-H, Kim J-W, Kim KP. Structured illumination microscopy imaging reveals localization of replication protein A between chromosome lateral elements during mammalian meiosis. Exp Mol Med. 2018;50(8):1–12. doi: 10.1038/s12276-018-0139-5 PubMed DOI PMC
Capilla L, Sánchez-Guillén RA, Farré M, Paytuví-Gallart A, Malinverni R, Ventura J, et al. Mammalian Comparative Genomics Reveals Genetic and Epigenetic Features Associated with Genome Reshuffling in Rodentia. Genome Biol Evol. 2016;8(12):3703–17. doi: 10.1093/gbe/evw276 PubMed DOI PMC
Vara C, Ruiz-Herrera A. Unpacking chromatin remodelling in germ cells: implications for development and evolution. Trends Genet. 2022;38(5):422–5. doi: 10.1016/j.tig.2021.10.007 PubMed DOI
Winbush A, Singh ND. Variation in fine-scale recombination rate in temperature-evolved Drosophila melanogaster populations in response to selection. G3. 2022;12(10):jkac208. doi: 10.1093/g3journal/jkac208 PubMed DOI PMC
Tan Y, Tan T, Zhang S, Li B, Chen B, Zhou X, et al. Temperature regulates negative supercoils to modulate meiotic crossovers and chromosome organization. Sci China Life Sci. 2024;67(11):2426–43. doi: 10.1007/s11427-024-2671-1 PubMed DOI
de Boer E, Heyting C. The diverse roles of transverse filaments of synaptonemal complexes in meiosis. Chromosoma. 2006;115(3):220–34. doi: 10.1007/s00412-006-0057-5 PubMed DOI
Kleckner N, Storlazzi A, Zickler D. Coordinate variation in meiotic pachytene SC length and total crossover/chiasma frequency under conditions of constant DNA length. Trends Genet. 2003;19(11):623–8. doi: 10.1016/j.tig.2003.09.004 PubMed DOI
Zickler D, Kleckner N. Meiotic chromosomes: integrating structure and function. Annu Rev Genet. 1999;33:603–754. doi: 10.1146/annurev.genet.33.1.603 PubMed DOI
Storlazzi A, Gargano S, Ruprich-Robert G, Falque M, David M, Kleckner N, et al. Recombination proteins mediate meiotic spatial chromosome organization and pairing. Cell. 2010;141(1):94–106. doi: 10.1016/j.cell.2010.02.041 PubMed DOI PMC
Zickler D, Kleckner N. Recombination, Pairing, and Synapsis of Homologs during Meiosis. Cold Spring Harb Perspect Biol. 2015;7(6):a016626. doi: 10.1101/cshperspect.a016626 PubMed DOI PMC
Wang Y, Zhai B, Tan T, Yang X, Zhang J, Song M, et al. ESA1 regulates meiotic chromosome axis and crossover frequency via acetylating histone H4. Nucleic Acids Res. 2021;49(16):9353–73. doi: 10.1093/nar/gkab722 PubMed DOI PMC
Stapley J, Feulner PGD, Johnston SE, Santure AW, Smadja CM. Variation in recombination frequency and distribution across eukaryotes: patterns and processes. Philos Trans R Soc Lond B Biol Sci. 2017;372(1736):20160455. doi: 10.1098/rstb.2016.0455 PubMed DOI PMC
Falque M, Mercier R, Mézard C, de Vienne D, Martin OC. Patterns of recombination and MLH1 foci density along mouse chromosomes: modeling effects of interference and obligate chiasma. Genetics. 2007;176(3):1453–67. doi: 10.1534/genetics.106.070235 PubMed DOI PMC
Marín-Gual L, González-Rodelas L, Pujol G, Vara C, Martín-Ruiz M, Berríos S, et al. Strategies for meiotic sex chromosome dynamics and telomeric elongation in Marsupials. PLoS Genet. 2022;18(2):e1010040. doi: 10.1371/journal.pgen.1010040 PubMed DOI PMC
Kumar R, De Massy B. Initiation of meiotic recombination in mammals. Genes. 2010;1(3):521–49. doi: 10.3390/genes1030521 PubMed DOI PMC
Morgan CH, Zhang H, Bomblies K. Are the effects of elevated temperature on meiotic recombination and thermotolerance linked via the axis and synaptonemal complex? Philos Trans R Soc Lond B Biol Sci. 2017;372(1736):20160470. doi: 10.1098/rstb.2016.0470 PubMed DOI PMC
De Storme N, Geelen D. The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms. Plant Cell Environ. 2014;37(1):1–18. doi: 10.1111/pce.12142 PubMed DOI PMC
White MA, Wang S, Zhang L, Kleckner N. Quantitative Modeling and Automated Analysis of Meiotic Recombination. Methods Mol Biol. 2017;1471:305–23. doi: 10.1007/978-1-4939-6340-9_18 PubMed DOI PMC
Kleckner N, Zickler D, Jones GH, Dekker J, Padmore R, Henle J, et al. A mechanical basis for chromosome function. Proc Natl Acad Sci U S A. 2004;101(34):12592–7. doi: 10.1073/pnas.0402724101 PubMed DOI PMC
Garcia-Cruz R, Pacheco S, Brieño MA, Steinberg ER, Mudry MD, Ruiz-Herrera A, et al. A comparative study of the recombination pattern in three species of Platyrrhini monkeys (Primates). Chromosoma. 2011;120(5):521–30. doi: 10.1007/s00412-011-0329-6 PubMed DOI
Reeves A. MicroMeasure: A new computer program for the collection and analysis of cytogenetic data. Genome. 2001;44(3):439–43. doi: 10.1139/g01-037 PubMed DOI
McPeek MS, Speed TP. Modeling interference in genetic recombination. Selected Work Terry Speed. 2012;1044: 406–19. doi: 10.1007/978-1-4614-1347-9_10 DOI
Delignette-Muller ML, Dutang C. fitdistrplus: An R Package for Fitting Distributions. J Stat Soft. 2015;64(4):1–34. doi: 10.18637/jss.v064.i04 DOI
Wang S, Hassold T, Hunt P, White MA, Zickler D, Kleckner N, et al. Inefficient Crossover Maturation Underlies Elevated Aneuploidy in Human Female Meiosis. Cell. 2017;168(6):977-989.e17. doi: 10.1016/j.cell.2017.02.002 PubMed DOI PMC