Meiotic chromosome dynamics and double strand break formation in reptiles
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36313577
PubMed Central
PMC9597255
DOI
10.3389/fcell.2022.1009776
PII: 1009776
Knihovny.cz E-zdroje
- Klíčová slova
- DSBs, bouquet, gametogenesis, meiosis, micro-chromosomes, recombination, reptile,
- Publikační typ
- časopisecké články MeSH
During meiotic prophase I, tightly regulated processes take place, from pairing and synapsis of homologous chromosomes to recombination, which are essential for the generation of genetically variable haploid gametes. These processes have canonical meiotic features conserved across different phylogenetic groups. However, the dynamics of meiotic prophase I in non-mammalian vertebrates are poorly known. Here, we compare four species from Sauropsida to understand the regulation of meiotic prophase I in reptiles: the Australian central bearded dragon (Pogona vitticeps), two geckos (Paroedura picta and Coleonyx variegatus) and the painted turtle (Chrysemys picta). We first performed a histological characterization of the spermatogenesis process in both the bearded dragon and the painted turtle. We then analyzed prophase I dynamics, including chromosome pairing, synapsis and the formation of double strand breaks (DSBs). We show that meiosis progression is highly conserved in reptiles with telomeres clustering forming the bouquet, which we propose promotes homologous pairing and synapsis, along with facilitating the early pairing of micro-chromosomes during prophase I (i.e., early zygotene). Moreover, we detected low levels of meiotic DSB formation in all taxa. Our results provide new insights into reptile meiosis.
Department of Ecology Evolution and Organismal Biology Iowa State University Ames IA United States
Department of Ecology Faculty of Science Charles University Prague Czech Republic
Institute for Applied Ecology University of Canberra Canberra ACT Australia
School of Biotechnology and Biomolecular Sciences Faculty of Science UNSW Sydney NSW Australia
Zobrazit více v PubMed
Alavattam K. G., Abe H., Sakashita A., Namekawa S. H. (2018). Chromosome spread analyses of meiotic sex chromosome inactivation. Methods Mol. Biol. 1861, 113–129. 10.1007/978-1-4939-8766-5_10 PubMed DOI PMC
Alavattam K. G., Maezawa S., Sakashita A., Khoury H., Barski A., Kaplan N., et al. (2019). Attenuated chromatin compartmentalization in meiosis and its maturation in sperm development. Nat. Struct. Mol. Biol. 26 (3), 175–184. 10.1038/s41594-019-0189-y PubMed DOI PMC
Amey A. P., Whittier J. M. (2000a). Seasonal patterns of plasma steroid hormones in males and females of the bearded dragon lizard, Pogona barbata . Gen. Comp. Endocrinol. 117 (3), 335–342. 10.1006/gcen.2000.7426 PubMed DOI
Amey A. P., Whittier J. M. (2000b). The annual reproductive cycle and sperm storage in the bearded dragon, Pogona barbata . Aust. J. Zool. 48 (4), 411–419. 10.1071/ZO00031 DOI
Badenhorst D., Hillier L. W., Literman R., Montiel E. E., Radhakrishnan S., Shen Y., et al. (2015). Physical mapping and refinement of the painted turtle genome (Chrysemys picta) inform amniote genome evolution and challenge turtle-bird chromosomal conservation. Genome Biol. Evol. 7 (7), 2038–2050. 10.1093/gbe/evv119 PubMed DOI PMC
Baker C. L., Kajita S., Walker M., Saxl R. L., Raghupathy N., Choi K., et al. (2015). PRDM9 drives evolutionary erosion of hotspots in Mus musculus through haplotype-specific initiation of meiotic recombination. PLoS Genet. 11 (1), e1004916. 10.1371/journal.pgen.1004916 PubMed DOI PMC
Barlow A. L., Hultén M. A. (1998). Crossing over analysis at pachytene in man. Eur. J. Hum. Genet. 6 (4), 350–358. 10.1038/sj.ejhg.5200200 PubMed DOI
Baudat F., Buard J., Grey C., de Massy B. (2010). Prdm9, a key control of mammalian recombination hotspots. Med. Sci. 26 (5), 468–470. 10.1051/medsci/2010265468 PubMed DOI
Bista B., Valenzuela N. (2020). Turtle insights into the evolution of the reptilian karyotype and the genomic architecture of sex determination. Genes 11 (4), 416. 10.3390/genes11040416 PubMed DOI PMC
Blokhina Y. P., Nguyen A. D., Draper B. W., Burgess S. M. (2019). The telomere bouquet is a hub where meiotic double-strand breaks, synapsis, and stable homolog juxtaposition are coordinated in the zebrafish, Danio rerio . PLoS Genet. 15 (1), e1007730. 10.1371/journal.pgen.1007730 PubMed DOI PMC
Bolcun-Filas E., Handel M. A. (2018). Meiosis: The chromosomal foundation of reproduction. Biol. Reprod. 99 (1), 112–126. 10.1093/biolre/ioy021 PubMed DOI
Brick K., Smagulova F., Khil P., Camerini-Otero R. D., Petukhova G. v. (2012). Genetic recombination is directed away from functional genomic elements in mice. Nature 485 (7400), 642–645. 10.1038/nature11089 PubMed DOI PMC
Buard J., Rivals E., Dunoyer De Segonzac D., Garres C., Caminade P., de Massy B., et al. (2014). Diversity of Prdm9 zinc finger array in wild mice unravels new facets of the evolutionary turnover of this coding minisatellite. PLoS ONE 9 (1), e85021. 10.1371/journal.pone.0085021 PubMed DOI PMC
Capilla L., Medarde N., Alemany-Schmidt A., Oliver-Bonet M., Ventura J., Ruiz-Herrera A. (2014). Genetic recombination variation in wild robertsonian mice: On the role of chromosomal fusions and Prdm9 allelic background. Proc. Biol. Sci. 281 (1786), 20140297. 10.1098/rspb.2014.0297 PubMed DOI PMC
Cavassim M. I. A., Baker Z., Hoge C., Schierup M. H., Schumer M., Przeworski M. (2022). PRDM9 losses in vertebrates are coupled to those of paralogs ZCWPW1 and ZCWPW2. Proc. Natl. Acad. Sci. U. S. A. 119 (9), 21144011199–e2114401211. 10.1073/pnas.2114401119 PubMed DOI PMC
del Priore L., Pigozzi M. I. (2020). MLH1 focus mapping in the Guinea fowl (Numida meleagris) give insights into the crossover landscapes in birds. PLoS ONE 15 (10), e0240245. 10.1371/journal.pone.0240245 PubMed DOI PMC
Ezaz T., Quinn A. E., Miura I., Sarre S. D., Georges A., Marshall Graves J. A. (2005). The dragon lizard Pogona vitticeps has ZZ/ZW micro-sex chromosomes. Chromosome Res. 13 (8), 763–776. 10.1007/s10577-005-1010-9 PubMed DOI
Ezaz T., Stiglec R., Veyrunes F., Marshall Graves J. A. (2006). Relationships between vertebrate ZW and XY sex chromosome systems. Curr. Biol. 16 (17), 736–743. 10.1016/j.cub.2006.08.021 PubMed DOI
Garcia-Cruz R., Pacheco S., Brieño M. A., Steinberg E. R., Mudry M. D., Ruiz-Herrera A., et al. (2011). A comparative study of the recombination pattern in three species of Platyrrhini monkeys (primates). Chromosoma 120 (5), 521–530. 10.1007/s00412-011-0329-6 PubMed DOI
Gibbons J. W. (1968). Reproductive potential, activity, and cycles in the painted turtle, Chrysemys picta . Ecology 49 (3), 399–409. 10.2307/1934106 DOI
Grey C., Barthès P., Friec G., Langa F., Baudat F., de Massy B. (2011). Mouse Prdm9 DNA-binding specificity determines sites of histone H3 lysine 4 trimethylation for initiation of meiotic recombination. PLoS Biol. 9 (10), e1001176. 10.1371/journal.pbio.1001176 PubMed DOI PMC
Gribbins K. M., Gist D. H., Congdon J. D. (2003). Cytological evaluation of spermatogenesis and organization of the germinal epithelium in the male slider turtle, Trachemys scripta . J. Morphol. 255 (3), 337–346. 10.1002/jmor.10069 PubMed DOI
Gribbins K. M. (2011). Reptilian spermatogenesis: A histological and ultrastructural perspective. Spermatogenesis 1 (3), 250–269. 10.4161/spmg.1.3.18092 PubMed DOI PMC
Guioli S., Lovell-Badge R., Turner J. M. A. (2012). Error-prone ZW pairing and no evidence for meiotic sex chromosome inactivation in the chicken germ line. PLoS Genet. 8 (3), e1002560. 10.1371/journal.pgen.1002560 PubMed DOI PMC
Hammoud S. S., Low D. H. P., Yi C., Carrell D. T., Guccione E., Cairns B. R. (2014). Chromatin and transcription transitions of mammalian adult germline stem cells and spermatogenesis. Cell Stem Cell 15 (2), 239–253. 10.1016/j.stem.2014.04.006 PubMed DOI
He Z., Henricksen L. A., Wold M. S., Ingles C. J. (1995). RPA involvement in the damage-recognition and incision steps of nucleotide excision repair. Nature 374 (6522), 566–569. 10.1038/374566a0 PubMed DOI
Holleley C. E., O’Meally D., Sarre S. D., Marshall Graves J. A., Ezaz T., Matsubara K., et al. (2015). Sex reversal triggers the rapid transition from genetic to temperature-dependent sex. Nature 523 (7558), 79–82. 10.1038/nature14574 PubMed DOI
Imai Y., Olaya I., Sakai N., Burgess S. M. (2021). Meiotic chromosome dynamics in zebrafish. Front. Cell Dev. Biol. 9, 757445. 10.3389/fcell.2021.757445 PubMed DOI PMC
Keating S. E., Greenbaum E., Johnson J. D., Gamble T. (2022). Identification of a cis‐sex chromosome transition in banded geckos (Coleonyx, Eublepharidae, Gekkota). J. Evol. Biol. 00, 1–8. 10.1111/jeb.14022 PubMed DOI
Keeney S., Giroux C. N., Kleckner N. (1997). Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88 (3), 375–384. 10.1016/S0092-8674(00)81876-0 PubMed DOI
Khil P. P., Camerini-Otero R. D. (2010). Genetic crossovers are predicted accurately by the computed human recombination map. PLoS Genet. 6 (1), e1000831. 10.1371/journal.pgen.1000831 PubMed DOI PMC
Koubová M., Pokorná M. J., Rovatsos M., Farkačová K., Altmanová M., Kratochvíl L. (2014). Sex determination in Madagascar geckos of the genus Paroedura (Squamata: Gekkonidae): Are differentiated sex chromosomes indeed so evolutionary stable? Chromosome Res. 22 (4), 441–452. 10.1007/s10577-014-9430-z PubMed DOI
Kubička L., Starostová Z., Kratochvíl L. (2015). Endogenous control of sexual size dimorphism: Gonadal androgens have neither direct nor indirect effect on male growth in a Madagascar ground gecko (Paroedura picta). Gen. Comp. Endocrinol. 224, 273–277. 10.1016/j.ygcen.2015.09.028 PubMed DOI
Lange J., Yamada S., Tischfield S. E., Pan J., Kim S., Socci N. D., et al. (2016). The landscape of mouse meiotic double-strand break formation, processing and repair. Cell 167 (3), 695–708. 10.1016/j.cell.2016.09.035 PubMed DOI PMC
Liebe B., Alsheimer M., Höög C., Benavente R., Scherthan H. (2004). Telomere attachment, meiotic chromosome condensation, pairing, and bouquet stage duration are modified in spermatocytes lacking axial elements. Mol. Biol. Cell 15 (2), 827–837. 10.1091/mbc.E03-07-0524 PubMed DOI PMC
Lisachov A. P., Tishakova K. v., Tsepilov Y. A., Borodin P. M. (2019). Male meiotic recombination in the steppe agama, Trapelus sanguinolentus (agamidae, Iguania, reptilia). Cytogenet. Genome Res. 157 (1–2), 107–114. 10.1159/000496078 PubMed DOI
Lisachov A. P., Trifonov V. A., Giovannotti M., Ferguson-Smith M. A., Borodin P. M. (2017). Immunocytological analysis of meiotic recombination in two anole lizards (Squamata , Dactyloidae ). Comp. Cytogenet. 11 (1), 129–141. 10.3897/CompCytogen.v11i1.10916 PubMed DOI PMC
Lutes A. A., Neaves W. B., Baumann D. P., Wiegraebe W., Baumann P. (2010). Sister chromosome pairing maintains heterozygosity in parthenogenetic lizards. Nature 464 (7286), 283–286. 10.1038/nature08818 PubMed DOI PMC
Lynn A., Ashley T., Hassold T. (2004). Variation in human meiotic recombination. Annu. Rev. Genomics Hum. Genet. 5, 317–349. 10.1146/annurev.genom.4.070802.110217 PubMed DOI
Main H., Scantlebury D. P., Zarkower D., Gamble T. (2012). Karyotypes of two species of Malagasy ground gecko (Paroedura: Gekkonidae). Afr. J. Herpetology 61 (1), 81–90. 10.1080/21564574.2012.667837 DOI
Marín-Gual L., González-Rodelas L., Pujol G., Vara C., Martín-Ruiz M., Berríos S., et al. (2022). Strategies for meiotic sex chromosome dynamics and telomeric elongation in Marsupials. PLoS Genet. 18 (2), e1010040. 10.1371/journal.pgen.1010040 PubMed DOI PMC
Mayhew W. W., Wright S. J. (1970). Seasonal changes in testicular histology of three species of the lizard genus Uma. J. Morphol. 130 (2), 163–185. 10.1002/jmor.1051300205 DOI
Mihola O., Trachtulec Z., Vlcek C., Schimenti J. C., Forejt J. (2009). A mouse speciation gene encodes a meiotic histone H3 methyltransferase. Science 323 (5912), 373–375. 10.1126/science.1163601 PubMed DOI
Montiel E. E., Badenhorst D., Lee L. S., Literman R., Trifonov V., Valenzuela N. (2016). Cytogenetic insights into the evolution of chromosomes and sex determination reveal striking homology of turtle sex chromosomes to amphibian autosomes. Cytogenet. Genome Res. 148 (4), 292–304. 10.1159/000447478 PubMed DOI
Muñoz-Fuentes V., di Rienzo A., Vilà C. (2011). Prdm9, a major determinant of meiotic recombination hotspots, is not functional in dogs and their wild relatives, wolves and coyotes. PLoS ONE 6 (11), e25498. 10.1371/journal.pone.0025498 PubMed DOI PMC
Murakami H., Mu X., Keeney S. (2021). How do small chromosomes know they are small? Maximizing meiotic break formation on the shortest yeast chromosomes. Curr. Genet. 67, 431–437. 10.1007/s00294-021-01160-9 PubMed DOI PMC
Myers S., Bowden R., Tumian A., Bontrop R. E., Freeman C., MacFie T. S., et al. (2010). Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination. Science 327 (5967), 876–879. 10.1126/science.1182363 PubMed DOI PMC
Noro M., Uejima A., Abe G., Manabe M., Tamura K. (2009). Normal developmental stages of the Madagascar ground gecko Paroedura pictus with special reference to limb morphogenesis. Dev. Dyn. 238 (1), 100–109. 10.1002/dvdy.21828 PubMed DOI
Page J., de La Fuente R., Manterola M., Parra M. T., Viera A., Berríos S., et al. (2012). Inactivation or non-reactivation: What accounts better for the silence of sex chromosomes during mammalian male meiosis? Chromosoma 121 (3), 307–326. 10.1007/s00412-012-0364-y PubMed DOI
Pardo-Manuel De Villena F., Sapienza C. (2001). Nonrandom segregation during meiosis: The unfairness of females. Mamm. Genome 12 (5), 331–339. 10.1007/s003350040003 PubMed DOI
Patel L., Kang R., Rosenberg S. C., Qiu Y., Raviram R., Chee S., et al. (2019). Dynamic reorganization of the genome shapes the recombination landscape in meiotic prophase. Nat. Struct. Mol. Biol. 26 (3), 164–174. 10.1038/s41594-019-0187-0 PubMed DOI PMC
Pokorná M., Rábová M., Ráb P., Ferguson-Smith M. A., Rens W., Kratochvíl L. (2010). Differentiation of sex chromosomes and karyotypic evolution in the eye-lid geckos (Squamata: Gekkota: Eublepharidae), a group with different modes of sex determination. Chromosome Res. 18 (7), 809–820. 10.1007/s10577-010-9154-7 PubMed DOI
Pratto F., Brick K., Khil P., Smagulova F., Petukhova G. v., Camerini-Otero D. (2014). DNA recombination. Recombination initiation maps of individual human genomes.. Science 346 (6211). 10.1126/science.1256442 PubMed DOI PMC
Quinn A. E., Georges A., Sarre S. D., Guarino F., Ezaz T., Graves J. A. M. (2007). Temperature sex reversal implies sex gene dosage in a reptile. Science 316 (5823), 411. 10.1126/science.1135925 PubMed DOI
Reig-Viader R., Brieño-Enríquez M. A., Khoriauli L., Toran N., Cabero L., Giulotto E., et al. (2013). Telomeric repeat-containing RNA and telomerase in human fetal oocytes. Hum. Reprod. 28 (2), 414–422. 10.1093/humrep/des363 PubMed DOI
Rovatsos M., Farkačová K., Altmanová M., Johnson Pokorná M., Kratochvíl L. (2019). The rise and fall of differentiated sex chromosomes in geckos. Mol. Ecol. 28 (12), 3042–3052. 10.1111/mec.15126 PubMed DOI
Ruiz-Herrera A., Farre M., Robinson T. J. (2012). Molecular cytogenetic and genomic insights into chromosomal evolution. Heredity 108 (1), 28–36. 10.1038/hdy.2011.102 PubMed DOI PMC
Ruiz-Herrera A., Vozdova M., Fernández J., Sebestova H., Capilla L., Frohlich J., et al. (2017). Recombination correlates with synaptonemal complex length and chromatin loop size in bovids—Insights into mammalian meiotic chromosomal organization. Chromosoma 126 (5), 615–631. 10.1007/s00412-016-0624-3 PubMed DOI
Ruiz-Herrera A., Waters P. D. (2022). Fragile, unfaithful and persistent ys—On how meiosis can shape sex chromosome evolution. Heredity 129 (1), 22–30. 10.1038/s41437-022-00532-2 PubMed DOI PMC
Russell L. D., Ettlin R. A., Hikim A. P. S., Clegg E. D. (1993). “Histological and histopathological evaluation of the testis,” in International journal of andrology (Florida: Cache River Press; ), 16, 83.
Samollow P. B., Kammerer C. M., Mahaney S. M., Schneider J. L., Westenberger S. J., Vandeberg J. L., et al. (2004). First-generation linkage map of the gray, short-tailed opossum, Monodelphis domestica, reveals genome-wide reduction in female recombination rates. Genetics 166 (1), 307–329. 10.1534/genetics.166.1.307 PubMed DOI PMC
Scherthan H., Weich S., Schwegler H., Heyting C., Härle M., Cremer T. (1996). Centromere and telomere movements during early meiotic prophase of mouse and man are associated with the onset of chromosome pairing. J. Cell Biol. 134 (5), 1109–1125. 10.1083/jcb.134.5.1109 PubMed DOI PMC
Schoenmakers S., Wassenaar E., Hoogerbrugge J. W., Laven J. S. E., Grootegoed J. A., Baarends W. M. (2009). Female meiotic sex chromosome inactivation in chicken. PLoS Genet. 5 (5), e1000466. 10.1371/journal.pgen.1000466 PubMed DOI PMC
Schulz R. W., de França L. R., Lareyre J.-J., le Gac F., Chiarini-Garcia H., Nobrega R. H., et al. (2010). Spermatogenesis in fish. Gen. Comp. Endocrinol. 165 (3), 390–411. 10.1016/j.ygcen.2009.02.013 PubMed DOI
Segura J., Ferretti L., Ramos-Onsins S., Capilla L., Farré M., Reis F., et al. (2013). Evolution of recombination in eutherian mammals: Insights into mechanisms that affect recombination rates and crossover interference. Proc. Biol. Sci. 280 (1771), 20131945. 10.1098/rspb.2013.1945 PubMed DOI PMC
Shedlock A. M., Edwards S. v. (2009). “Amniotes (amniota),” in The timetree of life. Editors Hedges S. B., Kumar S. (Oxford: Oxford University Press; ), 375–379.
Smagulova F., Brick K., Pu Y., Camerini-Otero R. D., Petukhova G. v. (2016). The evolutionary turnover of recombination hot spots contributes to speciation in mice. Genes Dev. 30 (3), 266–280. 10.1101/gad.270009.115 PubMed DOI PMC
Sousa A. L., Campos-Junior P. H. A., Costa G. M. J., de França L. R. (2014). Spermatogenic cycle length and sperm production in the freshwater turtle Kinosternon scorpioides . Biol. Reprod. 90 (2), 35. 10.1095/biolreprod.113.112391 PubMed DOI
Spangenberg V., Arakelyan M., Galoyan E., Martirosyan I., Bogomazova A., Martynova E., et al. (2021). Meiotic synapsis of homeologous chromosomes and mismatch repair protein detection in the parthenogenetic rock lizard Darevskia unisexualis . Mol. Reprod. Dev. 88 (2), 119–127. 10.1002/mrd.23450 PubMed DOI
Starostová Z., Kubička L., Golinski A., Kratochvíl L. (2013). Neither male gonadal androgens nor female reproductive costs drive development of sexual size dimorphism in lizards. J. Exp. Biol. 216 (10), 1872–1880. 10.1242/jeb.079442 PubMed DOI
Sun L., Wang J., Sang M., Jiang L., Zhao B., Cheng T., et al. (2017). Landscaping crossover interference across a genome. Trends Plant Sci. 22 (10), 894–907. 10.1016/j.tplants.2017.06.008 PubMed DOI
Turner J. M. A., Mahadevaiah S. K., Fernandez-Capetillo O., Nussenzweig A., Xu X., Deng C. X., et al. (2005). Silencing of unsynapsed meiotic chromosomes in the mouse. Nat. Genet. 37 (1), 41–47. 10.1038/ng1484 PubMed DOI
Valenzuela N., Adams D. C. (2011). Chromosome number and sex determination coevolve in turtles. Evolution 65 (6), 1808–1813. 10.1111/j.1558-5646.2011.01258.x PubMed DOI
Valenzuela N., Badenhorst D., Montiel E. E., Literman R. (2014). Molecular cytogenetic search for cryptic sex chromosomes in painted turtles Chrysemys picta . Cytogenet. Genome Res. 144 (1), 39–46. 10.1159/000366076 PubMed DOI
Valenzuela N. (2009). The painted turtle, Chrysemys picta: A model system for vertebrate evolution, ecology, and human health. Cold Spring Harb. Protoc. 4 (7), pdb.emo124–10. 10.1101/pdb.emo124 PubMed DOI
Vara C., Paytuví-Gallart A., Cuartero Y., le Dily F., Garcia F., Salvà-Castro J., et al. (2019). Three-dimensional genomic structure and cohesin occupancy correlate with transcriptional activity during spermatogenesis. Cell Rep. 28 (2), 352–367.e9. 10.1016/j.celrep.2019.06.037 PubMed DOI PMC
Vara C., Ruiz-Herrera A. (2022). Unpacking chromatin remodelling in germ cells: Implications for development and evolution. Trends Genet. 38 (5), 422–425. 10.1016/j.tig.2021.10.007 PubMed DOI
Viera A., Parra M. T., Rufas J. S., Page J. (2017). Transcription reactivation during the first meiotic prophase in bugs is not dependent on synapsis. Chromosoma 126 (1), 179–194. 10.1007/s00412-016-0577-6 PubMed DOI
Wang S., Veller C., Sun F., Ruiz-Herrera A., Shang Y., Liu H., et al. (2019). Per-nucleus crossover covariation and implications for evolution. Cell 177 (2), 326–338.e16. 10.1016/j.cell.2019.02.021 PubMed DOI PMC
Waters P. D., Patel H. R., Ruiz-Herrera A., Álvarez-González L., Lister N. C., Simakov O., et al. (2021). Microchromosomes are building blocks of bird, reptile and mammal chromosomes. Proc. Natl. Acad. Sci. U. S. A. 118 (45), 1e2112494118–30. 10.1073/pnas.2112494118 PubMed DOI PMC
Yamada S., Hinch A. G., Kamido H., Zhang Y., Edelmann W., Keeney S. (2020). Molecular structures and mechanisms of DNA break processing in mouse meiosis. Genes Dev. 34, 806–818. 10.1101/gad.336032.119 PubMed DOI PMC
Young M. J., O’Meally D., Sarre S. D., Georges A., Ezaz T. (2013). Molecular cytogenetic map of the central bearded dragon, Pogona vitticeps (Squamata: Agamidae). Chromosome Res. 21 (4), 361–374. 10.1007/s10577-013-9362-z PubMed DOI
Zenger K. R., McKenzie L. M., Cooper D. W. (2002). The first comprehensive genetic linkage map of a marsupial: The tammar wallaby (Macropus eugenii). Genetics 162 (1), 321–330. 10.1093/genetics/162.1.321 PubMed DOI PMC
Zickler D., Kleckner N. (2015). Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harb. Perspect. Biol. 7 (6), a016626–a016628. 10.1101/cshperspect.a016626 PubMed DOI PMC
Recombination plasticity in response to temperature variation in reptiles
Robertsonian fusion triggers recombination suppression on sex chromosomes in Coleonyx geckos