Meiotic chromosome dynamics and double strand break formation in reptiles

. 2022 ; 10 () : 1009776. [epub] 20221012

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36313577

During meiotic prophase I, tightly regulated processes take place, from pairing and synapsis of homologous chromosomes to recombination, which are essential for the generation of genetically variable haploid gametes. These processes have canonical meiotic features conserved across different phylogenetic groups. However, the dynamics of meiotic prophase I in non-mammalian vertebrates are poorly known. Here, we compare four species from Sauropsida to understand the regulation of meiotic prophase I in reptiles: the Australian central bearded dragon (Pogona vitticeps), two geckos (Paroedura picta and Coleonyx variegatus) and the painted turtle (Chrysemys picta). We first performed a histological characterization of the spermatogenesis process in both the bearded dragon and the painted turtle. We then analyzed prophase I dynamics, including chromosome pairing, synapsis and the formation of double strand breaks (DSBs). We show that meiosis progression is highly conserved in reptiles with telomeres clustering forming the bouquet, which we propose promotes homologous pairing and synapsis, along with facilitating the early pairing of micro-chromosomes during prophase I (i.e., early zygotene). Moreover, we detected low levels of meiotic DSB formation in all taxa. Our results provide new insights into reptile meiosis.

Zobrazit více v PubMed

Alavattam K. G., Abe H., Sakashita A., Namekawa S. H. (2018). Chromosome spread analyses of meiotic sex chromosome inactivation. Methods Mol. Biol. 1861, 113–129. 10.1007/978-1-4939-8766-5_10 PubMed DOI PMC

Alavattam K. G., Maezawa S., Sakashita A., Khoury H., Barski A., Kaplan N., et al. (2019). Attenuated chromatin compartmentalization in meiosis and its maturation in sperm development. Nat. Struct. Mol. Biol. 26 (3), 175–184. 10.1038/s41594-019-0189-y PubMed DOI PMC

Amey A. P., Whittier J. M. (2000a). Seasonal patterns of plasma steroid hormones in males and females of the bearded dragon lizard, Pogona barbata . Gen. Comp. Endocrinol. 117 (3), 335–342. 10.1006/gcen.2000.7426 PubMed DOI

Amey A. P., Whittier J. M. (2000b). The annual reproductive cycle and sperm storage in the bearded dragon, Pogona barbata . Aust. J. Zool. 48 (4), 411–419. 10.1071/ZO00031 DOI

Badenhorst D., Hillier L. W., Literman R., Montiel E. E., Radhakrishnan S., Shen Y., et al. (2015). Physical mapping and refinement of the painted turtle genome (Chrysemys picta) inform amniote genome evolution and challenge turtle-bird chromosomal conservation. Genome Biol. Evol. 7 (7), 2038–2050. 10.1093/gbe/evv119 PubMed DOI PMC

Baker C. L., Kajita S., Walker M., Saxl R. L., Raghupathy N., Choi K., et al. (2015). PRDM9 drives evolutionary erosion of hotspots in Mus musculus through haplotype-specific initiation of meiotic recombination. PLoS Genet. 11 (1), e1004916. 10.1371/journal.pgen.1004916 PubMed DOI PMC

Barlow A. L., Hultén M. A. (1998). Crossing over analysis at pachytene in man. Eur. J. Hum. Genet. 6 (4), 350–358. 10.1038/sj.ejhg.5200200 PubMed DOI

Baudat F., Buard J., Grey C., de Massy B. (2010). Prdm9, a key control of mammalian recombination hotspots. Med. Sci. 26 (5), 468–470. 10.1051/medsci/2010265468 PubMed DOI

Bista B., Valenzuela N. (2020). Turtle insights into the evolution of the reptilian karyotype and the genomic architecture of sex determination. Genes 11 (4), 416. 10.3390/genes11040416 PubMed DOI PMC

Blokhina Y. P., Nguyen A. D., Draper B. W., Burgess S. M. (2019). The telomere bouquet is a hub where meiotic double-strand breaks, synapsis, and stable homolog juxtaposition are coordinated in the zebrafish, Danio rerio . PLoS Genet. 15 (1), e1007730. 10.1371/journal.pgen.1007730 PubMed DOI PMC

Bolcun-Filas E., Handel M. A. (2018). Meiosis: The chromosomal foundation of reproduction. Biol. Reprod. 99 (1), 112–126. 10.1093/biolre/ioy021 PubMed DOI

Brick K., Smagulova F., Khil P., Camerini-Otero R. D., Petukhova G. v. (2012). Genetic recombination is directed away from functional genomic elements in mice. Nature 485 (7400), 642–645. 10.1038/nature11089 PubMed DOI PMC

Buard J., Rivals E., Dunoyer De Segonzac D., Garres C., Caminade P., de Massy B., et al. (2014). Diversity of Prdm9 zinc finger array in wild mice unravels new facets of the evolutionary turnover of this coding minisatellite. PLoS ONE 9 (1), e85021. 10.1371/journal.pone.0085021 PubMed DOI PMC

Capilla L., Medarde N., Alemany-Schmidt A., Oliver-Bonet M., Ventura J., Ruiz-Herrera A. (2014). Genetic recombination variation in wild robertsonian mice: On the role of chromosomal fusions and Prdm9 allelic background. Proc. Biol. Sci. 281 (1786), 20140297. 10.1098/rspb.2014.0297 PubMed DOI PMC

Cavassim M. I. A., Baker Z., Hoge C., Schierup M. H., Schumer M., Przeworski M. (2022). PRDM9 losses in vertebrates are coupled to those of paralogs ZCWPW1 and ZCWPW2. Proc. Natl. Acad. Sci. U. S. A. 119 (9), 21144011199–e2114401211. 10.1073/pnas.2114401119 PubMed DOI PMC

del Priore L., Pigozzi M. I. (2020). MLH1 focus mapping in the Guinea fowl (Numida meleagris) give insights into the crossover landscapes in birds. PLoS ONE 15 (10), e0240245. 10.1371/journal.pone.0240245 PubMed DOI PMC

Ezaz T., Quinn A. E., Miura I., Sarre S. D., Georges A., Marshall Graves J. A. (2005). The dragon lizard Pogona vitticeps has ZZ/ZW micro-sex chromosomes. Chromosome Res. 13 (8), 763–776. 10.1007/s10577-005-1010-9 PubMed DOI

Ezaz T., Stiglec R., Veyrunes F., Marshall Graves J. A. (2006). Relationships between vertebrate ZW and XY sex chromosome systems. Curr. Biol. 16 (17), 736–743. 10.1016/j.cub.2006.08.021 PubMed DOI

Garcia-Cruz R., Pacheco S., Brieño M. A., Steinberg E. R., Mudry M. D., Ruiz-Herrera A., et al. (2011). A comparative study of the recombination pattern in three species of Platyrrhini monkeys (primates). Chromosoma 120 (5), 521–530. 10.1007/s00412-011-0329-6 PubMed DOI

Gibbons J. W. (1968). Reproductive potential, activity, and cycles in the painted turtle, Chrysemys picta . Ecology 49 (3), 399–409. 10.2307/1934106 DOI

Grey C., Barthès P., Friec G., Langa F., Baudat F., de Massy B. (2011). Mouse Prdm9 DNA-binding specificity determines sites of histone H3 lysine 4 trimethylation for initiation of meiotic recombination. PLoS Biol. 9 (10), e1001176. 10.1371/journal.pbio.1001176 PubMed DOI PMC

Gribbins K. M., Gist D. H., Congdon J. D. (2003). Cytological evaluation of spermatogenesis and organization of the germinal epithelium in the male slider turtle, Trachemys scripta . J. Morphol. 255 (3), 337–346. 10.1002/jmor.10069 PubMed DOI

Gribbins K. M. (2011). Reptilian spermatogenesis: A histological and ultrastructural perspective. Spermatogenesis 1 (3), 250–269. 10.4161/spmg.1.3.18092 PubMed DOI PMC

Guioli S., Lovell-Badge R., Turner J. M. A. (2012). Error-prone ZW pairing and no evidence for meiotic sex chromosome inactivation in the chicken germ line. PLoS Genet. 8 (3), e1002560. 10.1371/journal.pgen.1002560 PubMed DOI PMC

Hammoud S. S., Low D. H. P., Yi C., Carrell D. T., Guccione E., Cairns B. R. (2014). Chromatin and transcription transitions of mammalian adult germline stem cells and spermatogenesis. Cell Stem Cell 15 (2), 239–253. 10.1016/j.stem.2014.04.006 PubMed DOI

He Z., Henricksen L. A., Wold M. S., Ingles C. J. (1995). RPA involvement in the damage-recognition and incision steps of nucleotide excision repair. Nature 374 (6522), 566–569. 10.1038/374566a0 PubMed DOI

Holleley C. E., O’Meally D., Sarre S. D., Marshall Graves J. A., Ezaz T., Matsubara K., et al. (2015). Sex reversal triggers the rapid transition from genetic to temperature-dependent sex. Nature 523 (7558), 79–82. 10.1038/nature14574 PubMed DOI

Imai Y., Olaya I., Sakai N., Burgess S. M. (2021). Meiotic chromosome dynamics in zebrafish. Front. Cell Dev. Biol. 9, 757445. 10.3389/fcell.2021.757445 PubMed DOI PMC

Keating S. E., Greenbaum E., Johnson J. D., Gamble T. (2022). Identification of a cis‐sex chromosome transition in banded geckos (Coleonyx, Eublepharidae, Gekkota). J. Evol. Biol. 00, 1–8. 10.1111/jeb.14022 PubMed DOI

Keeney S., Giroux C. N., Kleckner N. (1997). Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88 (3), 375–384. 10.1016/S0092-8674(00)81876-0 PubMed DOI

Khil P. P., Camerini-Otero R. D. (2010). Genetic crossovers are predicted accurately by the computed human recombination map. PLoS Genet. 6 (1), e1000831. 10.1371/journal.pgen.1000831 PubMed DOI PMC

Koubová M., Pokorná M. J., Rovatsos M., Farkačová K., Altmanová M., Kratochvíl L. (2014). Sex determination in Madagascar geckos of the genus Paroedura (Squamata: Gekkonidae): Are differentiated sex chromosomes indeed so evolutionary stable? Chromosome Res. 22 (4), 441–452. 10.1007/s10577-014-9430-z PubMed DOI

Kubička L., Starostová Z., Kratochvíl L. (2015). Endogenous control of sexual size dimorphism: Gonadal androgens have neither direct nor indirect effect on male growth in a Madagascar ground gecko (Paroedura picta). Gen. Comp. Endocrinol. 224, 273–277. 10.1016/j.ygcen.2015.09.028 PubMed DOI

Lange J., Yamada S., Tischfield S. E., Pan J., Kim S., Socci N. D., et al. (2016). The landscape of mouse meiotic double-strand break formation, processing and repair. Cell 167 (3), 695–708. 10.1016/j.cell.2016.09.035 PubMed DOI PMC

Liebe B., Alsheimer M., Höög C., Benavente R., Scherthan H. (2004). Telomere attachment, meiotic chromosome condensation, pairing, and bouquet stage duration are modified in spermatocytes lacking axial elements. Mol. Biol. Cell 15 (2), 827–837. 10.1091/mbc.E03-07-0524 PubMed DOI PMC

Lisachov A. P., Tishakova K. v., Tsepilov Y. A., Borodin P. M. (2019). Male meiotic recombination in the steppe agama, Trapelus sanguinolentus (agamidae, Iguania, reptilia). Cytogenet. Genome Res. 157 (1–2), 107–114. 10.1159/000496078 PubMed DOI

Lisachov A. P., Trifonov V. A., Giovannotti M., Ferguson-Smith M. A., Borodin P. M. (2017). Immunocytological analysis of meiotic recombination in two anole lizards (Squamata , Dactyloidae ). Comp. Cytogenet. 11 (1), 129–141. 10.3897/CompCytogen.v11i1.10916 PubMed DOI PMC

Lutes A. A., Neaves W. B., Baumann D. P., Wiegraebe W., Baumann P. (2010). Sister chromosome pairing maintains heterozygosity in parthenogenetic lizards. Nature 464 (7286), 283–286. 10.1038/nature08818 PubMed DOI PMC

Lynn A., Ashley T., Hassold T. (2004). Variation in human meiotic recombination. Annu. Rev. Genomics Hum. Genet. 5, 317–349. 10.1146/annurev.genom.4.070802.110217 PubMed DOI

Main H., Scantlebury D. P., Zarkower D., Gamble T. (2012). Karyotypes of two species of Malagasy ground gecko (Paroedura: Gekkonidae). Afr. J. Herpetology 61 (1), 81–90. 10.1080/21564574.2012.667837 DOI

Marín-Gual L., González-Rodelas L., Pujol G., Vara C., Martín-Ruiz M., Berríos S., et al. (2022). Strategies for meiotic sex chromosome dynamics and telomeric elongation in Marsupials. PLoS Genet. 18 (2), e1010040. 10.1371/journal.pgen.1010040 PubMed DOI PMC

Mayhew W. W., Wright S. J. (1970). Seasonal changes in testicular histology of three species of the lizard genus Uma. J. Morphol. 130 (2), 163–185. 10.1002/jmor.1051300205 DOI

Mihola O., Trachtulec Z., Vlcek C., Schimenti J. C., Forejt J. (2009). A mouse speciation gene encodes a meiotic histone H3 methyltransferase. Science 323 (5912), 373–375. 10.1126/science.1163601 PubMed DOI

Montiel E. E., Badenhorst D., Lee L. S., Literman R., Trifonov V., Valenzuela N. (2016). Cytogenetic insights into the evolution of chromosomes and sex determination reveal striking homology of turtle sex chromosomes to amphibian autosomes. Cytogenet. Genome Res. 148 (4), 292–304. 10.1159/000447478 PubMed DOI

Muñoz-Fuentes V., di Rienzo A., Vilà C. (2011). Prdm9, a major determinant of meiotic recombination hotspots, is not functional in dogs and their wild relatives, wolves and coyotes. PLoS ONE 6 (11), e25498. 10.1371/journal.pone.0025498 PubMed DOI PMC

Murakami H., Mu X., Keeney S. (2021). How do small chromosomes know they are small? Maximizing meiotic break formation on the shortest yeast chromosomes. Curr. Genet. 67, 431–437. 10.1007/s00294-021-01160-9 PubMed DOI PMC

Myers S., Bowden R., Tumian A., Bontrop R. E., Freeman C., MacFie T. S., et al. (2010). Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination. Science 327 (5967), 876–879. 10.1126/science.1182363 PubMed DOI PMC

Noro M., Uejima A., Abe G., Manabe M., Tamura K. (2009). Normal developmental stages of the Madagascar ground gecko Paroedura pictus with special reference to limb morphogenesis. Dev. Dyn. 238 (1), 100–109. 10.1002/dvdy.21828 PubMed DOI

Page J., de La Fuente R., Manterola M., Parra M. T., Viera A., Berríos S., et al. (2012). Inactivation or non-reactivation: What accounts better for the silence of sex chromosomes during mammalian male meiosis? Chromosoma 121 (3), 307–326. 10.1007/s00412-012-0364-y PubMed DOI

Pardo-Manuel De Villena F., Sapienza C. (2001). Nonrandom segregation during meiosis: The unfairness of females. Mamm. Genome 12 (5), 331–339. 10.1007/s003350040003 PubMed DOI

Patel L., Kang R., Rosenberg S. C., Qiu Y., Raviram R., Chee S., et al. (2019). Dynamic reorganization of the genome shapes the recombination landscape in meiotic prophase. Nat. Struct. Mol. Biol. 26 (3), 164–174. 10.1038/s41594-019-0187-0 PubMed DOI PMC

Pokorná M., Rábová M., Ráb P., Ferguson-Smith M. A., Rens W., Kratochvíl L. (2010). Differentiation of sex chromosomes and karyotypic evolution in the eye-lid geckos (Squamata: Gekkota: Eublepharidae), a group with different modes of sex determination. Chromosome Res. 18 (7), 809–820. 10.1007/s10577-010-9154-7 PubMed DOI

Pratto F., Brick K., Khil P., Smagulova F., Petukhova G. v., Camerini-Otero D. (2014). DNA recombination. Recombination initiation maps of individual human genomes.. Science 346 (6211). 10.1126/science.1256442 PubMed DOI PMC

Quinn A. E., Georges A., Sarre S. D., Guarino F., Ezaz T., Graves J. A. M. (2007). Temperature sex reversal implies sex gene dosage in a reptile. Science 316 (5823), 411. 10.1126/science.1135925 PubMed DOI

Reig-Viader R., Brieño-Enríquez M. A., Khoriauli L., Toran N., Cabero L., Giulotto E., et al. (2013). Telomeric repeat-containing RNA and telomerase in human fetal oocytes. Hum. Reprod. 28 (2), 414–422. 10.1093/humrep/des363 PubMed DOI

Rovatsos M., Farkačová K., Altmanová M., Johnson Pokorná M., Kratochvíl L. (2019). The rise and fall of differentiated sex chromosomes in geckos. Mol. Ecol. 28 (12), 3042–3052. 10.1111/mec.15126 PubMed DOI

Ruiz-Herrera A., Farre M., Robinson T. J. (2012). Molecular cytogenetic and genomic insights into chromosomal evolution. Heredity 108 (1), 28–36. 10.1038/hdy.2011.102 PubMed DOI PMC

Ruiz-Herrera A., Vozdova M., Fernández J., Sebestova H., Capilla L., Frohlich J., et al. (2017). Recombination correlates with synaptonemal complex length and chromatin loop size in bovids—Insights into mammalian meiotic chromosomal organization. Chromosoma 126 (5), 615–631. 10.1007/s00412-016-0624-3 PubMed DOI

Ruiz-Herrera A., Waters P. D. (2022). Fragile, unfaithful and persistent ys—On how meiosis can shape sex chromosome evolution. Heredity 129 (1), 22–30. 10.1038/s41437-022-00532-2 PubMed DOI PMC

Russell L. D., Ettlin R. A., Hikim A. P. S., Clegg E. D. (1993). “Histological and histopathological evaluation of the testis,” in International journal of andrology (Florida: Cache River Press; ), 16, 83.

Samollow P. B., Kammerer C. M., Mahaney S. M., Schneider J. L., Westenberger S. J., Vandeberg J. L., et al. (2004). First-generation linkage map of the gray, short-tailed opossum, Monodelphis domestica, reveals genome-wide reduction in female recombination rates. Genetics 166 (1), 307–329. 10.1534/genetics.166.1.307 PubMed DOI PMC

Scherthan H., Weich S., Schwegler H., Heyting C., Härle M., Cremer T. (1996). Centromere and telomere movements during early meiotic prophase of mouse and man are associated with the onset of chromosome pairing. J. Cell Biol. 134 (5), 1109–1125. 10.1083/jcb.134.5.1109 PubMed DOI PMC

Schoenmakers S., Wassenaar E., Hoogerbrugge J. W., Laven J. S. E., Grootegoed J. A., Baarends W. M. (2009). Female meiotic sex chromosome inactivation in chicken. PLoS Genet. 5 (5), e1000466. 10.1371/journal.pgen.1000466 PubMed DOI PMC

Schulz R. W., de França L. R., Lareyre J.-J., le Gac F., Chiarini-Garcia H., Nobrega R. H., et al. (2010). Spermatogenesis in fish. Gen. Comp. Endocrinol. 165 (3), 390–411. 10.1016/j.ygcen.2009.02.013 PubMed DOI

Segura J., Ferretti L., Ramos-Onsins S., Capilla L., Farré M., Reis F., et al. (2013). Evolution of recombination in eutherian mammals: Insights into mechanisms that affect recombination rates and crossover interference. Proc. Biol. Sci. 280 (1771), 20131945. 10.1098/rspb.2013.1945 PubMed DOI PMC

Shedlock A. M., Edwards S. v. (2009). “Amniotes (amniota),” in The timetree of life. Editors Hedges S. B., Kumar S. (Oxford: Oxford University Press; ), 375–379.

Smagulova F., Brick K., Pu Y., Camerini-Otero R. D., Petukhova G. v. (2016). The evolutionary turnover of recombination hot spots contributes to speciation in mice. Genes Dev. 30 (3), 266–280. 10.1101/gad.270009.115 PubMed DOI PMC

Sousa A. L., Campos-Junior P. H. A., Costa G. M. J., de França L. R. (2014). Spermatogenic cycle length and sperm production in the freshwater turtle Kinosternon scorpioides . Biol. Reprod. 90 (2), 35. 10.1095/biolreprod.113.112391 PubMed DOI

Spangenberg V., Arakelyan M., Galoyan E., Martirosyan I., Bogomazova A., Martynova E., et al. (2021). Meiotic synapsis of homeologous chromosomes and mismatch repair protein detection in the parthenogenetic rock lizard Darevskia unisexualis . Mol. Reprod. Dev. 88 (2), 119–127. 10.1002/mrd.23450 PubMed DOI

Starostová Z., Kubička L., Golinski A., Kratochvíl L. (2013). Neither male gonadal androgens nor female reproductive costs drive development of sexual size dimorphism in lizards. J. Exp. Biol. 216 (10), 1872–1880. 10.1242/jeb.079442 PubMed DOI

Sun L., Wang J., Sang M., Jiang L., Zhao B., Cheng T., et al. (2017). Landscaping crossover interference across a genome. Trends Plant Sci. 22 (10), 894–907. 10.1016/j.tplants.2017.06.008 PubMed DOI

Turner J. M. A., Mahadevaiah S. K., Fernandez-Capetillo O., Nussenzweig A., Xu X., Deng C. X., et al. (2005). Silencing of unsynapsed meiotic chromosomes in the mouse. Nat. Genet. 37 (1), 41–47. 10.1038/ng1484 PubMed DOI

Valenzuela N., Adams D. C. (2011). Chromosome number and sex determination coevolve in turtles. Evolution 65 (6), 1808–1813. 10.1111/j.1558-5646.2011.01258.x PubMed DOI

Valenzuela N., Badenhorst D., Montiel E. E., Literman R. (2014). Molecular cytogenetic search for cryptic sex chromosomes in painted turtles Chrysemys picta . Cytogenet. Genome Res. 144 (1), 39–46. 10.1159/000366076 PubMed DOI

Valenzuela N. (2009). The painted turtle, Chrysemys picta: A model system for vertebrate evolution, ecology, and human health. Cold Spring Harb. Protoc. 4 (7), pdb.emo124–10. 10.1101/pdb.emo124 PubMed DOI

Vara C., Paytuví-Gallart A., Cuartero Y., le Dily F., Garcia F., Salvà-Castro J., et al. (2019). Three-dimensional genomic structure and cohesin occupancy correlate with transcriptional activity during spermatogenesis. Cell Rep. 28 (2), 352–367.e9. 10.1016/j.celrep.2019.06.037 PubMed DOI PMC

Vara C., Ruiz-Herrera A. (2022). Unpacking chromatin remodelling in germ cells: Implications for development and evolution. Trends Genet. 38 (5), 422–425. 10.1016/j.tig.2021.10.007 PubMed DOI

Viera A., Parra M. T., Rufas J. S., Page J. (2017). Transcription reactivation during the first meiotic prophase in bugs is not dependent on synapsis. Chromosoma 126 (1), 179–194. 10.1007/s00412-016-0577-6 PubMed DOI

Wang S., Veller C., Sun F., Ruiz-Herrera A., Shang Y., Liu H., et al. (2019). Per-nucleus crossover covariation and implications for evolution. Cell 177 (2), 326–338.e16. 10.1016/j.cell.2019.02.021 PubMed DOI PMC

Waters P. D., Patel H. R., Ruiz-Herrera A., Álvarez-González L., Lister N. C., Simakov O., et al. (2021). Microchromosomes are building blocks of bird, reptile and mammal chromosomes. Proc. Natl. Acad. Sci. U. S. A. 118 (45), 1e2112494118–30. 10.1073/pnas.2112494118 PubMed DOI PMC

Yamada S., Hinch A. G., Kamido H., Zhang Y., Edelmann W., Keeney S. (2020). Molecular structures and mechanisms of DNA break processing in mouse meiosis. Genes Dev. 34, 806–818. 10.1101/gad.336032.119 PubMed DOI PMC

Young M. J., O’Meally D., Sarre S. D., Georges A., Ezaz T. (2013). Molecular cytogenetic map of the central bearded dragon, Pogona vitticeps (Squamata: Agamidae). Chromosome Res. 21 (4), 361–374. 10.1007/s10577-013-9362-z PubMed DOI

Zenger K. R., McKenzie L. M., Cooper D. W. (2002). The first comprehensive genetic linkage map of a marsupial: The tammar wallaby (Macropus eugenii). Genetics 162 (1), 321–330. 10.1093/genetics/162.1.321 PubMed DOI PMC

Zickler D., Kleckner N. (2015). Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harb. Perspect. Biol. 7 (6), a016626–a016628. 10.1101/cshperspect.a016626 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...