Insertases Scramble Lipids: Molecular Simulations of MTCH2
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu preprinty, časopisecké články
Grantová podpora
R21 NS119779
NINDS NIH HHS - United States
PubMed
37645813
PubMed Central
PMC10462046
DOI
10.1101/2023.08.14.553169
PII: 2023.08.14.553169
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Scramblases play a pivotal role in facilitating bidirectional lipid transport across cell membranes, thereby influencing lipid metabolism, membrane homeostasis, and cellular signaling. MTCH2, a mitochondrial outer membrane protein insertase, has a membrane-spanning hydrophilic groove resembling those that form the lipid transit pathway in known scramblases. Employing both coarse-grained and atomistic molecular dynamics simulations, we show that MTCH2 significantly reduces the free energy barrier for lipid movement along the groove and therefore can indeed function as a scramblase. Notably, the scrambling rate of MTCH2 in silico is similar to that of VDAC, a recently discovered scramblase of the outer mitochondrial membrane, suggesting a potential complementary physiological role for these mitochondrial proteins. Finally, our findings suggest that other insertases which possess a hydrophilic path across the membrane like MTCH2, can also function as scramblases.
Zobrazit více v PubMed
Pomorski T.; Menon A. K. Lipid flippases and their biological functions. Cellular and Molecular Life Sciences CMLS 2006, 63, 2908–2921. PubMed PMC
Sakuragi T.; Nagata S. Regulation of phospholipid distribution in the lipid bilayer by flippases and scramblases. Nature Reviews Molecular Cell Biology 2023, 24, 576–596. PubMed PMC
Kalienkova V.; Clerico Mosina V.; Paulino C. The Groovy TMEM16 Family: Molecular Mechanisms of Lipid Scrambling and Ion Conduction. Journal of Molecular Biology 2021, 433, 166941. PubMed
Khelashvili G.; Menon A. K. Phospholipid Scrambling by G Protein–Coupled Receptors. Annual Review of Biophysics 2022, 51. PubMed PMC
Okawa F.; Hama Y.; Zhang S.; Morishita H.; Yamamoto H.; Levine T. P.; Mizushima N. Evolution and insights into the structure and function of the DedA superfamily containing TMEM41B and VMP1. Journal of Cell Science 2021, 134, jcs255877. PubMed
Wang Y.; Menon A. K.; Maki Y.; Liu Y.-S.; Iwasaki Y.; Fujita M.; Guerrero P. A.; Silva D. V.; Seeberger P. H.; Murakami Y. et al. Genome-wide CRISPR screen reveals CLPTM1L as a lipid scramblase required for efficient glycosylphosphatidylinositol biosynthesis. Proceedings of the National Academy of Sciences 2022, 119, e2115083119. PubMed PMC
Jahn H.; Bartoš L.; Dearden G. I.; Dittman J. S.; Holthuis J. C. M.; Vácha R.; Menon A. K. Phospholipids are imported into mitochondria by VDAC, a dimeric beta barrel scramblase. bioRxiv 2023, PubMed PMC
Kizmaz B.; Herrmann J. M. Membrane insertases at a glance. Journal of Cell Science 2023, 136, jcs261219. PubMed
Wu X.; Rapoport T. A. Translocation of Proteins through a Distorted Lipid Bilayer. Trends in Cell Biology 2021, 31, 473–484. PubMed PMC
Guna A.; Stevens T. A.; Inglis A. J.; Replogle J. M.; Esantsi T. K.; Muthukumar G.; Shaffer K. C. L.; Wang M. L.; Pogson A. N.; Jones J. J. et al. MTCH2 is a mitochondrial outer membrane protein insertase. Science 2022, 378, 317–322. PubMed PMC
Jumper J.; Evans R.; Pritzel A.; Green T.; Figurnov M.; Ronneberger O.; Tunyasuvunakool K.; Bates R.; Žídek A.; Potapenko A. et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. PubMed PMC
Varadi M.; Anyango S.; Deshpande M.; Nair S.; Natassia C.; Yordanova G.; Yuan D.; Stroe O.; Wood G.; Laydon A. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research 2022, 50, D439–D444. PubMed PMC
Souza P. C. T.; Alessandri R.; Barnoud J.; Thallmair S.; Faustino I.; Grunewald F.; Patmanidis I.; Abdizadeh H.; Bruininks B. M. H.; Wassenaar T. A. et al. Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nature Methods 2021, 18, 382–388. PubMed
Brunner J. D.; Lim N. K.; Schenck S.; Duerst A.; Dutzler R. X-ray structure of a calcium-activated TMEM16 lipid scramblase. Nature 2014, 516, 207–212. PubMed
Morra G.; Razavi A. M.; Pandey K.; Weinstein H.; Menon A. K.; Khelashvili G. Mechanisms of Lipid Scrambling by the G Protein-Coupled Receptor Opsin. Structure 2018, 26, 356–367.e3. PubMed PMC
Marrink S. J.; Risselada H. J.; Yefimov S.; Tieleman D. P.; de Vries A. H. The MARTINI Force Field: Coarse Grained Model for Biomolecular Simulations. The Journal of Physical Chemistry B 2007, 111, 7812–7824. PubMed
Monticelli L.; Kandasamy S. K.; Periole X.; Larson R. G.; Tieleman D. P.; Marrink S.-J. The MARTINI Coarse-Grained Force Field: Extension to Proteins. Journal of Chemical Theory and Computation 2008, 4, 819–834. PubMed
de Jong D. H.; Singh G.; Bennett W. F. D.; Arnarez C.; Wassenaar T. A.; Schafer L. V.; Periole X.; Tieleman D. P.; Marrink S. J. Improved Parameters for the Martini Coarse-Grained Protein Force Field. Journal of Chemical Theory and Computation 2013, 9, 687–697. PubMed
Huang J.; Rauscher S.; Nawrocki G.; Ran T.; Feig M.; de Groot B. L.; Grub-müller H.; MacKerell A. D. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nature Methods 2017, 14, 71–73. PubMed PMC
Li D.; Rocha-Roa C.; Schilling M. A.; Reinisch K. M.; Vanni S. Lipid scrambling is a general feature of protein insertases. bioRxiv 2023, PubMed PMC
Kubelt J.; Menon A. K.; Müller P.; Herrmann A. Transbilayer Movement of Fluorescent Phospholipid Analogues in the Cytoplasmic Membrane of Escherichia coli. Biochemistry 2002, 41, 5605–5612. PubMed
Chang Q.-l.; Gummadi S. N.; Menon A. K. Chemical Modification Identifies Two Populations of Glycerophospholipid Flippase in Rat Liver ER. Biochemistry 2004, 43, 10710–10718. PubMed
Abraham M. J.; Murtola T.; Schulz R.; Páll S.; Smith J. C.; Hess B.; Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1-2, 19–25.
Tribello G. A.; Bonomi M.; Branduardi D.; Camilloni C.; Bussi G. PLUMED 2: New feathers for an old bird. Computer Physics Communications 2014, 185, 604–613.
Jo S.; Kim T.; Iyer V. G.; Im W. CHARMM-GUI: A web-based graphical user interface for CHARMM. Journal of Computational Chemistry 2008, 29, 1859–1865. PubMed
Humphrey W.; Dalke A.; Schulten K. VMD: Visual molecular dynamics. Journal of Molecular Graphics 1996, 14, 33–38. PubMed
Kroon P. C.; Grunewald F.; Barnoud J.; Tilburg M. v.; Souza P. C. T.; Wassenaar T. A.; Marrink S. J. Martinize2 and Vermouth: Unified Framework for Topology Generation. eLife 2023, 12, RP90627.
Wassenaar T. A.; Ingólfsson H. I.; Böckmann R. A.; Tieleman D. P.; Marrink S. J. Computational Lipidomics with insane : A Versatile Tool for Generating Custom Membranes for Molecular Simulations. Journal of Chemical Theory and Computation 2015, 11, 2144–2155. PubMed
Lindorff-Larsen K.; Piana S.; Palmo K.; Maragakis P.; Klepeis J. L.; Dror R. O.; Shaw D. E. Improved side-chain torsion potentials for the Amber ff99SB protein force field: Improved Protein Side-Chain Potentials. Proteins: Structure, Function, and Bioinformatics 2010, 78, 1950–1958. PubMed PMC
Periole X.; Cavalli M.; Marrink S.-J.; Ceruso M. A. Combining an Elastic Network With a Coarse-Grained Molecular Force Field: Structure, Dynamics, and Intermolecular Recognition. Journal of Chemical Theory and Computation 2009, 5, 2531–2543. PubMed
Berendsen H. J. C.; Postma J. P. M.; van Gunsteren W. F.; DiNola A.; Haak J. R. Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics 1984, 81, 3684–3690.
Parrinello M.; Rahman A. Crystal Structure and Pair Potentials: A Molecular-Dynamics Study. Physical Review Letters 1980, 45, 1196–1199.
Parrinello M.; Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics 1981, 52, 7182–7190.
Bussi G.; Donadio D.; Parrinello M. Canonical sampling through velocity rescaling. The Journal of Chemical Physics 2007, 126, 014101. PubMed
Hess B.; Bekker H.; Berendsen H. J. C.; Fraaije J. G. E. M. LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry 1997, 18, 1463–1472.
Thallmair S.; Javanainen M.; Fábián B.; Martinez-Seara H.; Marrink S. J. Non-converged Constraints Cause Artificial Temperature Gradients in Lipid Bilayer Simulations. The Journal of Physical Chemistry B 2021, 125, 9537–9546. PubMed PMC
Torrie G.; Valleau J. Monte Carlo free energy estimates using non-Boltzmann sampling: Application to the sub-critical Lennard-Jones fluid. Chemical Physics Letters 1974, 28, 578–581.
Torrie G.; Valleau J. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. Journal of Computational Physics 1977, 23, 187–199.
Fukunishi H.; Watanabe O.; Takada S. On the Hamiltonian replica exchange method for efficient sampling of biomolecular systems: Application to protein structure prediction. The Journal of Chemical Physics 2002, 116, 9058–9067.
Kumar S.; Rosenberg J. M.; Bouzida D.; Swendsen R. H.; Kollman P. A. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. Journal of Computational Chemistry 1992, 13, 1011–1021.
Souaille M.; Roux B. Extension to the weighted histogram analysis method: combining umbrella sampling with free energy calculations. Computer Physics Communications 2001, 135, 40–57.
Essmann U.; Perera L.; Berkowitz M. L.; Darden T.; Lee H.; Pedersen L. G. A smooth particle mesh Ewald method. The Journal of Chemical Physics 1995, 103, 8577–8593.