Contrasting patterns in phylogenetic and biogeographic factories of invasive grasses (Poaceae) across the globe
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
39242679
PubMed Central
PMC11332090
DOI
10.1038/s44185-023-00016-4
PII: 10.1038/s44185-023-00016-4
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Grasses (Family Poaceae) are among the most successful invasive plants in the world. Here we evaluate phylogenetic and biogeographic patterns of emergence of naturalized and invasive species among grasses globally. In our data, circa 19% of the grasses are currently catalogued as invasive and almost 38% are listed as naturalized; these are among the highest ratios for single families of organisms. Remarkably, most tribes of grasses contain numerous naturalized and invasive species, suggesting that the invasion success is rooted broadly in ancestral traits in the Poaceae. Moreover, the probability of invasiveness is positively related to the diversification rates in the family also suggesting a link with recent radiation events. The phylogenetic distribution of the invasive condition is neither strongly conserved nor purely random. Phylogenetic clumping levels also vary between Poaceae subclades. We postulate that this diffuse clumping could be partially attributed to the expression of labile traits that contribute to species invasiveness. In addition, floristic regions (biomes and biogeographic realms) have different proportions of invasive species, with the temperate Palearctic region having the highest ratio of invasive vs. non-invasive species. The phylodiversity of aliens across regions is also variable in space. Comparison of alien phylodiversity levels across biogeographic realms and biomes reveals regions producing highly restricted invasive lineages and others where the diversity of aliens exported is no different from global mean diversity levels in grasses. Elucidating the evolutionary patterns and drivers of invasiveness is useful for understanding and managing invasions, with the low phylogenetic structure of alien grasses warning of their overall high invasiveness potential.
Department of Plant and Soil Sciences University of Pretoria Pretoria South Africa
PIBi Lab Departamento de Biologia Universidade Federal do Sergipe São Cristovão Brazil
Zobrazit více v PubMed
van Kleunen, M. et al. Global exchange and accumulation of non-native plants. Nature525, 100–103 (2015). 10.1038/nature14910 PubMed DOI
Pejchar, L. & Mooney, H. A. Invasive species, ecosystem services and human well-being. Trends Ecol. Evol.24, 497–504 (2009). 10.1016/j.tree.2009.03.016 PubMed DOI
Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev.95, 1511–1534 (2020). 10.1111/brv.12627 PubMed DOI PMC
Van Kleunen, M., Weber, E. & Fischer, M. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol. Lett.13, 235–245 (2010). 10.1111/j.1461-0248.2009.01418.x PubMed DOI
Cadotte, M. W., Hamilton, M. A. & Murray, B. R. Phylogenetic relatedness and plant invader success across two spatial scales. Divers. Distrib.15, 481–488 (2009).10.1111/j.1472-4642.2009.00560.x DOI
Cadotte, M. W., Murray, B. R. & Lovett-Doust, J. Evolutionary and ecological influences of plant invader success in the flora of Ontario. Ecoscience13, 388–395 (2006).10.2980/i1195-6860-13-3-388.1 DOI
Omer, A. et al. The role of phylogenetic relatedness on alien plant success depends on the stage of invasion. Nat. Plants8, 906–914 (2022). 10.1038/s41477-022-01216-9 PubMed DOI
Linder, H. P., Lehmann, C. E. R., Archibald, S., Osborne, C. P. & Richardson, D. M. Global grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation. Biol. Rev.93, 1125–1144 (2018). 10.1111/brv.12388 PubMed DOI
Ávila-Lovera, E., Winter, K. & Goldsmith, G. R. Evidence for phylogenetic signal and correlated evolution in plant–water relation traits. New Phytol.237, 392–407 (2023). 10.1111/nph.18565 PubMed DOI
Ackerly, D. Conservatism and diversification of plant functional traits: Evolutionary rates versus phylogenetic signal. Proc. Natl Acad. Sci. USA106, 19699–19706 (2009). 10.1073/pnas.0901635106 PubMed DOI PMC
Lockwood, J. L. Using taxonomy to predict success among introduced avifauna: relative importance of transport and establishment. Conserv. Biol.13, 560–567 (1999).10.1046/j.1523-1739.1999.98155.x DOI
Pigot, A. L. et al. Species invasions and the phylogenetic signal in geographical range size. Global Ecol. Biogeogr.27, 1080–1092 (2018).10.1111/geb.12768 DOI
Levin, D. A. Ecological speciation: lessons from invasive species. Syst. Bot.28, 643–650 (2003). 648.
Hodkinson, T. R. Annual Plant Reviews online Evolution and Taxonomy of the Grasses (Poaceae): A Model Family for the Study of Species-Rich Groups. Annu. Plant Rev. Online 255–294 (2018).
Soreng, R. J. et al. A worldwide phylogenetic classification of the Poaceae (Gramineae) II: an update and a comparison of two 2015 classifications. J. Syst. Evol.55, 259–290 (2017).10.1111/jse.12262 DOI
Taylor, S. H. et al. Ecophysiological traits in C3 and C4 grasses: a phylogenetically controlled screening experiment. New Phytol.185, 780–791 (2010). 10.1111/j.1469-8137.2009.03102.x PubMed DOI
Hamilton, M. A. et al. Life-history correlates of plant invasiveness at regional and continental scales. Ecol. Lett.8, 1066–1074 (2005).10.1111/j.1461-0248.2005.00809.x DOI
Pyšek, P. Is there a taxonomic pattern to plant invasions? Oikos82, 282–294 (1998).10.2307/3546968 DOI
Radosevich, S. R., Stubbs, M. M. & Ghersa, C. M. Plant invasions: process and patterns. Weed Sci.51, 254–259 (2003).10.1614/0043-1745(2003)051[0254:PIPAP]2.0.CO;2 DOI
Grutters, B. M. C. et al. Growth strategy, phylogeny and stoichiometry determine the allelopathic potential of native and non-native plants. Oikos126, 1770–1779 (2017).10.1111/oik.03956 DOI
Fritz, S. A. & Purvis, A. Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conserv. Biol.24, 1042–1051 (2010). 10.1111/j.1523-1739.2010.01455.x PubMed DOI
Visser, V. et al. Much more give than take: South Africa as a major donor but infrequent recipient of invasive non-native grasses. Global Ecol. Biogeogr.25, 679–692 (2016).10.1111/geb.12445 DOI
Pyšek, P. et al. In Biological Invasions in South Africa (eds B. W. van Wilgen et al.) 759–785 (Springer International Publishing, 2020).
Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv.61, 1–10 (1992).10.1016/0006-3207(92)91201-3 DOI
van Kleunen, M. et al. The changing role of ornamental horticulture in alien plant invasions. Biol. Rev.93, 1421–1437 (2018). 10.1111/brv.12402 PubMed DOI
Early, R. et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun.7, 12485 (2016). 10.1038/ncomms12485 PubMed DOI PMC
Williams, E. W., Barak, R. S., Kramer, M., Hipp, A. L. & Larkin, D. J. In tallgrass prairie restorations, relatedness influences neighborhood-scale plant invasion while resource availability influences site-scale invasion. Basic Appl. Ecol.33, 37–48 (2018).10.1016/j.baae.2018.10.001 DOI
Qian, H. & Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol.9, 233–239 (2015).10.1093/jpe/rtv047 DOI
van Kleunen, M. et al. The Global Naturalized Alien Flora (GloNAF) database. Ecology100, e02542 (2019). 10.1002/ecy.2542 PubMed DOI
Richardson, D. M. et al. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib.6, 93–107 (2000).10.1046/j.1472-4642.2000.00083.x DOI
Kamilar, J. M. & Cooper, N. Phylogenetic signal in primate behaviour, ecology and life history. Philos. Trans. R. Soc. B: Biol. Sci.368, 20120341 (2013).10.1098/rstb.2012.0341 PubMed DOI PMC
Kia, S. H. et al. Influence of phylogenetic conservatism and trait convergence on the interactions between fungal root endophytes and plants. ISME J.11, 777–790 (2017). 10.1038/ismej.2016.140 PubMed DOI PMC
Canavan, S., Richardson, D. M., Le Roux, J. J. & Wilson, J. R. U. Alien bamboos in South Africa: a socio-historical perspective. Hum. Ecol.47, 121–133 (2019).10.1007/s10745-018-0041-8 DOI
Zimmermann, H., Brandt, P., Fischer, J., Welk, E. & von Wehrden, H. The Human Release Hypothesis for biological invasions: human activity as a determinant of the abundance of invasive plant species. F1000Res3, 109 (2014). 10.12688/f1000research.3740.1 PubMed DOI PMC
Ellis, E. C. & Ramankutty, N. Putting people in the map: anthropogenic biomes of the world. Front. Ecol. Environ.6, 439–447 (2008).10.1890/070062 DOI
Xu, H. et al. An inventory of invasive alien species in China. NeoBiota15, 10.3897/neobiota.15.3575 (2012).
Pertierra, L. R. et al. Global thermal niche models of two European grasses show high invasion risks in Antarctica. Global Change Biol.23, 2863–2873 (2017).10.1111/gcb.13596 PubMed DOI
Canavan, S., Richardson, D. M., Le Roux, J. J., Kelchner, S. A. & Wilson, J. R. U. The status of alien bamboos in South Africa. S. Afr. J. Bot.138, 33–40 (2021).10.1016/j.sajb.2020.11.027 DOI
Miller, J. T. et al. Is invasion success of Australian trees mediated by their native biogeography, phylogenetic history, or both? AoB Plants9, 10.1093/aobpla/plw080 (2016). PubMed PMC
Qian, H., Chen, S. & Zhang, J.-L. Disentangling environmental and spatial effects on phylogenetic structure of angiosperm tree communities in China. Sci. Rep.7, 5634 (2017). 10.1038/s41598-017-04679-5 PubMed DOI PMC
Weber, E., Sun, S.-G. & Li, B. Invasive alien plants in China: diversity and ecological insights. Biol. Invasions10, 1411–1429 (2008).10.1007/s10530-008-9216-3 DOI
Gonzalez-Voyer, A. & von Hardenberg, A. In Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology: Concepts and Practice (ed. Garamszegi, L. Z.) 201–229 (Springer, Berlin, Heidelberg, 2014).
Olalla-Tárraga, M. Á., Torres-Romero, E. J., Amado, T. F. & Martinez, P. A. Phylogenetic path analysis reveals the importance of niche-related biological traits on geographic range size in mammals. Global Change Biol.21, 3194–3196 (2015).10.1111/gcb.12971 PubMed DOI
Soreng, R. J. et al. A worldwide phylogenetic classification of the Poaceae (Gramineae). J. Syst. Evol.53, 117–137 (2015).10.1111/jse.12150 DOI
Lonsdale, W. M. Global patterns of plant invasions and the concept of invasibility. Ecology80, 1522–1536 (1999).10.1890/0012-9658(1999)080[1522:GPOPIA]2.0.CO;2 DOI
Pyšek, P. & Richardson, D. M. Invasive species, environmental change and management, and health. Annu. Rev. Environ. Resour.35, 25–55 (2010).10.1146/annurev-environ-033009-095548 DOI
Klinger, R. & Brooks, M. Alternative pathways to landscape transformation: invasive grasses, burn severity and fire frequency in arid ecosystems. J. Ecol.105, 1521–1533 (2017).10.1111/1365-2745.12863 DOI
Simpson, K. J. et al. Resprouting grasses are associated with less frequent fire than seeders. New Phytol.230, 832–844 (2021). 10.1111/nph.17069 PubMed DOI PMC
Visser, V. et al. Grasses as invasive plants in South Africa revisited: patterns, pathways and management. 47, 10.4102/abc.v47i2.2169 (2017).
Almeida, W. R., Lopes, A. V., Tabarelli, M. & Leal, I. R. The alien flora of Brazilian Caatinga: deliberate introductions expand the contingent of potential invaders. Biol. Invasion17, 51–56 (2015).10.1007/s10530-014-0738-6 DOI
Brooks, K. J., Setterfield, S. A. & Douglas, M. M. Exotic grass invasions: applying a conceptual framework to the dynamics of degradation and restoration in Australia’s tropical Savannas. Restor. Ecol.18, 188–197 (2010).10.1111/j.1526-100X.2008.00470.x DOI
Ens, E., Hutley, L. B., Rossiter-Rachor, N. A., Douglas, M. M. & Setterfield, S. A. Resource-use efficiency explains grassy weed invasion in a low-resource savanna in north Australia. Front. Plant Sci.6, 10.3389/fpls.2015.00560 (2015). PubMed PMC
Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics35, 526–528 (2019). 10.1093/bioinformatics/bty633 PubMed DOI
Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol.3, 217–223 (2012).10.1111/j.2041-210X.2011.00169.x DOI
Rabosky, D. L. et al. BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol.5, 701–707 (2014).10.1111/2041-210X.12199 DOI
Ives, A. R. & Garland, T. Jr Phylogenetic logistic regression for binary dependent variables. Syst. Biol.59, 9–26 (2009). 10.1093/sysbio/syp074 PubMed DOI
Tung Ho, L. S. & Ané, C. A linear-time algorithm for Gaussian and Non-Gaussian trait evolution models. Syst. Biol.63, 397–408 (2014). 10.1093/sysbio/syu005 PubMed DOI
Olson, D. M. et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience51, 933–938 (2001).10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 DOI
Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics26, 1463–1464 (2010). 10.1093/bioinformatics/btq166 PubMed DOI