Contrasting patterns in phylogenetic and biogeographic factories of invasive grasses (Poaceae) across the globe

. 2023 May 18 ; 2 (1) : 11. [epub] 20230518

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39242679
Odkazy

PubMed 39242679
PubMed Central PMC11332090
DOI 10.1038/s44185-023-00016-4
PII: 10.1038/s44185-023-00016-4
Knihovny.cz E-zdroje

Grasses (Family Poaceae) are among the most successful invasive plants in the world. Here we evaluate phylogenetic and biogeographic patterns of emergence of naturalized and invasive species among grasses globally. In our data, circa 19% of the grasses are currently catalogued as invasive and almost 38% are listed as naturalized; these are among the highest ratios for single families of organisms. Remarkably, most tribes of grasses contain numerous naturalized and invasive species, suggesting that the invasion success is rooted broadly in ancestral traits in the Poaceae. Moreover, the probability of invasiveness is positively related to the diversification rates in the family also suggesting a link with recent radiation events. The phylogenetic distribution of the invasive condition is neither strongly conserved nor purely random. Phylogenetic clumping levels also vary between Poaceae subclades. We postulate that this diffuse clumping could be partially attributed to the expression of labile traits that contribute to species invasiveness. In addition, floristic regions (biomes and biogeographic realms) have different proportions of invasive species, with the temperate Palearctic region having the highest ratio of invasive vs. non-invasive species. The phylodiversity of aliens across regions is also variable in space. Comparison of alien phylodiversity levels across biogeographic realms and biomes reveals regions producing highly restricted invasive lineages and others where the diversity of aliens exported is no different from global mean diversity levels in grasses. Elucidating the evolutionary patterns and drivers of invasiveness is useful for understanding and managing invasions, with the low phylogenetic structure of alien grasses warning of their overall high invasiveness potential.

Zobrazit více v PubMed

van Kleunen, M. et al. Global exchange and accumulation of non-native plants. Nature525, 100–103 (2015). 10.1038/nature14910 PubMed DOI

Pejchar, L. & Mooney, H. A. Invasive species, ecosystem services and human well-being. Trends Ecol. Evol.24, 497–504 (2009). 10.1016/j.tree.2009.03.016 PubMed DOI

Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev.95, 1511–1534 (2020). 10.1111/brv.12627 PubMed DOI PMC

Van Kleunen, M., Weber, E. & Fischer, M. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol. Lett.13, 235–245 (2010). 10.1111/j.1461-0248.2009.01418.x PubMed DOI

Cadotte, M. W., Hamilton, M. A. & Murray, B. R. Phylogenetic relatedness and plant invader success across two spatial scales. Divers. Distrib.15, 481–488 (2009).10.1111/j.1472-4642.2009.00560.x DOI

Cadotte, M. W., Murray, B. R. & Lovett-Doust, J. Evolutionary and ecological influences of plant invader success in the flora of Ontario. Ecoscience13, 388–395 (2006).10.2980/i1195-6860-13-3-388.1 DOI

Omer, A. et al. The role of phylogenetic relatedness on alien plant success depends on the stage of invasion. Nat. Plants8, 906–914 (2022). 10.1038/s41477-022-01216-9 PubMed DOI

Linder, H. P., Lehmann, C. E. R., Archibald, S., Osborne, C. P. & Richardson, D. M. Global grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation. Biol. Rev.93, 1125–1144 (2018). 10.1111/brv.12388 PubMed DOI

Ávila-Lovera, E., Winter, K. & Goldsmith, G. R. Evidence for phylogenetic signal and correlated evolution in plant–water relation traits. New Phytol.237, 392–407 (2023). 10.1111/nph.18565 PubMed DOI

Ackerly, D. Conservatism and diversification of plant functional traits: Evolutionary rates versus phylogenetic signal. Proc. Natl Acad. Sci. USA106, 19699–19706 (2009). 10.1073/pnas.0901635106 PubMed DOI PMC

Lockwood, J. L. Using taxonomy to predict success among introduced avifauna: relative importance of transport and establishment. Conserv. Biol.13, 560–567 (1999).10.1046/j.1523-1739.1999.98155.x DOI

Pigot, A. L. et al. Species invasions and the phylogenetic signal in geographical range size. Global Ecol. Biogeogr.27, 1080–1092 (2018).10.1111/geb.12768 DOI

Levin, D. A. Ecological speciation: lessons from invasive species. Syst. Bot.28, 643–650 (2003). 648.

Hodkinson, T. R. Annual Plant Reviews online Evolution and Taxonomy of the Grasses (Poaceae): A Model Family for the Study of Species-Rich Groups. Annu. Plant Rev. Online 255–294 (2018).

Soreng, R. J. et al. A worldwide phylogenetic classification of the Poaceae (Gramineae) II: an update and a comparison of two 2015 classifications. J. Syst. Evol.55, 259–290 (2017).10.1111/jse.12262 DOI

Taylor, S. H. et al. Ecophysiological traits in C3 and C4 grasses: a phylogenetically controlled screening experiment. New Phytol.185, 780–791 (2010). 10.1111/j.1469-8137.2009.03102.x PubMed DOI

Hamilton, M. A. et al. Life-history correlates of plant invasiveness at regional and continental scales. Ecol. Lett.8, 1066–1074 (2005).10.1111/j.1461-0248.2005.00809.x DOI

Pyšek, P. Is there a taxonomic pattern to plant invasions? Oikos82, 282–294 (1998).10.2307/3546968 DOI

Radosevich, S. R., Stubbs, M. M. & Ghersa, C. M. Plant invasions: process and patterns. Weed Sci.51, 254–259 (2003).10.1614/0043-1745(2003)051[0254:PIPAP]2.0.CO;2 DOI

Grutters, B. M. C. et al. Growth strategy, phylogeny and stoichiometry determine the allelopathic potential of native and non-native plants. Oikos126, 1770–1779 (2017).10.1111/oik.03956 DOI

Fritz, S. A. & Purvis, A. Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conserv. Biol.24, 1042–1051 (2010). 10.1111/j.1523-1739.2010.01455.x PubMed DOI

Visser, V. et al. Much more give than take: South Africa as a major donor but infrequent recipient of invasive non-native grasses. Global Ecol. Biogeogr.25, 679–692 (2016).10.1111/geb.12445 DOI

Pyšek, P. et al. In Biological Invasions in South Africa (eds B. W. van Wilgen et al.) 759–785 (Springer International Publishing, 2020).

Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv.61, 1–10 (1992).10.1016/0006-3207(92)91201-3 DOI

van Kleunen, M. et al. The changing role of ornamental horticulture in alien plant invasions. Biol. Rev.93, 1421–1437 (2018). 10.1111/brv.12402 PubMed DOI

Early, R. et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun.7, 12485 (2016). 10.1038/ncomms12485 PubMed DOI PMC

Williams, E. W., Barak, R. S., Kramer, M., Hipp, A. L. & Larkin, D. J. In tallgrass prairie restorations, relatedness influences neighborhood-scale plant invasion while resource availability influences site-scale invasion. Basic Appl. Ecol.33, 37–48 (2018).10.1016/j.baae.2018.10.001 DOI

Qian, H. & Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol.9, 233–239 (2015).10.1093/jpe/rtv047 DOI

van Kleunen, M. et al. The Global Naturalized Alien Flora (GloNAF) database. Ecology100, e02542 (2019). 10.1002/ecy.2542 PubMed DOI

Richardson, D. M. et al. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib.6, 93–107 (2000).10.1046/j.1472-4642.2000.00083.x DOI

Kamilar, J. M. & Cooper, N. Phylogenetic signal in primate behaviour, ecology and life history. Philos. Trans. R. Soc. B: Biol. Sci.368, 20120341 (2013).10.1098/rstb.2012.0341 PubMed DOI PMC

Kia, S. H. et al. Influence of phylogenetic conservatism and trait convergence on the interactions between fungal root endophytes and plants. ISME J.11, 777–790 (2017). 10.1038/ismej.2016.140 PubMed DOI PMC

Canavan, S., Richardson, D. M., Le Roux, J. J. & Wilson, J. R. U. Alien bamboos in South Africa: a socio-historical perspective. Hum. Ecol.47, 121–133 (2019).10.1007/s10745-018-0041-8 DOI

Zimmermann, H., Brandt, P., Fischer, J., Welk, E. & von Wehrden, H. The Human Release Hypothesis for biological invasions: human activity as a determinant of the abundance of invasive plant species. F1000Res3, 109 (2014). 10.12688/f1000research.3740.1 PubMed DOI PMC

Ellis, E. C. & Ramankutty, N. Putting people in the map: anthropogenic biomes of the world. Front. Ecol. Environ.6, 439–447 (2008).10.1890/070062 DOI

Xu, H. et al. An inventory of invasive alien species in China. NeoBiota15, 10.3897/neobiota.15.3575 (2012).

Pertierra, L. R. et al. Global thermal niche models of two European grasses show high invasion risks in Antarctica. Global Change Biol.23, 2863–2873 (2017).10.1111/gcb.13596 PubMed DOI

Canavan, S., Richardson, D. M., Le Roux, J. J., Kelchner, S. A. & Wilson, J. R. U. The status of alien bamboos in South Africa. S. Afr. J. Bot.138, 33–40 (2021).10.1016/j.sajb.2020.11.027 DOI

Miller, J. T. et al. Is invasion success of Australian trees mediated by their native biogeography, phylogenetic history, or both? AoB Plants9, 10.1093/aobpla/plw080 (2016). PubMed PMC

Qian, H., Chen, S. & Zhang, J.-L. Disentangling environmental and spatial effects on phylogenetic structure of angiosperm tree communities in China. Sci. Rep.7, 5634 (2017). 10.1038/s41598-017-04679-5 PubMed DOI PMC

Weber, E., Sun, S.-G. & Li, B. Invasive alien plants in China: diversity and ecological insights. Biol. Invasions10, 1411–1429 (2008).10.1007/s10530-008-9216-3 DOI

Gonzalez-Voyer, A. & von Hardenberg, A. In Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology: Concepts and Practice (ed. Garamszegi, L. Z.) 201–229 (Springer, Berlin, Heidelberg, 2014).

Olalla-Tárraga, M. Á., Torres-Romero, E. J., Amado, T. F. & Martinez, P. A. Phylogenetic path analysis reveals the importance of niche-related biological traits on geographic range size in mammals. Global Change Biol.21, 3194–3196 (2015).10.1111/gcb.12971 PubMed DOI

Soreng, R. J. et al. A worldwide phylogenetic classification of the Poaceae (Gramineae). J. Syst. Evol.53, 117–137 (2015).10.1111/jse.12150 DOI

Lonsdale, W. M. Global patterns of plant invasions and the concept of invasibility. Ecology80, 1522–1536 (1999).10.1890/0012-9658(1999)080[1522:GPOPIA]2.0.CO;2 DOI

Pyšek, P. & Richardson, D. M. Invasive species, environmental change and management, and health. Annu. Rev. Environ. Resour.35, 25–55 (2010).10.1146/annurev-environ-033009-095548 DOI

Klinger, R. & Brooks, M. Alternative pathways to landscape transformation: invasive grasses, burn severity and fire frequency in arid ecosystems. J. Ecol.105, 1521–1533 (2017).10.1111/1365-2745.12863 DOI

Simpson, K. J. et al. Resprouting grasses are associated with less frequent fire than seeders. New Phytol.230, 832–844 (2021). 10.1111/nph.17069 PubMed DOI PMC

Visser, V. et al. Grasses as invasive plants in South Africa revisited: patterns, pathways and management. 47, 10.4102/abc.v47i2.2169 (2017).

Almeida, W. R., Lopes, A. V., Tabarelli, M. & Leal, I. R. The alien flora of Brazilian Caatinga: deliberate introductions expand the contingent of potential invaders. Biol. Invasion17, 51–56 (2015).10.1007/s10530-014-0738-6 DOI

Brooks, K. J., Setterfield, S. A. & Douglas, M. M. Exotic grass invasions: applying a conceptual framework to the dynamics of degradation and restoration in Australia’s tropical Savannas. Restor. Ecol.18, 188–197 (2010).10.1111/j.1526-100X.2008.00470.x DOI

Ens, E., Hutley, L. B., Rossiter-Rachor, N. A., Douglas, M. M. & Setterfield, S. A. Resource-use efficiency explains grassy weed invasion in a low-resource savanna in north Australia. Front. Plant Sci.6, 10.3389/fpls.2015.00560 (2015). PubMed PMC

Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics35, 526–528 (2019). 10.1093/bioinformatics/bty633 PubMed DOI

Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol.3, 217–223 (2012).10.1111/j.2041-210X.2011.00169.x DOI

Rabosky, D. L. et al. BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol.5, 701–707 (2014).10.1111/2041-210X.12199 DOI

Ives, A. R. & Garland, T. Jr Phylogenetic logistic regression for binary dependent variables. Syst. Biol.59, 9–26 (2009). 10.1093/sysbio/syp074 PubMed DOI

Tung Ho, L. S. & Ané, C. A linear-time algorithm for Gaussian and Non-Gaussian trait evolution models. Syst. Biol.63, 397–408 (2014). 10.1093/sysbio/syu005 PubMed DOI

Olson, D. M. et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience51, 933–938 (2001).10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 DOI

Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics26, 1463–1464 (2010). 10.1093/bioinformatics/btq166 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...