Noninvasive determination of toxic stress biomarkers by high-throughput screening of photoautotrophic cell suspension cultures with multicolor fluorescence imaging

. 2019 ; 15 () : 100. [epub] 20190824

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31462906

BACKGROUND: With increasing pollution, herbicide application and interest in plant phenotyping, sensors capturing early responses to toxic stress are demanded for screening susceptible or resistant plant varieties. Standard toxicity tests on plants are laborious, demanding in terms of space and material, and the measurement of growth-inhibition based endpoints takes relatively long time. The aim of this work was to explore the potential of photoautotrophic cell suspension cultures for high-throughput early toxicity screening based on imaging techniques. The investigation of the universal potential of fluorescence imaging methods involved testing of three toxicants with different modes of action (DCMU, glyphosate and chromium). RESULTS: The increased pace of testing was achieved by using non-destructive imaging methods-multicolor fluorescence (MCF) and chlorophyll fluorescence (ChlF). These methods detected the negative effects of the toxicants earlier than it was reflected in plant growth inhibition (decrease in leaf area and final dry weight). Moreover, more subtle and transient effects not resulting in growth inhibition could be detected by fluorescence. The pace and sensitivity of stress detection was further enhanced by using photoautotrophic cell suspension cultures. These reacted sooner, more pronouncedly and to lower concentrations of the tested toxicants than the plants. Toxicant-specific stress signatures were observed as a combination of MCF and ChlF parameters and timing of the response. Principal component analysis was found to be useful for reduction of the collected multidimensional data sets to a few informative parameters allowing comparison of the toxicant signatures. CONCLUSIONS: Photoautotrophic cell suspension cultures have proved to be useful for rapid high-throughput screening of toxic stress and display a potential for employment as an alternative to tests on whole plants. The MCF and ChlF methods are capable of distinguishing early stress signatures of at least three different modes of action.

Zobrazit více v PubMed

OECD . Test No. 208: Terrestrial plant test: seedling emergence and seedling growth test. Paris: OECD Publishing; 2006.

OECD . Test No. 227: Terrestrial plant test: vegetative vigour test. Paris: OECD; 2006.

OECD . Test No. 221: Lemna sp. growth inhibition test. Paris: OECD Publishing; 2006.

Kristen U. Use of higher plants as screens for toxicity assessment. Toxicol Vitr. 1997;11:181–191. doi: 10.1016/S0887-2333(97)00005-2. PubMed DOI

Pfleeger T, Ratsch H, Shimabuku R. A review of terrestrial plants as biomonitors. In: Gorsuch JW, Dwyer FJ, Ingersoll CG, La Point TW, editors. Environmental toxicology and risk assessment. West Conshohocken: ASTM International; 1993. p. 317.

Chaerle L, Lenk S, Leinonen I, Jones HG, Van Der Straeten D, Buschmann C. Multi-sensor plant imaging: towards the development of a stress-catalogue. Biotechnol J. 2009;4:1152–1167. doi: 10.1002/biot.200800242. PubMed DOI

Wang H, Qian X, Zhang L, Xu S, Li H, Xia X, et al. A method of high throughput monitoring crop physiology using chlorophyll fluorescence and multispectral imaging. Front Plant Sci. 2018;9:1–12. doi: 10.3389/fpls.2018.00407. PubMed DOI PMC

Barón M, Pineda M, Pérez-Bueno ML. Picturing pathogen infection in plants. Zeitschrift für Naturforsch C. 2016 doi: 10.1515/znc-2016-0134. PubMed DOI

Li L, Zhang Q, Huang D. A review of imaging techniques for plant phenotyping. Sensors. 2014;14:20078–20111. doi: 10.3390/s141120078. PubMed DOI PMC

Rolfe SA, Scholes JD. Chlorophyll fluorescence imaging of plant–pathogen interactions. Protoplasma. 2010;247:163–175. doi: 10.1007/s00709-010-0203-z. PubMed DOI

Segečová A, Červený J, Roitsch T. Stress response monitoring of photoautotrophic higher plant suspension cultures by fluorescence imaging for high-throughput toxic compound screening. J Environ Prot (Irvine, Calif) 2017;08:678–692. doi: 10.4236/jep.2017.86044. DOI

Thiemann J, Barz W. Photoautotrophic Chenopodium rubrum cell suspension cultures resistant against photosynthesis-inhibiting herbicides I. Selection and characterization. Zeitschrift für Naturforsch C. 1994;49:186–194. doi: 10.1515/znc-1994-3-405. DOI

Thiemann J, Nieswandt A, Barz W. A microtest system for the serial assay of phytotoxic compounds using photoautotrophic cell suspension cultures of Chenopodium rubrum. Plant Cell Rep. 1989;8:399–402. doi: 10.1007/BF00270078. PubMed DOI

Hidalgo D, Abdoli-Nasab M, Jalali-Javaran M, Bru-Martínez R, Cusidó RM, Corchete P, et al. Biotechnological production of recombinant tissue plasminogen activator protein (reteplase) from transplastomic tobacco cell cultures. Plant Physiol Biochem. 2017;118:130–137. doi: 10.1016/j.plaphy.2017.06.013. PubMed DOI

Yue W, Ming Q-L, Lin B, Rahman K, Zheng C-J, Han T, et al. Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Crit Rev Biotechnol. 2015;2014(8551):1–18. doi: 10.3109/07388551.2014.923986. PubMed DOI

Geipel K, Song X, Socher ML, Kümmritz S, Püschel J, Bley T, et al. Induction of a photomixotrophic plant cell culture of Helianthus annuus and optimization of culture conditions for improved α-tocopherol production. Appl Microbiol Biotechnol. 2014;98:2029–2040. doi: 10.1007/s00253-013-5431-7. PubMed DOI

Sato F. Characterization of plant functions using cultured plant cells, and biotechnological applications. Biosci Biotechnol Biochem. 2013;77:1–9. doi: 10.1271/bbb.120759. PubMed DOI

Smetanska I. Production of secondary metabolites using plant cell cultures. In: Stahl U, Donalies UE, Nevoigt E, editors. Food biotechnology. Berlin: Springer; 2008. pp. 187–228. PubMed

Sello S, Perotto J, Carraretto L, Szabò I, Vothknecht UC, Navazio L. Dissecting stimulus-specific Ca2+ signals in amyloplasts and chloroplasts of Arabidopsis thaliana cell suspension cultures. J Exp Bot. 2016;67:3965–3974. doi: 10.1093/jxb/erw038. PubMed DOI PMC

Gutiérrez J, González-Pérez S, García-García F, Daly CT, Lorenzo Ó, Revuelta JL, et al. Programmed cell death activated by Rose Bengal in Arabidopsis thaliana cell suspension cultures requires functional chloroplasts. J Exp Bot. 2014;65:3081–3095. doi: 10.1093/jxb/eru151. PubMed DOI PMC

Mamaeva AS, Fomenkov AA, Nosov AV, Novikova GV. Regulation of protein phosphorylation by nitric oxide in cell culture of Arabidopsis thaliana. Russ J Plant Physiol. 2017;64:657–664. doi: 10.1134/S1021443717050077. DOI

Wang X, Zhong F, Woo CH, Miao Y, Grusak MA, Zhang X, et al. A rapid and efficient method to study the function of crop plant transporters in Arabidopsis. Protoplasma. 2017;254:737–747. doi: 10.1007/s00709-016-0987-6. PubMed DOI

Roitsch T, Sinha A. Effect of different sugars on photosynthesis and chlorophyll fluorescence in photoautotrophic tomato suspension cell cultures. Photosynthetica. 2001;39:611–614. doi: 10.1023/A:1015624600607. DOI

Olofsdotter M, Olesen A, Andersen SB, Streibig JC. A comparison of herbicide bioassays in cell cultures and whole plants. Weed Res. 1994;34:387–394. doi: 10.1111/j.1365-3180.1994.tb02034.x. DOI

Murota K, Ohshita Y, Watanabe A, Aso S, Sato F, Yamada Y. Changes related to salt tolerance in thylakoid membranes of photoautotrophically cultured green tobacco cells. Plant Cell Physiol. 1994;35:107–113. doi: 10.1093/oxfordjournals.pcp.a078560. DOI

Widholm JM. The selection and uses of plant tissue cultures resistant to toxic compounds. Vitr Cell Dev Biol Plant. 2017;53:515–519. doi: 10.1007/s11627-017-9819-4. DOI

Ashrafzadeh S, Leung DWM. Novel potato plants with enhanced cadmium resistance and antioxidative defence generated after in vitro cell line selection. PLoS ONE. 2017;12:e0185621. doi: 10.1371/journal.pone.0185621. PubMed DOI PMC

Sato F, Takeda S, Yamada Y. A comparison of effects of several herbicides on photoautotrophic, photomixotrophic and heterotrophic cultured tobacco cells and seedlings. Plant Cell Rep. 1987;6:401–404. PubMed

Roitsch T, Sinha A. Application of photoautotrophic suspension cultures in plant science. Photosynthetica. 2002;40:481–492. doi: 10.1023/A:1024332430494. DOI

Buschmann C, Lichtenthaler HK. Principles and characteristics of multi-colour fluorescence imaging of plants. J Plant Physiol. 1998;152:297–314. doi: 10.1016/S0176-1617(98)80144-2. DOI

Morales F, Cerovic ZG, Moya I. Characterization of blue-green fluorescence in the mesophyll of sugar beet (Beta vulgaris l.) leaves affected by iron deficiency. Plant Physiol. 1994;106:127–133. doi: 10.1104/pp.106.1.127. PubMed DOI PMC

Buschmann C, Langsdorf G, Lichtenthaler HK. Imaging of the blue, green, and red fluorescence emission of plants: An overview. Photosynthetica. 2000;38(4):482–491. doi: 10.1023/A:1012440903014. DOI

Pineda M, Pérez-Bueno ML, Barón M. Detection of bacterial infection in melon plants by classification methods based on imaging data. Front Plant Sci. 2018;9:1–10. doi: 10.3389/fpls.2018.00164. PubMed DOI PMC

Pineda M, Pérez-Bueno ML, Paredes V, Barón M. Use of multicolour fluorescence imaging for diagnosis of bacterial and fungal infection on zucchini by implementing machine learning. Funct Plant Biol. 2017;44:563. doi: 10.1071/FP16164. PubMed DOI

Montero R, Pérez-Bueno ML, Barón M, Florez-Sarasa I, Tohge T, Fernie AR, et al. Alterations in primary and secondary metabolism in Vitis vinifera ‘Malvasía de Banyalbufar’ upon infection with Grapevine leafroll-associated virus 3. Physiol Plant. 2016;157:442–452. doi: 10.1111/ppl.12440. PubMed DOI

Pérez-Bueno ML, Barón M, García-Carneros AB, Molinero-Ruiz L. Diagnosis of the infection of sunflower by Orobanche cumana using multicolour fluorescence imaging. Helia. 2014;37:173–179. doi: 10.1515/helia-2014-0015. DOI

Yao J, Sun D, Cen H, Xu H, Weng H, Yuan F, et al. Phenotyping of Arabidopsis drought stress response using kinetic chlorophyll fluorescence and multicolor fluorescence imaging. Front Plant Sci. 2018;9:1–15. doi: 10.3389/fpls.2018.00603. PubMed DOI PMC

Kautz B, Noga G, Hunsche M. Sensing drought- and salinity-imposed stresses on tomato leaves by means of fluorescence techniques. Plant Growth Regul. 2014;73:279–288. doi: 10.1007/s10725-014-9888-x. DOI

Cadet É, Samson G. Detection and discrimination of nutrient deficiencies in sunflower by blue-green and chlorophyll-a fluorescence imaging. J Plant Nutr. 2011;34:2114–2126. doi: 10.1080/01904167.2011.618572. DOI

Saja D, Rys M, Stawoska I, Skoczowski A. Metabolic response of cornflower (Centaurea cyanus L.) exposed to tribenuron-methyl: one of the active substances of sulfonylurea herbicides. Acta Physiol Plant. 2016;38:168. doi: 10.1007/s11738-016-2183-x. DOI

Gyuricza V, Fodor F, Szigeti Z. Phytotoxic effects of heavy metal contaminated soil reveal limitations of extract-based ecotoxicological tests. Water Air Soil Pollut. 2010;210:113–122. doi: 10.1007/s11270-009-0228-0. DOI

Maurya R, Prasad SM, Gopal R. LIF technique offers the potential for the detection of cadmium-induced alteration in photosynthetic activities of Zea Mays L. J Photochem Photobiol C Photochem Rev. 2008;9:29–35. doi: 10.1016/j.jphotochemrev.2008.03.001. DOI

Barbagallo RP, Oxborough K, Pallett KE, Baker NR. Rapid, noninvasive screening for perturbations of metabolism and plant growth using chlorophyll fluorescence imaging. Plant Physiol. 2003;132:485–493. doi: 10.1104/pp.102.018093. PubMed DOI PMC

Baker NR. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol. 2008;59:89–113. doi: 10.1146/annurev.arplant.59.032607.092759. PubMed DOI

Popovic R, Dewez D, Juneau P. Applications of chlorophyll fluorescence in ecotoxicology: Heavy metals, herbicides, and air pollutants. In: DeEll JR, Toivonen PM, editors. Practical applications of chlorophyll fluorescence in plant biology. Boston: Springer; 2003. pp. 151–184.

Gorbe E, Calatayud A. Applications of chlorophyll fluorescence imaging technique in horticultural research: a review. Sci Hortic (Amsterdam) 2012;138:24–35. doi: 10.1016/j.scienta.2012.02.002. DOI

Wang P, Li H, Jia W, Chen Y, Gerhards R. A fluorescence sensor capable of real-time herbicide effect monitoring in greenhouses and the field. Sensors. 2018;18:3771. doi: 10.3390/s18113771. PubMed DOI PMC

Wilkinson AD, Collier CJ, Flores F, Mercurio P, O’Brien J, Ralph PJ, et al. A miniature bioassay for testing the acute phytotoxicity of photosystem II herbicides on seagrass. PLoS ONE. 2015;10:e0117541. doi: 10.1371/journal.pone.0117541. PubMed DOI PMC

de Lima DA, Müller C, Costa AC, Batista PF, Dalvi VC, Domingos M. Morphoanatomical and physiological changes in Bauhinia variegata L. as indicators of herbicide diuron action. Ecotoxicol Environ Saf. 2017;141:242–250. doi: 10.1016/j.ecoenv.2017.03.038. PubMed DOI

Küster A, Pohl K, Altenburger R. A fluorescence-based bioassay for aquatic macrophytes and its suitability for effect analysis of non-photosystem II inhibitors. Environ Sci Pollut Res Int. 2007;14:377–383. doi: 10.1065/espr2007.04.410. PubMed DOI

Buapet P, Shah Mohammadi N, Pernice M, Kumar M, Kuzhiumparambil U, Ralph PJ. Excess copper promotes photoinhibition and modulates the expression of antioxidant-related genes in Zostera muelleri. Aquat Toxicol. 2019;207:91–100. doi: 10.1016/j.aquatox.2018.12.005. PubMed DOI

Bazihizina N, Colzi I, Giorni E, Mancuso S, Gonnelli C. Photosynthesizing on metal excess: Copper differently induced changes in various photosynthetic parameters in copper tolerant and sensitive Silene paradoxa L. populations. Plant Sci. 2015;232:67–76. doi: 10.1016/j.plantsci.2014.12.015. PubMed DOI

Mallakin A, Babu TS, Dixon DG, Greenberg BM. Sites of toxicity of specific photooxidation products of anthracene to higher plants: Inhibition of photosynthetic activity and electron transport in Lemna gibba L. G-3 (Duckweed) Environ Toxicol. 2002;17:462–471. doi: 10.1002/tox.10080. PubMed DOI

Björkman O, Demmig B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta. 1987;170:489–504. doi: 10.1007/BF00402983. PubMed DOI

Cen H, Weng H, Yao J, He M, Lv J, Hua S, et al. Chlorophyll fluorescence imaging uncovers photosynthetic fingerprint of Citrus Huanglongbing. Front Plant Sci. 2017;8:1–11. doi: 10.3389/fpls.2017.01509. PubMed DOI PMC

Berger S, Benediktyová Z, Matous K, Bonfig K, Mueller MJ, Nedbal L, et al. Visualization of dynamics of plant-pathogen interaction by novel combination of chlorophyll fluorescence imaging and statistical analysis: differential effects of virulent and avirulent strains of P. syringae and of oxylipins on A. thaliana. J Exp Bot. 2007;58:797–806. doi: 10.1093/jxb/erl208. PubMed DOI

Chaerle L, Leinonen I, Jones HG, Van Der Straeten D. Monitoring and screening plant populations with combined thermal and chlorophyll fluorescence imaging. J Exp Bot. 2007;58:773–784. doi: 10.1093/jxb/erl257. PubMed DOI

Olofsdotter M. Image processing: a non-destructive method for measuring growth in cell and tissue culture. Plant Cell Rep. 1993;12:216–219. doi: 10.1007/BF00237057. PubMed DOI

Kalaji HM, Schansker G, Brestic M, Bussotti F, Calatayud A, Ferroni L, et al. Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynth Res. 2017;132:13–66. doi: 10.1007/s11120-016-0318-y. PubMed DOI PMC

Ringnér M. What is principal component analysis? Nat Biotechnol. 2008;26:303–304. doi: 10.1006/jaut.1999.0305. PubMed DOI

Lichtenthaler HK, Langsdorf G, Buschmann C. Uptake of diuron and concomitant loss of photosynthetic activity in leaves as visualized by imaging the red chlorophyll fluorescence. Photosynth Res. 2013;116:355–361. doi: 10.1007/s11120-013-9842-1. PubMed DOI

Yoneyama K, Nakajima Y, Maejima N, Ogasawara M, Konnai M, Tokutake N, Iwamura H, Sato F, Ichinose K, Asami T, Yoshida S. Simple and rapid screening method for photosystem II inhibitory herbicides using photoautotrophically cultured plant cells with chlorophyll fluorescence monitoring. Biosci Biotechnol Biochem. 1993;57(8):1389–1390. doi: 10.1271/bbb.57.1389. DOI

Amrhein N, Deus B, Gehrke P, Steinrucken HC. The site of the inhibition of the shikimate pathway by glyphosate: II. Interference of glyphosate with chorismate formation in vivo and in vitro. Plant Physiol. 1980;66:830–834. doi: 10.1104/pp.66.5.830. PubMed DOI PMC

Kirkwood RC, Hetherington R, Reynolds TL, Marshall G. Absorption, localisation, translocation and activity of glyphosate in barnyardgrass (Echinochloa crus-galli (L) Beauv): influence of herbicide and surfactant concentration. Pest Manage Sci. 2000;56:359–367. doi: 10.1002/(SICI)1526-4998(200004)56:4<359::AID-PS145>3.0.CO;2-S. DOI

González A, Gil-Díaz MM, Pinilla P, Lobo MC. Impact of Cr and Zn on growth, biochemical and physiological parameters, and metal accumulation by wheat and barley plants. Water Air Soil Pollut. 2017;228:419. doi: 10.1007/s11270-017-3507-1. DOI

Liu D, Zou J, Wang M, Jiang W. Hexavalent chromium uptake and its effects on mineral uptake, antioxidant defence system and photosynthesis in Amaranthus viridis L. Bioresour Technol. 2008;99:2628–2636. doi: 10.1016/j.biortech.2007.04.045. PubMed DOI

Chen YE, Mao HT, Ma J, Wu N, Zhang CM, Su YQ, et al. Biomonitoring chromium III or VI soluble pollution by moss chlorophyll fluorescence. Chemosphere. 2018;194:220–228. doi: 10.1016/j.chemosphere.2017.11.177. PubMed DOI

Nath A, Tiwari PK, Rai AK, Sundaram S. Microalgal consortia differentially modulate progressive adsorption of hexavalent chromium. Physiol Mol Biol Plants. 2017;23:269–280. doi: 10.1007/s12298-017-0415-1. PubMed DOI PMC

Barceló J, Poschenrieder C. Plant water relations as affected by heavy metal stress: a review. J Plant Nutr. 1990;13:1–37. doi: 10.1080/01904169009364057. DOI

Oliveira H. Chromium as an environmental pollutant: insights on induced plant toxicity. J Bot. 2012;2012:1–8. doi: 10.1155/2012/375843. DOI

Balasaraswathi K, Jayaveni S, Sridevi J, Sujatha D, Phebe Aaron K, Rose C. Cr–induced cellular injury and necrosis in Glycine max L.: biochemical mechanism of oxidative damage in chloroplast. Plant Physiol Biochem. 2017;118:653–666. doi: 10.1016/j.plaphy.2017.08.001. PubMed DOI

Fai PB, Grant A, Reid B. Chlorophyll a fluorescence as a biomarker for rapid toxicity assessment. Environ Toxicol Chem. 2007;26:1520–1531. doi: 10.1897/06-394R1.1. PubMed DOI

Kalaji HM, Schansker G, Ladle RJ, Goltsev V, Bosa K, Allakhverdiev SI, et al. Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynth Res. 2014;122:121–158. doi: 10.1007/s11120-014-0024-6. PubMed DOI PMC

Hampp C, Richter A, Osorio S, Zellnig G, Sinha AK, Jammer A, et al. Establishment of a photoautotrophic cell suspension culture of Arabidopsis thaliana for photosynthetic, metabolic, and signaling studies. Mol Plant. 2012;5:524–527. doi: 10.1093/mp/sss018. PubMed DOI PMC

Segečová A, Červený J, Roitsch T. Advancement of the cultivation and upscaling of photoautotrophic suspension cultures using Chenopodium rubrum as a case study. Plant Cell Tissue Organ Cult. 2018;135:37–51. doi: 10.1007/s11240-018-1441-6. DOI

Suresh Kumar K, Dahms HU, Lee JS, Kim HC, Lee WC, Shin KH. Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence. Ecotoxicol Environ Saf. 2014;104:51–71. doi: 10.1016/j.ecoenv.2014.01.042. PubMed DOI

Pérez-Bueno ML, Pineda M, Díaz-Casado E, Barón M. Spatial and temporal dynamics of primary and secondary metabolism in Phaseolus vulgaris challenged by Pseudomonas syringae. Physiol Plant Plant. 2015;153:161–174. doi: 10.1111/ppl.12237. PubMed DOI

Pérez-Bueno ML, Pineda M, Cabeza FM, Barón M. Multicolor fluorescence imaging as a candidate for disease detection in plant phenotyping. Front Plant Sci. 2016;7:1–11. doi: 10.3389/fpls.2016.01790. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Light quality, oxygenic photosynthesis and more

. 2022 ; 60 (1) : 25-28. [epub] 20220106

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace