Normalized Multipotential Redox Coding of DNA Bases for Determination of Total Nucleotide Composition

. 2023 Aug 29 ; 95 (34) : 12586-12589. [epub] 20230814

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37578459

The previously reported approach of orthogonal multipotential redox coding of all four DNA bases allowed only analysis of the relative nucleotide composition of short DNA stretches. Here, we present two methods for normalization of the electrochemical readout to facilitate the determination of the total nucleotide composition. The first method is based on the presence or absence of an internal standard of 7-deaza-2'-deoxyguanosine in a DNA primer. The exact composition of the DNA was elucidated upon two parallel analyses and the subtraction of the electrochemical signal intensities. The second approach took advantage of a 5'-viologen modified primer, with this fifth orthogonal redox label acting as a reference for signal normalization, thus allowing accurate electrochemical sequence analysis in a single read. Both approaches were tested using various sequences, and the voltammetric signals obtained were normalized using either the internal standard or the reference label and demonstrated to be in perfect agreement with the actual nucleotide composition, highlighting the potential for targeted DNA sequence analysis.

Zobrazit více v PubMed

Lee S. H.; Park S.-M.; Kim B. N.; Kwon O. S.; Rho W.-Y.; Jun B.-H. Emerging Ultrafast Nucleic Acid Amplification Technologies for Next-Generation Molecular Diagnostics. Biosens. Bioelectron. 2019, 141, 111448.10.1016/j.bios.2019.111448. PubMed DOI

Xu Y.; Wang T.; Chen Z.; Jin L.; Wu Z.; Yan J.; Zhao X.; Cai L.; Deng Y.; Guo Y.; Li S.; He N. The Point-of-Care-Testing of Nucleic Acids by Chip, Cartridge and Paper Sensors. Chin. Chem. Lett. 2021, 32, 3675–3686. 10.1016/j.cclet.2021.06.025. DOI

Paleček E.; Bartošík M. Electrochemistry of Nucleic Acids. Chem. Rev. 2012, 112, 3427–3481. 10.1021/cr200303p. PubMed DOI

Ferapontova E. E. DNA Electrochemistry and Electrochemical Sensors for Nucleic Acids. Annu. Rev. Anal. Chem. 2018, 11, 197–218. 10.1146/annurev-anchem-061417-125811. PubMed DOI

Hocek M.; Fojta M. Nucleobase Modification as Redox DNA Labelling for Electrochemical Detection. Chem. Soc. Rev. 2011, 40, 5802–5814. 10.1039/c1cs15049a. PubMed DOI

Cahová H.; Havran L.; Brázdilová P.; Pivonková H.; Pohl R.; Fojta M.; Hocek M. Aminophenyl- and Nitrophenyl-Labeled Nucleoside Triphosphates: Synthesis, Enzymatic Incorporation, and Electrochemical Detection. Angew. Chem., Int. Ed. 2008, 47, 2059–2062. 10.1002/anie.200705088. PubMed DOI

Balintová J.; Špaček J.; Pohl R.; Brázdová M.; Havran L.; Fojta M.; Hocek M. Azidophenyl as a Click-Transformable Redox Label of DNA Suitable for Electrochemical Detection of DNA–Protein Interactions. Chem. Sci. 2015, 6, 575–587. 10.1039/C4SC01906G. PubMed DOI PMC

Balintová J.; Plucnara M.; Vidláková P.; Pohl R.; Havran L.; Fojta M.; Hocek M. Benzofurazane as a New Redox Label for Electrochemical Detection of DNA: Towards Multipotential Redox Coding of DNA Bases. Chem.—Eur. J. 2013, 19, 12720–12731. 10.1002/chem.201301868. PubMed DOI

Brázdilová P.; Vrábel M.; Pohl R.; Pivonková H.; Havran L.; Hocek M.; Fojta M. Ferrocenylethynyl Derivatives of Nucleoside Triphosphates: Synthesis, Incorporation, Electrochemistry, and Bioanalytical Applications. Chem.—Eur. J. 2007, 13, 9527–9533. 10.1002/chem.200701249. PubMed DOI

Simonova A.; Magriñá I.; Sýkorová V.; Pohl R.; Ortiz M.; Havran L.; Fojta M.; O’Sullivan C. K.; Hocek M. Tuning of Oxidation Potential of Ferrocene for Ratiometric Redox Labeling and Coding of Nucleotides and DNA. Chem.—Eur. J. 2020, 26, 1286–1291. 10.1002/chem.201904700. PubMed DOI PMC

Gorodetsky A. A.; Green O.; Yavin E.; Barton J. K. Coupling into the base pair stack is necessary for DNA-mediated electrochemistry. Bioconjugate Chem. 2007, 18, 1434–1441. 10.1021/bc0700483. PubMed DOI

Li H.; Arroyo-Currás N.; Kang D.; Ricci F.; Plaxco K. W. Dual-Reporter Drift Correction To Enhance the Performance of Electrochemical Aptamer-Based Sensors in Whole Blood. J. Am. Chem. Soc. 2016, 138, 15809–15812. 10.1021/jacs.6b08671. PubMed DOI

Dauphin-Ducharme P.; Arroyo-Curras N.; Plaxco K. W. High-precision electrochemical measurements of the guanine-, mismatch- and length-dependence of electron transfer from electrode-bound DNA are consistent with a contact-mediated mechanism. J. Am. Chem. Soc. 2019, 141, 1304–1311. 10.1021/jacs.8b11341. PubMed DOI PMC

Mahshid S. S.; Camiré S.; Ricci F.; Vallée-Bélisle A. A Highly Selective Electrochemical DNA-Based Sensor That Employs Steric Hindrance Effects to Detect Proteins Directly in Whole Blood. J. Am. Chem. Soc. 2015, 137, 15596–15599. 10.1021/jacs.5b04942. PubMed DOI

Pheeney C. G.; Barton J. K. Intraduplex DNA-mediated electrochemistry of covalently tethered redox-active reporters. J. Am. Chem. Soc. 2013, 135, 14944–14947. 10.1021/ja408135g. PubMed DOI PMC

Pheeney C. G.; Guerra L. F.; Barton J. K. DNA sensing by electrocatalysis with hemoglobin. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 11528–11533. 10.1073/pnas.1201551109. PubMed DOI PMC

Cash K. J.; Ricci F.; Plaxco K. W. An electrochemical sensor for the detection of protein-small molecule interactions directly in serum and other complex matrices. J. Am. Chem. Soc. 2009, 131, 6955–6957. 10.1021/ja9011595. PubMed DOI PMC

Zwang T. J.; Hürlimann S.; Hill M. G.; Barton J. K. Helix-Dependent Spin Filtering through the DNA Duplex. J. Am. Chem. Soc. 2016, 138, 15551–15554. 10.1021/jacs.6b10538. PubMed DOI PMC

Gorodetsky A. A.; Hammond W. J.; Hill M. G.; Slowinski K.; Barton J. K. Scanning electrochemical microscopy of DNA monolayers modified with Nile Blue. Langmuir 2008, 24, 14282–14288. 10.1021/la8029243. PubMed DOI PMC

Suprun E. V.; Khmeleva S. A.; Kutdusova G. R.; Duskaev I. F.; Kuznetsova V. E.; Lapa S. A.; Chudinov A. V.; Radko S. P. Deoxyuridine Triphosphates Modified with Tyrosine or Tryptophan Aromatic Groups for Direct Electrochemical Detection of Double-Stranded DNA. Electrochim. Acta 2020, 362, 137105.10.1016/j.electacta.2020.137105. DOI

Suprun E. V.; Khmeleva S. A.; Kutdusova G. R.; Ptitsyn K. G.; Kuznetsova V. E.; Lapa S. A.; Chudinov A. V.; Radko S. P. Deoxyuridine Triphosphates Modified with Tyrosine Aromatic Groups for Direct Electrochemical Detection of Double-Stranded DNA Products of Isothermal Recombinase Polymerase Amplification. Electrochem. Commun. 2021, 131, 107120.10.1016/j.elecom.2021.107120. DOI

Shendure J.; Balasubramanian S.; Church G. M.; Gilbert W.; Rogers J.; Schloss J. A.; Waterston R. H. DNA Sequencing at 40: Past, Present and Future. Nature 2017, 550, 345–353. 10.1038/nature24286. PubMed DOI

Ju J.; Kim D. H.; Bi L.; Meng Q.; Bai X.; Li Z.; Li X.; Marma M. S.; Shi S.; Wu J.; Edwards J. R.; Romu A.; Turro N. J. Four-Color DNA Sequencing by Synthesis Using Cleavable Fluorescent Nucleotide Reversible Terminators. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 19635–19640. 10.1073/pnas.0609513103. PubMed DOI PMC

Kodr D.; Yenice C. P.; Simonova A.; Saftić D. P.; Pohl R.; Sýkorová V.; Ortiz M.; Havran L.; Fojta M.; Lesnikowski Z. J.; O’Sullivan C. K.; Hocek M. Carborane- or Metallacarborane-Linked Nucleotides for Redox Labeling. Orthogonal Multipotential Coding of All Four DNA Bases for Electrochemical Analysis and Sequencing. J. Am. Chem. Soc. 2021, 143, 7124–7134. 10.1021/jacs.1c02222. PubMed DOI

Bird C. L.; Kuhn A. T. Electrochemistry of the Viologens. Chem. Soc. Rev. 1981, 10, 49–82. 10.1039/cs9811000049. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...