Normalized Multipotential Redox Coding of DNA Bases for Determination of Total Nucleotide Composition
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37578459
PubMed Central
PMC10469368
DOI
10.1021/acs.analchem.3c02023
Knihovny.cz E-zdroje
- MeSH
- DNA primery MeSH
- DNA * chemie MeSH
- nukleotidy * chemie MeSH
- oxidace-redukce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA primery MeSH
- DNA * MeSH
- nukleotidy * MeSH
The previously reported approach of orthogonal multipotential redox coding of all four DNA bases allowed only analysis of the relative nucleotide composition of short DNA stretches. Here, we present two methods for normalization of the electrochemical readout to facilitate the determination of the total nucleotide composition. The first method is based on the presence or absence of an internal standard of 7-deaza-2'-deoxyguanosine in a DNA primer. The exact composition of the DNA was elucidated upon two parallel analyses and the subtraction of the electrochemical signal intensities. The second approach took advantage of a 5'-viologen modified primer, with this fifth orthogonal redox label acting as a reference for signal normalization, thus allowing accurate electrochemical sequence analysis in a single read. Both approaches were tested using various sequences, and the voltammetric signals obtained were normalized using either the internal standard or the reference label and demonstrated to be in perfect agreement with the actual nucleotide composition, highlighting the potential for targeted DNA sequence analysis.
Institució Catalana de Recerca i Estudis Avançats Passeig Lluís Companys 23 08010 Barcelona Spain
Laboratory of Medicinal Chemistry Institute of Medical Biology PAS Lodowa 106 92 232 Łódź Poland
Zobrazit více v PubMed
Lee S. H.; Park S.-M.; Kim B. N.; Kwon O. S.; Rho W.-Y.; Jun B.-H. Emerging Ultrafast Nucleic Acid Amplification Technologies for Next-Generation Molecular Diagnostics. Biosens. Bioelectron. 2019, 141, 111448.10.1016/j.bios.2019.111448. PubMed DOI
Xu Y.; Wang T.; Chen Z.; Jin L.; Wu Z.; Yan J.; Zhao X.; Cai L.; Deng Y.; Guo Y.; Li S.; He N. The Point-of-Care-Testing of Nucleic Acids by Chip, Cartridge and Paper Sensors. Chin. Chem. Lett. 2021, 32, 3675–3686. 10.1016/j.cclet.2021.06.025. DOI
Paleček E.; Bartošík M. Electrochemistry of Nucleic Acids. Chem. Rev. 2012, 112, 3427–3481. 10.1021/cr200303p. PubMed DOI
Ferapontova E. E. DNA Electrochemistry and Electrochemical Sensors for Nucleic Acids. Annu. Rev. Anal. Chem. 2018, 11, 197–218. 10.1146/annurev-anchem-061417-125811. PubMed DOI
Hocek M.; Fojta M. Nucleobase Modification as Redox DNA Labelling for Electrochemical Detection. Chem. Soc. Rev. 2011, 40, 5802–5814. 10.1039/c1cs15049a. PubMed DOI
Cahová H.; Havran L.; Brázdilová P.; Pivonková H.; Pohl R.; Fojta M.; Hocek M. Aminophenyl- and Nitrophenyl-Labeled Nucleoside Triphosphates: Synthesis, Enzymatic Incorporation, and Electrochemical Detection. Angew. Chem., Int. Ed. 2008, 47, 2059–2062. 10.1002/anie.200705088. PubMed DOI
Balintová J.; Špaček J.; Pohl R.; Brázdová M.; Havran L.; Fojta M.; Hocek M. Azidophenyl as a Click-Transformable Redox Label of DNA Suitable for Electrochemical Detection of DNA–Protein Interactions. Chem. Sci. 2015, 6, 575–587. 10.1039/C4SC01906G. PubMed DOI PMC
Balintová J.; Plucnara M.; Vidláková P.; Pohl R.; Havran L.; Fojta M.; Hocek M. Benzofurazane as a New Redox Label for Electrochemical Detection of DNA: Towards Multipotential Redox Coding of DNA Bases. Chem.—Eur. J. 2013, 19, 12720–12731. 10.1002/chem.201301868. PubMed DOI
Brázdilová P.; Vrábel M.; Pohl R.; Pivonková H.; Havran L.; Hocek M.; Fojta M. Ferrocenylethynyl Derivatives of Nucleoside Triphosphates: Synthesis, Incorporation, Electrochemistry, and Bioanalytical Applications. Chem.—Eur. J. 2007, 13, 9527–9533. 10.1002/chem.200701249. PubMed DOI
Simonova A.; Magriñá I.; Sýkorová V.; Pohl R.; Ortiz M.; Havran L.; Fojta M.; O’Sullivan C. K.; Hocek M. Tuning of Oxidation Potential of Ferrocene for Ratiometric Redox Labeling and Coding of Nucleotides and DNA. Chem.—Eur. J. 2020, 26, 1286–1291. 10.1002/chem.201904700. PubMed DOI PMC
Gorodetsky A. A.; Green O.; Yavin E.; Barton J. K. Coupling into the base pair stack is necessary for DNA-mediated electrochemistry. Bioconjugate Chem. 2007, 18, 1434–1441. 10.1021/bc0700483. PubMed DOI
Li H.; Arroyo-Currás N.; Kang D.; Ricci F.; Plaxco K. W. Dual-Reporter Drift Correction To Enhance the Performance of Electrochemical Aptamer-Based Sensors in Whole Blood. J. Am. Chem. Soc. 2016, 138, 15809–15812. 10.1021/jacs.6b08671. PubMed DOI
Dauphin-Ducharme P.; Arroyo-Curras N.; Plaxco K. W. High-precision electrochemical measurements of the guanine-, mismatch- and length-dependence of electron transfer from electrode-bound DNA are consistent with a contact-mediated mechanism. J. Am. Chem. Soc. 2019, 141, 1304–1311. 10.1021/jacs.8b11341. PubMed DOI PMC
Mahshid S. S.; Camiré S.; Ricci F.; Vallée-Bélisle A. A Highly Selective Electrochemical DNA-Based Sensor That Employs Steric Hindrance Effects to Detect Proteins Directly in Whole Blood. J. Am. Chem. Soc. 2015, 137, 15596–15599. 10.1021/jacs.5b04942. PubMed DOI
Pheeney C. G.; Barton J. K. Intraduplex DNA-mediated electrochemistry of covalently tethered redox-active reporters. J. Am. Chem. Soc. 2013, 135, 14944–14947. 10.1021/ja408135g. PubMed DOI PMC
Pheeney C. G.; Guerra L. F.; Barton J. K. DNA sensing by electrocatalysis with hemoglobin. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 11528–11533. 10.1073/pnas.1201551109. PubMed DOI PMC
Cash K. J.; Ricci F.; Plaxco K. W. An electrochemical sensor for the detection of protein-small molecule interactions directly in serum and other complex matrices. J. Am. Chem. Soc. 2009, 131, 6955–6957. 10.1021/ja9011595. PubMed DOI PMC
Zwang T. J.; Hürlimann S.; Hill M. G.; Barton J. K. Helix-Dependent Spin Filtering through the DNA Duplex. J. Am. Chem. Soc. 2016, 138, 15551–15554. 10.1021/jacs.6b10538. PubMed DOI PMC
Gorodetsky A. A.; Hammond W. J.; Hill M. G.; Slowinski K.; Barton J. K. Scanning electrochemical microscopy of DNA monolayers modified with Nile Blue. Langmuir 2008, 24, 14282–14288. 10.1021/la8029243. PubMed DOI PMC
Suprun E. V.; Khmeleva S. A.; Kutdusova G. R.; Duskaev I. F.; Kuznetsova V. E.; Lapa S. A.; Chudinov A. V.; Radko S. P. Deoxyuridine Triphosphates Modified with Tyrosine or Tryptophan Aromatic Groups for Direct Electrochemical Detection of Double-Stranded DNA. Electrochim. Acta 2020, 362, 137105.10.1016/j.electacta.2020.137105. DOI
Suprun E. V.; Khmeleva S. A.; Kutdusova G. R.; Ptitsyn K. G.; Kuznetsova V. E.; Lapa S. A.; Chudinov A. V.; Radko S. P. Deoxyuridine Triphosphates Modified with Tyrosine Aromatic Groups for Direct Electrochemical Detection of Double-Stranded DNA Products of Isothermal Recombinase Polymerase Amplification. Electrochem. Commun. 2021, 131, 107120.10.1016/j.elecom.2021.107120. DOI
Shendure J.; Balasubramanian S.; Church G. M.; Gilbert W.; Rogers J.; Schloss J. A.; Waterston R. H. DNA Sequencing at 40: Past, Present and Future. Nature 2017, 550, 345–353. 10.1038/nature24286. PubMed DOI
Ju J.; Kim D. H.; Bi L.; Meng Q.; Bai X.; Li Z.; Li X.; Marma M. S.; Shi S.; Wu J.; Edwards J. R.; Romu A.; Turro N. J. Four-Color DNA Sequencing by Synthesis Using Cleavable Fluorescent Nucleotide Reversible Terminators. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 19635–19640. 10.1073/pnas.0609513103. PubMed DOI PMC
Kodr D.; Yenice C. P.; Simonova A.; Saftić D. P.; Pohl R.; Sýkorová V.; Ortiz M.; Havran L.; Fojta M.; Lesnikowski Z. J.; O’Sullivan C. K.; Hocek M. Carborane- or Metallacarborane-Linked Nucleotides for Redox Labeling. Orthogonal Multipotential Coding of All Four DNA Bases for Electrochemical Analysis and Sequencing. J. Am. Chem. Soc. 2021, 143, 7124–7134. 10.1021/jacs.1c02222. PubMed DOI
Bird C. L.; Kuhn A. T. Electrochemistry of the Viologens. Chem. Soc. Rev. 1981, 10, 49–82. 10.1039/cs9811000049. DOI