Lignans Extract from Knotwood of Norway Spruce-A Possible New Weapon against GTDs
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.2.69/0.0/0.0/19_073/0016670
Internal Grant Schemes of Mendel University in Brno, funded by the ESF.
PubMed
35448588
PubMed Central
PMC9025846
DOI
10.3390/jof8040357
PII: jof8040357
Knihovny.cz E-zdroje
- Klíčová slova
- 7-hydroxymatairesinol, GTD, HMR, Norway spruce, bioprotection, grapevine, wood extract,
- Publikační typ
- časopisecké články MeSH
Grapevine trunk diseases (GTDs) pose a major threat to the wine industry worldwide. Currently, efficient biological methods or chemical compounds are not available for the treatment of infected grapevines. In the present study, we used an extract from the knotwood of spruce trees as a biological control against GTDs. Our in vitro trial was focused on the antifungal effects of the extract against the most common GTD pathogens-Cadophora luteo-olivacea, Dactylonectria torresensis, Diaporthe ampelina, Diaporthe bohemiae, Diplodia seriata, Eutypa lata, and Phaeoacremonium minimum. Our in vitro trial revealed a high antifungal effect of the extract against all tested fungi. The inhibition rates varied among the different species from 30% to 100% using 1 mg·mL-1 extract. Subsequently, the efficiency of the extract was supported by an in planta experiment. Commercial grafts of Vitis vinifera were treated with the extract and planted. The total genomic DNA of grapevines was extracted 10 days and 180 days after the treatment. The fungal microbial diversities of the treated/untreated plants were compared using high-throughput amplicon sequencing (HTAS). Treated plants showed 76.9% lower relative abundance of the genus Diaporthe and 70% lower relative abundance of the genus Phaeoacremonium 10 days after treatment. A similar scenario was observed for the genus Cadophora 180 days after treatment, where treated plants showed 76% lower relative abundance of this genus compared with untreated grapevines.
Zobrazit více v PubMed
OICV . Statistical Report on World Vitiviniculture. International Organisation of Vine and Wine, Intergovernmental Organisation; Paris, France: 2019.
Fontaine F., Pinto C., Vallet J., Clément C., Gomes A.C., Spagnolo A. The effects of grapevine trunk diseases (GTDs) on vine physiology. Eur. J. Plant Pathol. 2016;144:707–721. doi: 10.1007/s10658-015-0770-0. DOI
Hofstetter V., Buyck B., Croll D., Viret O., Couloux A., Gindro K. What if esca disease of grapevine were not a fungal disease? Fungal Divers. 2012;54:51–67. doi: 10.1007/s13225-012-0171-z. DOI
Marion C., Martin N., Florence F., Jacques W. Current knowledge on grapevine trunk diseases with complex etiology: A systemic approach. Phytopathol. Mediterr. 2020;59:29–53. doi: 10.36253/phyto-11150. DOI
Lucia G.-D., Florence F., Laura M. Grapevine trunk disease in European and Mediterranean vineyards: Occurrence, distribution and associated disease-affecting cultural factors. Phytopathol. Mediterr. 2019;58:49–71. doi: 10.14601/Phytopathol_Mediterr-25153. DOI
Gramaje D., Armengol J. Fungal trunk pathogens in the grapevine propagation process: Potential inoculum sources, detection, identification, and management strategies. Plant Dis. 2011;95:1040–1055. doi: 10.1094/PDIS-01-11-0025. PubMed DOI
Gramaje D., Úrbez-Torres J.R., Sosnowski M.R. Managing grapevine trunk diseases with respect to etiology and epidemiology: Current strategies and future prospects. Plant Dis. 2018;102:12–39. doi: 10.1094/PDIS-04-17-0512-FE. PubMed DOI
Úrbez-Torres J.R., Peduto F., Smith R.J., Gubler W.D. Phomopsis dieback: A grapevine trunk disease caused by Phomopsis viticola in California. Plant Dis. 2013;97:1571–1579. doi: 10.1094/PDIS-11-12-1072-RE. PubMed DOI
Guarnaccia V., Groenewald J.Z., Woodhall J., Armengol J., Cinelli T., Eichmeier A., Ezra D., Florence F., Gramaje D., Gutierrez-Aguirregabiria A., et al. Diaporthe diversity and pathogenicity revealed from a broad survey of grapevine diseases in Europe. Pers. -Mol. Phylogeny Evol. Fungi. 2018;40:135–153. doi: 10.3767/persoonia.2018.40.06. PubMed DOI PMC
Mondello V., Songy A., Battiston E., Pinto C., Coppin C., Trotel-Aziz P., Clément C., Mugnai L., Fontaine F. Grapevine trunk diseases: A review of fifteen years of trials for their control with chemicals and biocontrol agents. Plant Dis. 2018;102:1189–1217. doi: 10.1094/PDIS-08-17-1181-FE. PubMed DOI
Vek V., Keržič E., Poljanšek I., Eklund P., Humar M., Oven P. Wood extractives of silver fir and their antioxidant and antifungal properties. Molecules. 2021;26:6412. doi: 10.3390/molecules26216412. PubMed DOI PMC
Kawamura F., Ramle S.F.M., Sulaiman O., Hashim R., Ohara S. Antioxidant and antifungal activities of extracts from 15 selected hardwood species of Malaysian timber. Eur. J. Wood Wood Prod. 2011;69:207–212. doi: 10.1007/s00107-010-0413-2. DOI
Salem M.Z.M., Elansary H.O., Elkelish A.A., Zeidler A., Ali H.M., EL-Hefny M., Yessoufou K. In vitro bioactivity and antimicrobial activity of Picea abies and Larix decidua wood and bark extracts. BioResources. 2016;11:17. doi: 10.15376/biores.11.4.9421-9437. DOI
Minova S., Sešķēna R., Voitkāne S., Metla Z., Daugavietis M., Jankevica L. Impact of pine (L.) and spruce ((L.) Karst.) bark extracts on important strawberry pathogens. Proc. Latv. Acad. Sci. Sect. B. Nat. Exact Appl. Sci. 2015;69:62–67. doi: 10.1515/prolas-2015-0008. DOI
Latva-Mäenpää H., Laakso T., Sarjala T., Wähälä K., Saranpää P. Root neck of Norway spruce as a source of bioactive lignans and stilbenes. Holzforschung. 2014;68:1–7. doi: 10.1515/hf-2013-0020. DOI
Shain L., Hillis E.W. Phenolic extractives in Norway spruce and their effects on Fomes annosus. Phytopathology. 1971;61:841–845. doi: 10.1094/Phyto-61-841. DOI
Widad M.K.A.-A., Fitua M.A. Antimicrobial activity of hydroxymatairesinol (HMR) lignan. Iraqi J. Pharm. Sci. 2013;22:30–34. doi: 10.31351/vol22iss2pp30-34. DOI
Blanchette R.A., Biggs A.R. Springer Series in Wood Science. Springer; Berlin/Heidelberg, Germany: 1992. Defense mechanisms of woody plants against fungi.
Balík J., Híc P., Tříska J., Vrchotová N., Smetana P., Smutek L., Rohlik B.-A., Houška M. Beer and beer-based beverage contain lignans. J. Food Sci. Technol. 2021;58:581–585. doi: 10.1007/s13197-020-04570-8. PubMed DOI PMC
Brennan M., Hentges D., Cosgun S., Dumarcay S., Colin F., Gérardin C., Gérardin P. Intraspecific variability of quantity and chemical composition of ethanolic knotwood extracts along the stems of three industrially important softwood species: Abies alba, Picea abies and Pseudotsuga menziesii. Holzforschung. 2021;75:168–179. doi: 10.1515/hf-2020-0108. DOI
Eichmeier A., Pečenka J., Peňázová E., Baránek M., Català-García S., León M., Armengol J., Gramaje D. High-throughput amplicon sequencing-based analysis of active fungal communities inhabiting grapevine after hot-water treatments reveals unexpectedly high fungal diversity. Fungal Ecol. 2018;36:26–38. doi: 10.1016/j.funeco.2018.07.011. DOI
Bruez E., Vallance J., Gautier A., Laval V., Compant S., Maurer W., Sessitsch A., Lebrun M.-H., Rey P. Major changes in grapevine wood microbiota are associated with the onset of esca, a devastating trunk disease. Environ. Microbiol. 2020;22:5189–5206. doi: 10.1111/1462-2920.15180. PubMed DOI
White T.J., Bruns T., Lee S., Taylor J. Amplification and direct sequencing of fungal ribosomal RNA Genes for phylogenetics. In: Innis M.A., Gelfand D.H., Sninsky J.J., White T.J., editors. PCR Protocols. Academic Press; San Diego, CA, USA: 1990. pp. 315–322.
Andrews S. A Quality Control Tool for High Throughput Sequence Data. 2010. [(accessed on 30 August 2021)]. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
Větrovský T., Baldrian P., Morais D. SEED 2: A user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics. 2018;34:2292–2294. doi: 10.1093/bioinformatics/bty071. PubMed DOI PMC
Aronesty E. EA-Utils: Command-Line Tools for Processing Biological Sequencing Data. Erik Aronesty; Durham, NC, USA: 2011.
Bengtsson-Palme J., Ryberg M., Hartmann M., Branco S., Wang Z., Godhe A., De Wit P., Sánchez-García M., Ebersberger I., de Sousa F., et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 2013;4:914–919. doi: 10.1111/2041-210X.12073. DOI
Edgar R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods. 2013;10:996–998. doi: 10.1038/nmeth.2604. PubMed DOI
Abarenkov K., Henrik Nilsson R., Larsson K.-H., Alexander I.J., Eberhardt U., Erland S., Høiland K., Kjøller R., Larsson E., Pennanen T., et al. The UNITE database for molecular identification of fungi—recent updates and future perspectives. New Phytol. 2010;186:281–285. doi: 10.1111/j.1469-8137.2009.03160.x. PubMed DOI
Glynou K., Nam B., Thines M., Maciá-Vicente J.G. Facultative root-colonizing fungi dominate endophytic assemblages in roots of nonmycorrhizal Microthlaspi species. New Phytol. 2018;217:1190–1202. doi: 10.1111/nph.14873. PubMed DOI
Dhariwal A., Chong J., Habib S., King I.L., Agellon L.B., Xia J. MicrobiomeAnalyst: A web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 2017;45:W180–W188. doi: 10.1093/nar/gkx295. PubMed DOI PMC
Bertsch C., Ramírez-Suero M., Magnin-Robert M., Larignon P., Chong J., Abou-Mansour E., Spagnolo A., Clément C., Fontaine F. Grapevine trunk diseases: Complex and still poorly understood. Plant Pathol. 2013;62:243–265. doi: 10.1111/j.1365-3059.2012.02674.x. DOI
Fontaine F., Gramaje D., Armengol J., Smart R., Nagy Z.A., Borgo M., Rego C., Corio-Costet M.-F. Grapevine Trunk Diseases. A Review. OIV Publications; Paris, France: 2016. 24p
Komárek M., Čadková E., Chrastný V., Bordas F., Bollinger J.-C. Contamination of vineyard soils with fungicides: A review of environmental and toxicological aspects. Environ. Int. 2010;36:138–151. doi: 10.1016/j.envint.2009.10.005. PubMed DOI
Milićević T., Relić D. Agricultural Research Updates. Volume 36. Nova Science Publishers; New York, NY, USA: 2021. Environmental and human health risk assessment in vineyards based on potentially toxic elements in soil-grapevine-air system; pp. 1–75.
Vek V., Balzano A., Poljanšek I., Humar M., Oven P. Improving fungal decay resistance of less durable sapwood by impregnation with scots pine knotwood and black locust heartwood hydrophilic extractives with antifungal or antioxidant properties. Forests. 2020;11:1024. doi: 10.3390/f11091024. DOI
Vek V., Poljanšek I., Humar M., Willför S., Oven P. In vitro inhibition of extractives from knotwood of Scots pine (Pinus sylvestris) and black pine (Pinus nigra) on growth of Schizophyllum commune, Trametes versicolor, Gloeophyllum trabeum and Fibroporia vaillantii. Wood Sci. Technol. 2020;54:1645–1662. doi: 10.1007/s00226-020-01229-7. DOI
Välimaa A.L., Honkalampi-Hämäläinen U., Pietarinen S., Willför S., Holmbom B., von Wright A. Antimicrobial and cytotoxic knotwood extracts and related pure compounds and their effects on food-associated microorganisms. Int. J. Food Microbiol. 2007;115:235–243. doi: 10.1016/j.ijfoodmicro.2006.10.031. PubMed DOI
Gramaje D., Baumgartner K., Halleen F., Mostert L., Sosnowski M.R., Úrbez-Torres J.R., Armengol J. Fungal trunk diseases: A problem beyond grapevines? Plant Pathol. 2016;65:355–356. doi: 10.1111/ppa.12486. DOI
Mostert L., Groenewald J.Z., Summerbell R.C., Gams W., Crous P.W. Taxonomy and pathology of Togninia (Diaporthales) and its Phaeoacremonium anamorphs. Stud. Mycol. 2006;54:1–113. doi: 10.3114/sim.54.1.1. DOI
Gramaje D., Mostert L., Groenewald J.Z., Crous P.W. Phaeoacremonium: From esca disease to phaeohyphomycosis. Fungal Biol. 2015;119:759–783. doi: 10.1016/j.funbio.2015.06.004. PubMed DOI
Aigoun-Mouhous W., Eichmeier A., Armengol J., Gramaje D., León M., Chaouia C., Zitouni A., Mahamedi A.E., Barankova K., Berraf-Tebbal A. Cadophora sabaouae sp. nov. and Phaeoacremonium species associated with Petri disease on grapevine propagation material and young grapevines in Algeria. Plant Dis. 2021;105:3657–3668. doi: 10.1094/PDIS-11-20-2380-RE. PubMed DOI
David G., Lizel M., Josep A. Characterization of Cadophora luteo-olivacea and C. melinii isolates obtained from grapevines and environmental samples from grapevine nurseries in Spain. Phytopathol. Mediterr. 2011;50:S112–S126. doi: 10.14601/Phytopathol_Mediterr-8723. DOI
Halleen F., Mostert L., Crous P.W. Pathogenicity testing of lesser-known vascular fungi of grapevines. Australas. Plant Pathol. 2007;36:277–285. doi: 10.1071/AP07019. DOI
Úrbez-Torres J.R., Haag P., Bowen P., O’Gorman D.T. Grapevine trunk diseases in British Columbia: Incidence and characterization of the fungal pathogens associated with esca and petri diseases of grapevine. Plant Dis. 2013;98:469–482. doi: 10.1094/PDIS-05-13-0523-RE. PubMed DOI
Overton B., Stewart E., Wenner N. Molecular phylogenetics of grapevine decline fungi from Pennsylvania and New York. Phytopathol. Mediterr. 2005;44:90–91.
Travadon R., Lawrence D.P., Rooney-Latham S., Gubler W.D., Wilcox W.F., Rolshausen P.E., Baumgartner K. Cadophora species associated with wood-decay of grapevine in North America. Fungal Biol. 2015;119:53–66. doi: 10.1016/j.funbio.2014.11.002. PubMed DOI
Antonia C., Francesco L., Lizel M., Francois H., Maria R. Occurrence fungi causing black foot on young grapevines and nursery rootstock plants in Italy. Phytopathol. Mediterr. 2017;56:10–39. doi: 10.14601/Phytopathol_Mediterr-18769. DOI
Reis P., Cabral A., Nascimento T., Oliveira H., Rego C. Diversity of Ilyonectria species in a young vineyard affected by black foot disease. Phytopathol. Mediterr. 2013;52:335–346. doi: 10.14601/Phytopathol_Mediterr-12719. DOI
Berlanas C., López-Manzanares B., Gramaje D. Estimation of viable propagules of black-foot disease pathogens in grapevine cultivated soils and their relation to production systems and soil properties. Plant Soil. 2017;417:467–479. doi: 10.1007/s11104-017-3272-3. DOI
Pečenka J., Eichmeier A., Peňázová E., Baránek M., León M., Armengol J. First report of Dactylonectria torresensis causing black-foot disease on grapevines in the Czech Republic. Plant Dis. 2018;102:2038. doi: 10.1094/PDIS-03-18-0411-PDN. PubMed DOI
Agustí-Brisach C., Gramaje D., García-Jiménez J., Armengol J. Detection of black-foot disease pathogens in the grapevine nursery propagation process in Spain. Eur. J. Plant Pathol. 2013;137:103–112. doi: 10.1007/s10658-013-0221-8. DOI
Güngör-Savaş N., Akgül D.S., Özarslandan M., Yıldız M. First report of Dactylonectria alcacerensis and Dactylonectria torresensis associated with black Foot disease of grapevine in Turkey. Plant Dis. 2020;104:2027. doi: 10.1094/PDIS-02-20-0385-PDN. DOI
Berlanas C., Ojeda S., López-Manzanares B., Andrés-Sodupe M., Bujanda R., del Pilar Martínez-Diz M., Díaz-Losada E., Gramaje D. Occurrence and diversity of black-foot disease fungi in symptomless grapevine nursery stock in Spain. Plant Dis. 2020;104:94–104. doi: 10.1094/PDIS-03-19-0484-RE. PubMed DOI
Eichmeier A., Kiss T., Penazova E., Pecenka J., Berraf-Tebbal A., Baranek M., Pokluda R., Cechova J., Gramaje D., Grzebelus D. MicroRNAs in Vitis vinifera cv. Chardonnay are differentially expressed in response to Diaporthe species. Genes. 2019;10:905. doi: 10.3390/genes10110905. PubMed DOI PMC
Mundy D.C., Brown A., Jacobo F., Tennakoon K., Woolley R.H., Vanga B., Tyson J., Johnston P., Ridgway H.J., Bulman S. Pathogenic fungi isolated in association with grapevine trunk diseases in New Zealand. N. Z. J. Crop Hortic. Sci. 2020;48:84–96. doi: 10.1080/01140671.2020.1716813. DOI
Lawrence D.P., Travadon R., Baumgartner K. Diversity of Diaporthe species associated with wood cankers of fruit and nut crops in northern California. Mycologia. 2015;107:926–940. doi: 10.3852/14-353. PubMed DOI
Baumgartner K., Fujiyoshi P.T., Travadon R., Castlebury L.A., Wilcox W.F., Rolshausen P.E. Characterization of species of Diaporthe from wood cankers of grape in Eastern North American vineyards. Plant Dis. 2013;97:912–920. doi: 10.1094/PDIS-04-12-0357-RE. PubMed DOI
Pitt W.M., Huang R., Trouillas F.P., Steel C.C., Savocchia S. Evidence that Eutypa lata and other diatrypaceous species occur in New South Wales vineyards. Australas. Plant Pathol. 2010;39:97–106. doi: 10.1071/AP09051. DOI
Rolshausen P.E., Greve L.C., Labavitch J.M., Mahoney N.E., Molyneux R.J., Gubler W.D. Pathogenesis of Eutypa lata in grapevine: Identification of virulence factors and biochemical characterization of cordon dieback. Phytopathology. 2008;98:222–229. doi: 10.1094/PHYTO-98-2-0222. PubMed DOI
Trouillas F.P., Gubler W.D. Host range, biological variation, and phylogenetic diversity of Eutypa lata in California. Phytopathology. 2010;100:1048–1056. doi: 10.1094/PHYTO-02-10-0040. PubMed DOI
Živković S., Vasić T., Ivanović M., Jevremović D., Marković J., Trkulja V. Morphological and molecular identification of Eutypa lata on grapevine in Serbia. J. Plant Dis. Prot. 2019;126:479–483. doi: 10.1007/s41348-019-00238-4. DOI
Lardner R., Stummer B.E., Sosnowski M.R., Scott E.S. Molecular identification and detection of Eutypa lata in grapevine. Mycol. Res. 2005;109:799–808. doi: 10.1017/S0953756205002893. PubMed DOI
Moisy C., Berger G., Flutre T., Le Cunff L., Péros J.-P. Quantitative assessment of grapevine wood colonization by the dieback fungus Eutypa lata. J. Fungi. 2017;3:21. doi: 10.3390/jof3020021. PubMed DOI PMC
Elena G., Garcia-Figueres F., Reigada S., Luque J. Intraspecific variation in Diplodia seriata isolates occurring on grapevines in Spain. Plant Pathol. 2015;64:680–689. doi: 10.1111/ppa.12296. DOI
Mohammadi H., Gramaje D., Banihashemi Z., Armengol J. Characterization of Diplodia seriata and Neofusicoccum parvum associated with grapevine decline in Iran. J. Agric. Sci. Technol. 2013;15:603–616.
Phillips A.J.L., Crous P.W., Alves A. Diplodia seriata, the anamorph of “Botryosphaeria” obtusa. Fungal Divers. 2007;25:141–155.
Linaldeddu B.T., Deidda A., Scanu B., Franceschini A., Serra S., Berraf-Tebbal A., Zouaoui Boutiti M., Ben Jamâa M.L., Phillips A.J.L. Diversity of Botryosphaeriaceae species associated with grapevine and other woody hosts in Italy, Algeria and Tunisia, with descriptions of Lasiodiplodia exigua and Lasiodiplodia mediterranea sp. nov. Fungal Divers. 2015;71:201–214. doi: 10.1007/s13225-014-0301-x. DOI
Sosnowski M.R., Ayres M.R., McCarthy M.G., Scott E.S. Winegrape cultivars (Vitis vinifera) vary in susceptibility to the grapevine trunk pathogens Eutypa lata and Diplodia seriata. Aust. J. Grape Wine Res. 2022;28:166–174. doi: 10.1111/ajgw.12531. DOI
Karličić V., Jovičić-Petrović J., Marojević V., Zlatković M., Orlović S., Raičević V. Potential of Trichoderma spp. and Pinus sylvestris bark extracts as biocontrol agents against fungal pathogens residing in the Botryosphaeriales. Environ. Sci. Proc. 2021;3:99. doi: 10.3390/IECF2020-07960. DOI
Karličić V., Zlatković M., Jovičić-Petrović J., Nikolić M.P., Orlović S., Raičević V. Trichoderma spp. from pine bark and pine bark extracts: Potent biocontrol agents against Botryosphaeriaceae. Forests. 2021;12:1731. doi: 10.3390/f12121731. DOI
Piispanen R., Willför S., Saranpää P., Holmbom B. Variation of lignans in Norway spruce (Picea abies [L.] Karst.) knotwood: Within-stem variation and the effect of fertilisation at two experimental sites in Finland. Trees. 2008;22:317–328. doi: 10.1007/s00468-007-0186-3. DOI
Valette N., Perrot T., Sormani R., Gelhaye E., Morel-Rouhier M. Antifungal activities of wood extractives. Fungal Biol. Rev. 2017;31:113–123. doi: 10.1016/j.fbr.2017.01.002. DOI
Kusumoto N., Zhao T., Swedjemark G., Ashitani T., Takahashi K., Borg-Karlson A.-K. Antifungal properties of terpenoids in Picea abies against Heterobasidion parviporum. For. Pathol. 2014;44:353–361. doi: 10.1111/efp.12106. DOI
Rudman P. Literaturberichte. Holzforschung. 1965;19:58–63. doi: 10.1515/hfsg.1965.19.2.58. DOI
Wei Y.-J., Wu Y., Yan Y.-Z., Zou W., Xue J., Ma W.-R., Wang W., Tian G., Wang L.-Y. High-throughput sequencing of microbial community diversity in soil, grapes, leaves, grape juice and wine of grapevine from China. PLoS ONE. 2018;13:e0193097. doi: 10.1371/journal.pone.0193097. PubMed DOI PMC
Martínez-Diz M.d.P., Andrés-Sodupe M., Bujanda R., Díaz-Losada E., Eichmeier A., Gramaje D. Soil-plant compartments affect fungal microbiome diversity and composition in grapevine. Fungal Ecol. 2019;41:234–244. doi: 10.1016/j.funeco.2019.07.003. DOI
Coller E., Cestaro A., Zanzotti R., Bertoldi D., Pindo M., Larger S., Albanese D., Mescalchin E., Donati C. Microbiome of vineyard soils is shaped by geography and management. Microbiome. 2019;7:140. doi: 10.1186/s40168-019-0758-7. PubMed DOI PMC
Carbone M.J., Alaniz S., Mondino P., Gelabert M., Eichmeier A., Tekielska D., Bujanda R., Gramaje D. Drought influences fungal community dynamics in the grapevine rhizosphere and root microbiome. J. Fungi. 2021;7:686. doi: 10.3390/jof7090686. PubMed DOI PMC
Castañeda L.E., Barbosa O. Metagenomic analysis exploring taxonomic and functional diversity of soil microbial communities in Chilean vineyards and surrounding native forests. PeerJ. 2017;5:e3098. doi: 10.7717/peerj.3098. PubMed DOI PMC
Knapp D.G., Lázár A., Molnár A., Vajna B., Karácsony Z., Váczy K.Z., Kovács G.M. Above-ground parts of white grapevine Vitis vinifera cv. Furmint share core members of the fungal microbiome. Environ. Microbiol. Rep. 2021;13:509–520. doi: 10.1111/1758-2229.12950. PubMed DOI
Swift J.F., Hall M.E., Harris Z.N., Kwasniewski M.T., Miller A.J. Grapevine microbiota reflect diversity among compartments and complex interactions within and among root and shoot systems. Microorganisms. 2021;9:92. doi: 10.3390/microorganisms9010092. PubMed DOI PMC
Deyett E., Rolshausen P.E. Endophytic microbial assemblage in grapevine. FEMS Microbiol. Ecol. 2020;96:fiaa053. doi: 10.1093/femsec/fiaa053. PubMed DOI
Dissanayake A.J., Purahong W., Wubet T., Hyde K.D., Zhang W., Xu H., Zhang G., Fu C., Liu M., Xing Q., et al. Direct comparison of culture-dependent and culture-independent molecular approaches reveal the diversity of fungal endophytic communities in stems of grapevine (Vitis vinifera) Fungal Divers. 2018;90:85–107. doi: 10.1007/s13225-018-0399-3. DOI
Jayawardena R.S., Purahong W., Zhang W., Wubet T., Li X., Liu M., Zhao W., Hyde K.D., Liu J., Yan J. Biodiversity of fungi on Vitis vinifera L. revealed by traditional and high-resolution culture-independent approaches. Fungal Divers. 2018;90:1–84. doi: 10.1007/s13225-018-0398-4. DOI
Del Frari G., Gobbi A., Aggerbeck M.R., Oliveira H., Hansen L.H., Ferreira R.B. Characterization of the wood mycobiome of Vitis vinifera in a vineyard affected by Esca. spatial distribution of fungal communities and their putative relation with leaf symptoms. Front. Plant Sci. 2019;10:910. doi: 10.3389/fpls.2019.00910. PubMed DOI PMC
Martínez-Diz M.d.P., Eichmeier A., Spetik M., Bujanda R., Díaz-Fernández Á., Díaz-Losada E., Gramaje D. Grapevine pruning time affects natural wound colonization by wood-invading fungi. Fungal Ecol. 2020;48:100994. doi: 10.1016/j.funeco.2020.100994. DOI
Niem J.M., Billones-Baaijens R., Stodart B., Savocchia S. Diversity profiling of grapevine microbial endosphere and antagonistic potential of endophytic Pseudomonas against grapevine trunk diseases. Front. Microbiol. 2020;11:477. doi: 10.3389/fmicb.2020.00477. PubMed DOI PMC
Martínez-Diz M.d.P., Díaz-Losada E., Andrés-Sodupe M., Bujanda R., Maldonado-González M.M., Ojeda S., Yacoub A., Rey P., Gramaje D. Field evaluation of biocontrol agents against black-foot and Petri diseases of grapevine. Pest Manag. Sci. 2021;77:697–708. doi: 10.1002/ps.6064. PubMed DOI
Del Frari G., Gobbi A., Aggerbeck M.R., Oliveira H., Hansen L.H., Ferreira R.B. Fungicides and the grapevine wood mycobiome: A case study on tracheomycotic ascomycete Phaeomoniella chlamydospora reveals potential for two novel control strategies. Front. Plant Sci. 2019;10:1405. doi: 10.3389/fpls.2019.01405. PubMed DOI PMC
Rudman P. The causes of natural durability in timber—part XI. some tests on the fungi toxicity of wood extractives and related compounds. Holzforschung. 1963;17:54–57. doi: 10.1515/hfsg.1963.17.2.54. DOI
Gramaje D., Eichmeier A., Spetik M., Carbone M.J., Bujanda R., Vallance J., Rey P. Exploring the temporal dynamics of the fungal microbiome in rootstocks, the lesser-known half of the grapevine crop. Environ. Microbiome. 2021 doi: 10.21203/rs.3.rs-1044951/v1. PubMed DOI PMC
Almeida A.B.d., Concas J., Campos M.D., Materatski P., Varanda C., Patanita M., Murolo S., Romanazzi G., Félix M.d.R. Endophytic fungi as potential biological control agents against grapevine trunk diseases in Alentejo region. Biology. 2020;9:420. doi: 10.3390/biology9120420. PubMed DOI PMC
Ziedan E.-S.H., Embaby E.-S.M., Farrag E.S. First record of Fusarium vascular wilt on grapevine in Egypt. Arch. Phytopathol. Plant Prot. 2011;44:1719–1727. doi: 10.1080/03235408.2010.522818. DOI
Highet A.S., Nair N.G. Fusarium oxysporum associated with grapevine decline in the Hunter Valley, NSW, Australia. Aust. J. Grape Wine Res. 1995;1:48–50. doi: 10.1111/j.1755-0238.1995.tb00077.x. DOI
Omer A.D., Granett J., Wakeman R.J. Pathogenicity of Fusarium oxysporum on different Vitis rootstocks. J. Phytopathol. 1999;147:433–436. doi: 10.1111/j.1439-0434.1999.tb03846.x. DOI
Grasso S. Infection of Fusarium oxysporum and Cylindrocarpon destructans, associated with a grapevine decline in a vineyard of eastern Sicily. Inf. Fitopatol. 1984;36:59–63.
Hemida K.A.R., Ziedan E.H.E., El-Saman M.G.M., El-Naggar M.A., Mostafa H.M. Etiology of fungi associated with grapevine decline and their pathological potential. Arab. Univ. J. Agric. Sci. 2017;25:355–365. doi: 10.21608/ajs.2017.13618. DOI
Vincenzo M., Alessandro S., Philippe L., Christophe C., Florence F. Phytoprotection potential of Fusarium proliferatum for control of Botryosphaeria dieback pathogens in grapevine. Phytopathol. Mediterr. 2019;58:293–306. doi: 10.14601/Phytopathol_Mediter-10617. DOI
McMahan G., Yeh W., Marshall M.N., Olsen M., Sananikone S., Wu J.Y., Block D.E., VanderGheynst J.S. Characterizing the production of a wild-type and benomyl-resistant Fusarium lateritium for biocontrol of Eutypa lata on grapevine. J. Ind. Microbiol. Biotechnol. 2001;26:151–155. doi: 10.1038/sj.jim.7000099. PubMed DOI
Billones-Baaijens R., Savocchia S. A review of Botryosphaeriaceae species associated with grapevine trunk diseases in Australia and New Zealand. Australas. Plant Pathol. 2019;48:3–18. doi: 10.1007/s13313-018-0585-5. DOI
Rego C., Nascimento T., Cabral A., Silva M.J., Oliveira H. Control of grapevine wood fungi in commercial nurseries. Phytopathol. Mediterr. 2009;48:128–135.
Fourie P.H., Halleen F. Occurrence of grapevine trunk disease pathogens in rootstock mother plants in South Africa. Australas. Plant Pathol. 2004;33:313–315. doi: 10.1071/AP04005. DOI
Varela C., Redondo V., Costas Imbernon D., Aguín O., Mansilla P. Fungi associated with grapevine trunk diseases in nursery-produced Vitis vinifera plants. Phytopathol. Mediterr. 2019;57:407–424. doi: 10.14601/Phytopathol_Mediterr-22964. DOI
Lade S.B., Štraus D., Oliva J. Variation in fungal community in grapevine (Vitis vinifera) nursery stock depends on nursery, variety and rootstock. J. Fungi. 2022;8:47. doi: 10.3390/jof8010047. PubMed DOI PMC
Navarrete F., Abreo E., Martínez S., Bettucci L., Lupo S. Pathogenicity and molecular detection of Uruguayan isolates of Greeneria uvicola and Cadophora luteo-olivacea associated with grapevine trunk diseases. Phytopathol. Mediterr. 2011;50:S166–S175.
Rühl E.H., Manty F., Konrad H., Bleser E. The importance of pathogen-free grapevine propagation material in regards to clonal selection and rootstock breeding in Germany. Int. J. Hortic. Sci. 2011;17:11–13. doi: 10.31421/IJHS/17/3/952. DOI
John S., Wicks T.J., Hunt J.S., Lorimer M.F., Oakey H., Scott E.S. Protection of grapevine pruning wounds from infection by Eutypa lata using Trichoderma harzianum and Fusarium lateritium. Australas. Plant Pathol. 2005;34:569–575. doi: 10.1071/AP05075. DOI
Blundell R., Eskalen A. Biological and chemical pruning wound protectants reduce infection of grapevine trunk disease pathogens. Calif. Agric. 2021;75:128–134. doi: 10.3733/ca.2021a0018. DOI
Martinez-Diz M.D., Diaz-Losada E., Diaz-Fernandez A., Bouzas-Cid Y., Gramaje D. Protection of grapevine pruning wounds against Phaeomoniella chlamydospora and Diplodia seriata by commercial biological and chemical methods. Crop Prot. 2021;143:105465. doi: 10.1016/j.cropro.2020.105465. DOI
Yacoub A., Haidar R., Gerbore J., Masson C., Dufour M.C., Guyoneaud R., Rey P. Pythium oligandrum induces grapevine defence mechanisms against the trunk pathogen Neofusicoccum parvum. Phytopathol. Mediterr. 2020;59:565–580. doi: 10.14601/Phyto-11270. DOI
Ayres M.R., Wicks T.J., Scott E.S., Sosnowski M.R. Developing pruning wound protection strategies for managing Eutypa dieback. Aust. J. Grape Wine Res. 2017;23:103–111. doi: 10.1111/ajgw.12254. DOI
Pitt W.M., Sosnowski M.R., Huang R.J., Qiu Y., Steel C.C., Savocchia S. Evaluation of fungicides for the management of botryosphaeria canker of grapevines. Plant Dis. 2012;96:1303–1308. doi: 10.1094/PDIS-11-11-0998-RE. PubMed DOI
Kotze C., Van Niekerk J., Mostert L., Halleen F., Fourie P. Evaluation of biocontrol agents for grapevine pruning wound protection against trunk pathogen infection. Phytopathol. Mediterr. 2011;50:S247–S263.
Rolshausen P.E., Urbez-Torres J.R., Rooney-Latham S., Eskalen A., Smith R.J., Gubler W.D. Evaluation of Pruning Wound Susceptibility and Protection Against Fungi Associated with Grapevine Trunk Diseases. Am. J. Enol. Vitic. 2010;61:113–119.
Alvarez-Perez J.M., Gonzalez-Garcia S., Cobos R., Olego M.A., Ibanez A., Diez-Galan A., Garzon-Jimeno E., Coque J.J.R. Use of endophytic and rhizospheric actinobacteria from grapevine plants to reduce fungal graft infections in nurseries that lead to young grapevine decline. Appl. Environ. Microbiol. 2017;83:e01564-17. doi: 10.1128/AEM.01564-17. PubMed DOI PMC
Cobos R., Mateos R.M., Alvarez-Perez J.M., Olego M.A., Sevillano S., Gonzalez-Garcia S., Garzon-Jimeno E., Coque J.J.R. Effectiveness of natural antifungal compounds in controlling infection by grapevine trunk disease pathogens through pruning wounds. Appl. Environ. Microbiol. 2015;81:6474–6483. doi: 10.1128/AEM.01818-15. PubMed DOI PMC
Rolshausen P.E., Gubler W.D. Use of boron for the control of Eutypa dieback of grapevines. Plant Dis. 2005;89:734–738. doi: 10.1094/PD-89-0734. PubMed DOI