Lignans Extract from Knotwood of Norway Spruce-A Possible New Weapon against GTDs

. 2022 Mar 30 ; 8 (4) : . [epub] 20220330

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35448588

Grantová podpora
CZ.02.2.69/0.0/0.0/19_073/0016670 Internal Grant Schemes of Mendel University in Brno, funded by the ESF.

Grapevine trunk diseases (GTDs) pose a major threat to the wine industry worldwide. Currently, efficient biological methods or chemical compounds are not available for the treatment of infected grapevines. In the present study, we used an extract from the knotwood of spruce trees as a biological control against GTDs. Our in vitro trial was focused on the antifungal effects of the extract against the most common GTD pathogens-Cadophora luteo-olivacea, Dactylonectria torresensis, Diaporthe ampelina, Diaporthe bohemiae, Diplodia seriata, Eutypa lata, and Phaeoacremonium minimum. Our in vitro trial revealed a high antifungal effect of the extract against all tested fungi. The inhibition rates varied among the different species from 30% to 100% using 1 mg·mL-1 extract. Subsequently, the efficiency of the extract was supported by an in planta experiment. Commercial grafts of Vitis vinifera were treated with the extract and planted. The total genomic DNA of grapevines was extracted 10 days and 180 days after the treatment. The fungal microbial diversities of the treated/untreated plants were compared using high-throughput amplicon sequencing (HTAS). Treated plants showed 76.9% lower relative abundance of the genus Diaporthe and 70% lower relative abundance of the genus Phaeoacremonium 10 days after treatment. A similar scenario was observed for the genus Cadophora 180 days after treatment, where treated plants showed 76% lower relative abundance of this genus compared with untreated grapevines.

Zobrazit více v PubMed

OICV . Statistical Report on World Vitiviniculture. International Organisation of Vine and Wine, Intergovernmental Organisation; Paris, France: 2019.

Fontaine F., Pinto C., Vallet J., Clément C., Gomes A.C., Spagnolo A. The effects of grapevine trunk diseases (GTDs) on vine physiology. Eur. J. Plant Pathol. 2016;144:707–721. doi: 10.1007/s10658-015-0770-0. DOI

Hofstetter V., Buyck B., Croll D., Viret O., Couloux A., Gindro K. What if esca disease of grapevine were not a fungal disease? Fungal Divers. 2012;54:51–67. doi: 10.1007/s13225-012-0171-z. DOI

Marion C., Martin N., Florence F., Jacques W. Current knowledge on grapevine trunk diseases with complex etiology: A systemic approach. Phytopathol. Mediterr. 2020;59:29–53. doi: 10.36253/phyto-11150. DOI

Lucia G.-D., Florence F., Laura M. Grapevine trunk disease in European and Mediterranean vineyards: Occurrence, distribution and associated disease-affecting cultural factors. Phytopathol. Mediterr. 2019;58:49–71. doi: 10.14601/Phytopathol_Mediterr-25153. DOI

Gramaje D., Armengol J. Fungal trunk pathogens in the grapevine propagation process: Potential inoculum sources, detection, identification, and management strategies. Plant Dis. 2011;95:1040–1055. doi: 10.1094/PDIS-01-11-0025. PubMed DOI

Gramaje D., Úrbez-Torres J.R., Sosnowski M.R. Managing grapevine trunk diseases with respect to etiology and epidemiology: Current strategies and future prospects. Plant Dis. 2018;102:12–39. doi: 10.1094/PDIS-04-17-0512-FE. PubMed DOI

Úrbez-Torres J.R., Peduto F., Smith R.J., Gubler W.D. Phomopsis dieback: A grapevine trunk disease caused by Phomopsis viticola in California. Plant Dis. 2013;97:1571–1579. doi: 10.1094/PDIS-11-12-1072-RE. PubMed DOI

Guarnaccia V., Groenewald J.Z., Woodhall J., Armengol J., Cinelli T., Eichmeier A., Ezra D., Florence F., Gramaje D., Gutierrez-Aguirregabiria A., et al. Diaporthe diversity and pathogenicity revealed from a broad survey of grapevine diseases in Europe. Pers. -Mol. Phylogeny Evol. Fungi. 2018;40:135–153. doi: 10.3767/persoonia.2018.40.06. PubMed DOI PMC

Mondello V., Songy A., Battiston E., Pinto C., Coppin C., Trotel-Aziz P., Clément C., Mugnai L., Fontaine F. Grapevine trunk diseases: A review of fifteen years of trials for their control with chemicals and biocontrol agents. Plant Dis. 2018;102:1189–1217. doi: 10.1094/PDIS-08-17-1181-FE. PubMed DOI

Vek V., Keržič E., Poljanšek I., Eklund P., Humar M., Oven P. Wood extractives of silver fir and their antioxidant and antifungal properties. Molecules. 2021;26:6412. doi: 10.3390/molecules26216412. PubMed DOI PMC

Kawamura F., Ramle S.F.M., Sulaiman O., Hashim R., Ohara S. Antioxidant and antifungal activities of extracts from 15 selected hardwood species of Malaysian timber. Eur. J. Wood Wood Prod. 2011;69:207–212. doi: 10.1007/s00107-010-0413-2. DOI

Salem M.Z.M., Elansary H.O., Elkelish A.A., Zeidler A., Ali H.M., EL-Hefny M., Yessoufou K. In vitro bioactivity and antimicrobial activity of Picea abies and Larix decidua wood and bark extracts. BioResources. 2016;11:17. doi: 10.15376/biores.11.4.9421-9437. DOI

Minova S., Sešķēna R., Voitkāne S., Metla Z., Daugavietis M., Jankevica L. Impact of pine (L.) and spruce ((L.) Karst.) bark extracts on important strawberry pathogens. Proc. Latv. Acad. Sci. Sect. B. Nat. Exact Appl. Sci. 2015;69:62–67. doi: 10.1515/prolas-2015-0008. DOI

Latva-Mäenpää H., Laakso T., Sarjala T., Wähälä K., Saranpää P. Root neck of Norway spruce as a source of bioactive lignans and stilbenes. Holzforschung. 2014;68:1–7. doi: 10.1515/hf-2013-0020. DOI

Shain L., Hillis E.W. Phenolic extractives in Norway spruce and their effects on Fomes annosus. Phytopathology. 1971;61:841–845. doi: 10.1094/Phyto-61-841. DOI

Widad M.K.A.-A., Fitua M.A. Antimicrobial activity of hydroxymatairesinol (HMR) lignan. Iraqi J. Pharm. Sci. 2013;22:30–34. doi: 10.31351/vol22iss2pp30-34. DOI

Blanchette R.A., Biggs A.R. Springer Series in Wood Science. Springer; Berlin/Heidelberg, Germany: 1992. Defense mechanisms of woody plants against fungi.

Balík J., Híc P., Tříska J., Vrchotová N., Smetana P., Smutek L., Rohlik B.-A., Houška M. Beer and beer-based beverage contain lignans. J. Food Sci. Technol. 2021;58:581–585. doi: 10.1007/s13197-020-04570-8. PubMed DOI PMC

Brennan M., Hentges D., Cosgun S., Dumarcay S., Colin F., Gérardin C., Gérardin P. Intraspecific variability of quantity and chemical composition of ethanolic knotwood extracts along the stems of three industrially important softwood species: Abies alba, Picea abies and Pseudotsuga menziesii. Holzforschung. 2021;75:168–179. doi: 10.1515/hf-2020-0108. DOI

Eichmeier A., Pečenka J., Peňázová E., Baránek M., Català-García S., León M., Armengol J., Gramaje D. High-throughput amplicon sequencing-based analysis of active fungal communities inhabiting grapevine after hot-water treatments reveals unexpectedly high fungal diversity. Fungal Ecol. 2018;36:26–38. doi: 10.1016/j.funeco.2018.07.011. DOI

Bruez E., Vallance J., Gautier A., Laval V., Compant S., Maurer W., Sessitsch A., Lebrun M.-H., Rey P. Major changes in grapevine wood microbiota are associated with the onset of esca, a devastating trunk disease. Environ. Microbiol. 2020;22:5189–5206. doi: 10.1111/1462-2920.15180. PubMed DOI

White T.J., Bruns T., Lee S., Taylor J. Amplification and direct sequencing of fungal ribosomal RNA Genes for phylogenetics. In: Innis M.A., Gelfand D.H., Sninsky J.J., White T.J., editors. PCR Protocols. Academic Press; San Diego, CA, USA: 1990. pp. 315–322.

Andrews S. A Quality Control Tool for High Throughput Sequence Data. 2010. [(accessed on 30 August 2021)]. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.

Větrovský T., Baldrian P., Morais D. SEED 2: A user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics. 2018;34:2292–2294. doi: 10.1093/bioinformatics/bty071. PubMed DOI PMC

Aronesty E. EA-Utils: Command-Line Tools for Processing Biological Sequencing Data. Erik Aronesty; Durham, NC, USA: 2011.

Bengtsson-Palme J., Ryberg M., Hartmann M., Branco S., Wang Z., Godhe A., De Wit P., Sánchez-García M., Ebersberger I., de Sousa F., et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 2013;4:914–919. doi: 10.1111/2041-210X.12073. DOI

Edgar R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods. 2013;10:996–998. doi: 10.1038/nmeth.2604. PubMed DOI

Abarenkov K., Henrik Nilsson R., Larsson K.-H., Alexander I.J., Eberhardt U., Erland S., Høiland K., Kjøller R., Larsson E., Pennanen T., et al. The UNITE database for molecular identification of fungi—recent updates and future perspectives. New Phytol. 2010;186:281–285. doi: 10.1111/j.1469-8137.2009.03160.x. PubMed DOI

Glynou K., Nam B., Thines M., Maciá-Vicente J.G. Facultative root-colonizing fungi dominate endophytic assemblages in roots of nonmycorrhizal Microthlaspi species. New Phytol. 2018;217:1190–1202. doi: 10.1111/nph.14873. PubMed DOI

Dhariwal A., Chong J., Habib S., King I.L., Agellon L.B., Xia J. MicrobiomeAnalyst: A web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 2017;45:W180–W188. doi: 10.1093/nar/gkx295. PubMed DOI PMC

Bertsch C., Ramírez-Suero M., Magnin-Robert M., Larignon P., Chong J., Abou-Mansour E., Spagnolo A., Clément C., Fontaine F. Grapevine trunk diseases: Complex and still poorly understood. Plant Pathol. 2013;62:243–265. doi: 10.1111/j.1365-3059.2012.02674.x. DOI

Fontaine F., Gramaje D., Armengol J., Smart R., Nagy Z.A., Borgo M., Rego C., Corio-Costet M.-F. Grapevine Trunk Diseases. A Review. OIV Publications; Paris, France: 2016. 24p

Komárek M., Čadková E., Chrastný V., Bordas F., Bollinger J.-C. Contamination of vineyard soils with fungicides: A review of environmental and toxicological aspects. Environ. Int. 2010;36:138–151. doi: 10.1016/j.envint.2009.10.005. PubMed DOI

Milićević T., Relić D. Agricultural Research Updates. Volume 36. Nova Science Publishers; New York, NY, USA: 2021. Environmental and human health risk assessment in vineyards based on potentially toxic elements in soil-grapevine-air system; pp. 1–75.

Vek V., Balzano A., Poljanšek I., Humar M., Oven P. Improving fungal decay resistance of less durable sapwood by impregnation with scots pine knotwood and black locust heartwood hydrophilic extractives with antifungal or antioxidant properties. Forests. 2020;11:1024. doi: 10.3390/f11091024. DOI

Vek V., Poljanšek I., Humar M., Willför S., Oven P. In vitro inhibition of extractives from knotwood of Scots pine (Pinus sylvestris) and black pine (Pinus nigra) on growth of Schizophyllum commune, Trametes versicolor, Gloeophyllum trabeum and Fibroporia vaillantii. Wood Sci. Technol. 2020;54:1645–1662. doi: 10.1007/s00226-020-01229-7. DOI

Välimaa A.L., Honkalampi-Hämäläinen U., Pietarinen S., Willför S., Holmbom B., von Wright A. Antimicrobial and cytotoxic knotwood extracts and related pure compounds and their effects on food-associated microorganisms. Int. J. Food Microbiol. 2007;115:235–243. doi: 10.1016/j.ijfoodmicro.2006.10.031. PubMed DOI

Gramaje D., Baumgartner K., Halleen F., Mostert L., Sosnowski M.R., Úrbez-Torres J.R., Armengol J. Fungal trunk diseases: A problem beyond grapevines? Plant Pathol. 2016;65:355–356. doi: 10.1111/ppa.12486. DOI

Mostert L., Groenewald J.Z., Summerbell R.C., Gams W., Crous P.W. Taxonomy and pathology of Togninia (Diaporthales) and its Phaeoacremonium anamorphs. Stud. Mycol. 2006;54:1–113. doi: 10.3114/sim.54.1.1. DOI

Gramaje D., Mostert L., Groenewald J.Z., Crous P.W. Phaeoacremonium: From esca disease to phaeohyphomycosis. Fungal Biol. 2015;119:759–783. doi: 10.1016/j.funbio.2015.06.004. PubMed DOI

Aigoun-Mouhous W., Eichmeier A., Armengol J., Gramaje D., León M., Chaouia C., Zitouni A., Mahamedi A.E., Barankova K., Berraf-Tebbal A. Cadophora sabaouae sp. nov. and Phaeoacremonium species associated with Petri disease on grapevine propagation material and young grapevines in Algeria. Plant Dis. 2021;105:3657–3668. doi: 10.1094/PDIS-11-20-2380-RE. PubMed DOI

David G., Lizel M., Josep A. Characterization of Cadophora luteo-olivacea and C. melinii isolates obtained from grapevines and environmental samples from grapevine nurseries in Spain. Phytopathol. Mediterr. 2011;50:S112–S126. doi: 10.14601/Phytopathol_Mediterr-8723. DOI

Halleen F., Mostert L., Crous P.W. Pathogenicity testing of lesser-known vascular fungi of grapevines. Australas. Plant Pathol. 2007;36:277–285. doi: 10.1071/AP07019. DOI

Úrbez-Torres J.R., Haag P., Bowen P., O’Gorman D.T. Grapevine trunk diseases in British Columbia: Incidence and characterization of the fungal pathogens associated with esca and petri diseases of grapevine. Plant Dis. 2013;98:469–482. doi: 10.1094/PDIS-05-13-0523-RE. PubMed DOI

Overton B., Stewart E., Wenner N. Molecular phylogenetics of grapevine decline fungi from Pennsylvania and New York. Phytopathol. Mediterr. 2005;44:90–91.

Travadon R., Lawrence D.P., Rooney-Latham S., Gubler W.D., Wilcox W.F., Rolshausen P.E., Baumgartner K. Cadophora species associated with wood-decay of grapevine in North America. Fungal Biol. 2015;119:53–66. doi: 10.1016/j.funbio.2014.11.002. PubMed DOI

Antonia C., Francesco L., Lizel M., Francois H., Maria R. Occurrence fungi causing black foot on young grapevines and nursery rootstock plants in Italy. Phytopathol. Mediterr. 2017;56:10–39. doi: 10.14601/Phytopathol_Mediterr-18769. DOI

Reis P., Cabral A., Nascimento T., Oliveira H., Rego C. Diversity of Ilyonectria species in a young vineyard affected by black foot disease. Phytopathol. Mediterr. 2013;52:335–346. doi: 10.14601/Phytopathol_Mediterr-12719. DOI

Berlanas C., López-Manzanares B., Gramaje D. Estimation of viable propagules of black-foot disease pathogens in grapevine cultivated soils and their relation to production systems and soil properties. Plant Soil. 2017;417:467–479. doi: 10.1007/s11104-017-3272-3. DOI

Pečenka J., Eichmeier A., Peňázová E., Baránek M., León M., Armengol J. First report of Dactylonectria torresensis causing black-foot disease on grapevines in the Czech Republic. Plant Dis. 2018;102:2038. doi: 10.1094/PDIS-03-18-0411-PDN. PubMed DOI

Agustí-Brisach C., Gramaje D., García-Jiménez J., Armengol J. Detection of black-foot disease pathogens in the grapevine nursery propagation process in Spain. Eur. J. Plant Pathol. 2013;137:103–112. doi: 10.1007/s10658-013-0221-8. DOI

Güngör-Savaş N., Akgül D.S., Özarslandan M., Yıldız M. First report of Dactylonectria alcacerensis and Dactylonectria torresensis associated with black Foot disease of grapevine in Turkey. Plant Dis. 2020;104:2027. doi: 10.1094/PDIS-02-20-0385-PDN. DOI

Berlanas C., Ojeda S., López-Manzanares B., Andrés-Sodupe M., Bujanda R., del Pilar Martínez-Diz M., Díaz-Losada E., Gramaje D. Occurrence and diversity of black-foot disease fungi in symptomless grapevine nursery stock in Spain. Plant Dis. 2020;104:94–104. doi: 10.1094/PDIS-03-19-0484-RE. PubMed DOI

Eichmeier A., Kiss T., Penazova E., Pecenka J., Berraf-Tebbal A., Baranek M., Pokluda R., Cechova J., Gramaje D., Grzebelus D. MicroRNAs in Vitis vinifera cv. Chardonnay are differentially expressed in response to Diaporthe species. Genes. 2019;10:905. doi: 10.3390/genes10110905. PubMed DOI PMC

Mundy D.C., Brown A., Jacobo F., Tennakoon K., Woolley R.H., Vanga B., Tyson J., Johnston P., Ridgway H.J., Bulman S. Pathogenic fungi isolated in association with grapevine trunk diseases in New Zealand. N. Z. J. Crop Hortic. Sci. 2020;48:84–96. doi: 10.1080/01140671.2020.1716813. DOI

Lawrence D.P., Travadon R., Baumgartner K. Diversity of Diaporthe species associated with wood cankers of fruit and nut crops in northern California. Mycologia. 2015;107:926–940. doi: 10.3852/14-353. PubMed DOI

Baumgartner K., Fujiyoshi P.T., Travadon R., Castlebury L.A., Wilcox W.F., Rolshausen P.E. Characterization of species of Diaporthe from wood cankers of grape in Eastern North American vineyards. Plant Dis. 2013;97:912–920. doi: 10.1094/PDIS-04-12-0357-RE. PubMed DOI

Pitt W.M., Huang R., Trouillas F.P., Steel C.C., Savocchia S. Evidence that Eutypa lata and other diatrypaceous species occur in New South Wales vineyards. Australas. Plant Pathol. 2010;39:97–106. doi: 10.1071/AP09051. DOI

Rolshausen P.E., Greve L.C., Labavitch J.M., Mahoney N.E., Molyneux R.J., Gubler W.D. Pathogenesis of Eutypa lata in grapevine: Identification of virulence factors and biochemical characterization of cordon dieback. Phytopathology. 2008;98:222–229. doi: 10.1094/PHYTO-98-2-0222. PubMed DOI

Trouillas F.P., Gubler W.D. Host range, biological variation, and phylogenetic diversity of Eutypa lata in California. Phytopathology. 2010;100:1048–1056. doi: 10.1094/PHYTO-02-10-0040. PubMed DOI

Živković S., Vasić T., Ivanović M., Jevremović D., Marković J., Trkulja V. Morphological and molecular identification of Eutypa lata on grapevine in Serbia. J. Plant Dis. Prot. 2019;126:479–483. doi: 10.1007/s41348-019-00238-4. DOI

Lardner R., Stummer B.E., Sosnowski M.R., Scott E.S. Molecular identification and detection of Eutypa lata in grapevine. Mycol. Res. 2005;109:799–808. doi: 10.1017/S0953756205002893. PubMed DOI

Moisy C., Berger G., Flutre T., Le Cunff L., Péros J.-P. Quantitative assessment of grapevine wood colonization by the dieback fungus Eutypa lata. J. Fungi. 2017;3:21. doi: 10.3390/jof3020021. PubMed DOI PMC

Elena G., Garcia-Figueres F., Reigada S., Luque J. Intraspecific variation in Diplodia seriata isolates occurring on grapevines in Spain. Plant Pathol. 2015;64:680–689. doi: 10.1111/ppa.12296. DOI

Mohammadi H., Gramaje D., Banihashemi Z., Armengol J. Characterization of Diplodia seriata and Neofusicoccum parvum associated with grapevine decline in Iran. J. Agric. Sci. Technol. 2013;15:603–616.

Phillips A.J.L., Crous P.W., Alves A. Diplodia seriata, the anamorph of “Botryosphaeria” obtusa. Fungal Divers. 2007;25:141–155.

Linaldeddu B.T., Deidda A., Scanu B., Franceschini A., Serra S., Berraf-Tebbal A., Zouaoui Boutiti M., Ben Jamâa M.L., Phillips A.J.L. Diversity of Botryosphaeriaceae species associated with grapevine and other woody hosts in Italy, Algeria and Tunisia, with descriptions of Lasiodiplodia exigua and Lasiodiplodia mediterranea sp. nov. Fungal Divers. 2015;71:201–214. doi: 10.1007/s13225-014-0301-x. DOI

Sosnowski M.R., Ayres M.R., McCarthy M.G., Scott E.S. Winegrape cultivars (Vitis vinifera) vary in susceptibility to the grapevine trunk pathogens Eutypa lata and Diplodia seriata. Aust. J. Grape Wine Res. 2022;28:166–174. doi: 10.1111/ajgw.12531. DOI

Karličić V., Jovičić-Petrović J., Marojević V., Zlatković M., Orlović S., Raičević V. Potential of Trichoderma spp. and Pinus sylvestris bark extracts as biocontrol agents against fungal pathogens residing in the Botryosphaeriales. Environ. Sci. Proc. 2021;3:99. doi: 10.3390/IECF2020-07960. DOI

Karličić V., Zlatković M., Jovičić-Petrović J., Nikolić M.P., Orlović S., Raičević V. Trichoderma spp. from pine bark and pine bark extracts: Potent biocontrol agents against Botryosphaeriaceae. Forests. 2021;12:1731. doi: 10.3390/f12121731. DOI

Piispanen R., Willför S., Saranpää P., Holmbom B. Variation of lignans in Norway spruce (Picea abies [L.] Karst.) knotwood: Within-stem variation and the effect of fertilisation at two experimental sites in Finland. Trees. 2008;22:317–328. doi: 10.1007/s00468-007-0186-3. DOI

Valette N., Perrot T., Sormani R., Gelhaye E., Morel-Rouhier M. Antifungal activities of wood extractives. Fungal Biol. Rev. 2017;31:113–123. doi: 10.1016/j.fbr.2017.01.002. DOI

Kusumoto N., Zhao T., Swedjemark G., Ashitani T., Takahashi K., Borg-Karlson A.-K. Antifungal properties of terpenoids in Picea abies against Heterobasidion parviporum. For. Pathol. 2014;44:353–361. doi: 10.1111/efp.12106. DOI

Rudman P. Literaturberichte. Holzforschung. 1965;19:58–63. doi: 10.1515/hfsg.1965.19.2.58. DOI

Wei Y.-J., Wu Y., Yan Y.-Z., Zou W., Xue J., Ma W.-R., Wang W., Tian G., Wang L.-Y. High-throughput sequencing of microbial community diversity in soil, grapes, leaves, grape juice and wine of grapevine from China. PLoS ONE. 2018;13:e0193097. doi: 10.1371/journal.pone.0193097. PubMed DOI PMC

Martínez-Diz M.d.P., Andrés-Sodupe M., Bujanda R., Díaz-Losada E., Eichmeier A., Gramaje D. Soil-plant compartments affect fungal microbiome diversity and composition in grapevine. Fungal Ecol. 2019;41:234–244. doi: 10.1016/j.funeco.2019.07.003. DOI

Coller E., Cestaro A., Zanzotti R., Bertoldi D., Pindo M., Larger S., Albanese D., Mescalchin E., Donati C. Microbiome of vineyard soils is shaped by geography and management. Microbiome. 2019;7:140. doi: 10.1186/s40168-019-0758-7. PubMed DOI PMC

Carbone M.J., Alaniz S., Mondino P., Gelabert M., Eichmeier A., Tekielska D., Bujanda R., Gramaje D. Drought influences fungal community dynamics in the grapevine rhizosphere and root microbiome. J. Fungi. 2021;7:686. doi: 10.3390/jof7090686. PubMed DOI PMC

Castañeda L.E., Barbosa O. Metagenomic analysis exploring taxonomic and functional diversity of soil microbial communities in Chilean vineyards and surrounding native forests. PeerJ. 2017;5:e3098. doi: 10.7717/peerj.3098. PubMed DOI PMC

Knapp D.G., Lázár A., Molnár A., Vajna B., Karácsony Z., Váczy K.Z., Kovács G.M. Above-ground parts of white grapevine Vitis vinifera cv. Furmint share core members of the fungal microbiome. Environ. Microbiol. Rep. 2021;13:509–520. doi: 10.1111/1758-2229.12950. PubMed DOI

Swift J.F., Hall M.E., Harris Z.N., Kwasniewski M.T., Miller A.J. Grapevine microbiota reflect diversity among compartments and complex interactions within and among root and shoot systems. Microorganisms. 2021;9:92. doi: 10.3390/microorganisms9010092. PubMed DOI PMC

Deyett E., Rolshausen P.E. Endophytic microbial assemblage in grapevine. FEMS Microbiol. Ecol. 2020;96:fiaa053. doi: 10.1093/femsec/fiaa053. PubMed DOI

Dissanayake A.J., Purahong W., Wubet T., Hyde K.D., Zhang W., Xu H., Zhang G., Fu C., Liu M., Xing Q., et al. Direct comparison of culture-dependent and culture-independent molecular approaches reveal the diversity of fungal endophytic communities in stems of grapevine (Vitis vinifera) Fungal Divers. 2018;90:85–107. doi: 10.1007/s13225-018-0399-3. DOI

Jayawardena R.S., Purahong W., Zhang W., Wubet T., Li X., Liu M., Zhao W., Hyde K.D., Liu J., Yan J. Biodiversity of fungi on Vitis vinifera L. revealed by traditional and high-resolution culture-independent approaches. Fungal Divers. 2018;90:1–84. doi: 10.1007/s13225-018-0398-4. DOI

Del Frari G., Gobbi A., Aggerbeck M.R., Oliveira H., Hansen L.H., Ferreira R.B. Characterization of the wood mycobiome of Vitis vinifera in a vineyard affected by Esca. spatial distribution of fungal communities and their putative relation with leaf symptoms. Front. Plant Sci. 2019;10:910. doi: 10.3389/fpls.2019.00910. PubMed DOI PMC

Martínez-Diz M.d.P., Eichmeier A., Spetik M., Bujanda R., Díaz-Fernández Á., Díaz-Losada E., Gramaje D. Grapevine pruning time affects natural wound colonization by wood-invading fungi. Fungal Ecol. 2020;48:100994. doi: 10.1016/j.funeco.2020.100994. DOI

Niem J.M., Billones-Baaijens R., Stodart B., Savocchia S. Diversity profiling of grapevine microbial endosphere and antagonistic potential of endophytic Pseudomonas against grapevine trunk diseases. Front. Microbiol. 2020;11:477. doi: 10.3389/fmicb.2020.00477. PubMed DOI PMC

Martínez-Diz M.d.P., Díaz-Losada E., Andrés-Sodupe M., Bujanda R., Maldonado-González M.M., Ojeda S., Yacoub A., Rey P., Gramaje D. Field evaluation of biocontrol agents against black-foot and Petri diseases of grapevine. Pest Manag. Sci. 2021;77:697–708. doi: 10.1002/ps.6064. PubMed DOI

Del Frari G., Gobbi A., Aggerbeck M.R., Oliveira H., Hansen L.H., Ferreira R.B. Fungicides and the grapevine wood mycobiome: A case study on tracheomycotic ascomycete Phaeomoniella chlamydospora reveals potential for two novel control strategies. Front. Plant Sci. 2019;10:1405. doi: 10.3389/fpls.2019.01405. PubMed DOI PMC

Rudman P. The causes of natural durability in timber—part XI. some tests on the fungi toxicity of wood extractives and related compounds. Holzforschung. 1963;17:54–57. doi: 10.1515/hfsg.1963.17.2.54. DOI

Gramaje D., Eichmeier A., Spetik M., Carbone M.J., Bujanda R., Vallance J., Rey P. Exploring the temporal dynamics of the fungal microbiome in rootstocks, the lesser-known half of the grapevine crop. Environ. Microbiome. 2021 doi: 10.21203/rs.3.rs-1044951/v1. PubMed DOI PMC

Almeida A.B.d., Concas J., Campos M.D., Materatski P., Varanda C., Patanita M., Murolo S., Romanazzi G., Félix M.d.R. Endophytic fungi as potential biological control agents against grapevine trunk diseases in Alentejo region. Biology. 2020;9:420. doi: 10.3390/biology9120420. PubMed DOI PMC

Ziedan E.-S.H., Embaby E.-S.M., Farrag E.S. First record of Fusarium vascular wilt on grapevine in Egypt. Arch. Phytopathol. Plant Prot. 2011;44:1719–1727. doi: 10.1080/03235408.2010.522818. DOI

Highet A.S., Nair N.G. Fusarium oxysporum associated with grapevine decline in the Hunter Valley, NSW, Australia. Aust. J. Grape Wine Res. 1995;1:48–50. doi: 10.1111/j.1755-0238.1995.tb00077.x. DOI

Omer A.D., Granett J., Wakeman R.J. Pathogenicity of Fusarium oxysporum on different Vitis rootstocks. J. Phytopathol. 1999;147:433–436. doi: 10.1111/j.1439-0434.1999.tb03846.x. DOI

Grasso S. Infection of Fusarium oxysporum and Cylindrocarpon destructans, associated with a grapevine decline in a vineyard of eastern Sicily. Inf. Fitopatol. 1984;36:59–63.

Hemida K.A.R., Ziedan E.H.E., El-Saman M.G.M., El-Naggar M.A., Mostafa H.M. Etiology of fungi associated with grapevine decline and their pathological potential. Arab. Univ. J. Agric. Sci. 2017;25:355–365. doi: 10.21608/ajs.2017.13618. DOI

Vincenzo M., Alessandro S., Philippe L., Christophe C., Florence F. Phytoprotection potential of Fusarium proliferatum for control of Botryosphaeria dieback pathogens in grapevine. Phytopathol. Mediterr. 2019;58:293–306. doi: 10.14601/Phytopathol_Mediter-10617. DOI

McMahan G., Yeh W., Marshall M.N., Olsen M., Sananikone S., Wu J.Y., Block D.E., VanderGheynst J.S. Characterizing the production of a wild-type and benomyl-resistant Fusarium lateritium for biocontrol of Eutypa lata on grapevine. J. Ind. Microbiol. Biotechnol. 2001;26:151–155. doi: 10.1038/sj.jim.7000099. PubMed DOI

Billones-Baaijens R., Savocchia S. A review of Botryosphaeriaceae species associated with grapevine trunk diseases in Australia and New Zealand. Australas. Plant Pathol. 2019;48:3–18. doi: 10.1007/s13313-018-0585-5. DOI

Rego C., Nascimento T., Cabral A., Silva M.J., Oliveira H. Control of grapevine wood fungi in commercial nurseries. Phytopathol. Mediterr. 2009;48:128–135.

Fourie P.H., Halleen F. Occurrence of grapevine trunk disease pathogens in rootstock mother plants in South Africa. Australas. Plant Pathol. 2004;33:313–315. doi: 10.1071/AP04005. DOI

Varela C., Redondo V., Costas Imbernon D., Aguín O., Mansilla P. Fungi associated with grapevine trunk diseases in nursery-produced Vitis vinifera plants. Phytopathol. Mediterr. 2019;57:407–424. doi: 10.14601/Phytopathol_Mediterr-22964. DOI

Lade S.B., Štraus D., Oliva J. Variation in fungal community in grapevine (Vitis vinifera) nursery stock depends on nursery, variety and rootstock. J. Fungi. 2022;8:47. doi: 10.3390/jof8010047. PubMed DOI PMC

Navarrete F., Abreo E., Martínez S., Bettucci L., Lupo S. Pathogenicity and molecular detection of Uruguayan isolates of Greeneria uvicola and Cadophora luteo-olivacea associated with grapevine trunk diseases. Phytopathol. Mediterr. 2011;50:S166–S175.

Rühl E.H., Manty F., Konrad H., Bleser E. The importance of pathogen-free grapevine propagation material in regards to clonal selection and rootstock breeding in Germany. Int. J. Hortic. Sci. 2011;17:11–13. doi: 10.31421/IJHS/17/3/952. DOI

John S., Wicks T.J., Hunt J.S., Lorimer M.F., Oakey H., Scott E.S. Protection of grapevine pruning wounds from infection by Eutypa lata using Trichoderma harzianum and Fusarium lateritium. Australas. Plant Pathol. 2005;34:569–575. doi: 10.1071/AP05075. DOI

Blundell R., Eskalen A. Biological and chemical pruning wound protectants reduce infection of grapevine trunk disease pathogens. Calif. Agric. 2021;75:128–134. doi: 10.3733/ca.2021a0018. DOI

Martinez-Diz M.D., Diaz-Losada E., Diaz-Fernandez A., Bouzas-Cid Y., Gramaje D. Protection of grapevine pruning wounds against Phaeomoniella chlamydospora and Diplodia seriata by commercial biological and chemical methods. Crop Prot. 2021;143:105465. doi: 10.1016/j.cropro.2020.105465. DOI

Yacoub A., Haidar R., Gerbore J., Masson C., Dufour M.C., Guyoneaud R., Rey P. Pythium oligandrum induces grapevine defence mechanisms against the trunk pathogen Neofusicoccum parvum. Phytopathol. Mediterr. 2020;59:565–580. doi: 10.14601/Phyto-11270. DOI

Ayres M.R., Wicks T.J., Scott E.S., Sosnowski M.R. Developing pruning wound protection strategies for managing Eutypa dieback. Aust. J. Grape Wine Res. 2017;23:103–111. doi: 10.1111/ajgw.12254. DOI

Pitt W.M., Sosnowski M.R., Huang R.J., Qiu Y., Steel C.C., Savocchia S. Evaluation of fungicides for the management of botryosphaeria canker of grapevines. Plant Dis. 2012;96:1303–1308. doi: 10.1094/PDIS-11-11-0998-RE. PubMed DOI

Kotze C., Van Niekerk J., Mostert L., Halleen F., Fourie P. Evaluation of biocontrol agents for grapevine pruning wound protection against trunk pathogen infection. Phytopathol. Mediterr. 2011;50:S247–S263.

Rolshausen P.E., Urbez-Torres J.R., Rooney-Latham S., Eskalen A., Smith R.J., Gubler W.D. Evaluation of Pruning Wound Susceptibility and Protection Against Fungi Associated with Grapevine Trunk Diseases. Am. J. Enol. Vitic. 2010;61:113–119.

Alvarez-Perez J.M., Gonzalez-Garcia S., Cobos R., Olego M.A., Ibanez A., Diez-Galan A., Garzon-Jimeno E., Coque J.J.R. Use of endophytic and rhizospheric actinobacteria from grapevine plants to reduce fungal graft infections in nurseries that lead to young grapevine decline. Appl. Environ. Microbiol. 2017;83:e01564-17. doi: 10.1128/AEM.01564-17. PubMed DOI PMC

Cobos R., Mateos R.M., Alvarez-Perez J.M., Olego M.A., Sevillano S., Gonzalez-Garcia S., Garzon-Jimeno E., Coque J.J.R. Effectiveness of natural antifungal compounds in controlling infection by grapevine trunk disease pathogens through pruning wounds. Appl. Environ. Microbiol. 2015;81:6474–6483. doi: 10.1128/AEM.01818-15. PubMed DOI PMC

Rolshausen P.E., Gubler W.D. Use of boron for the control of Eutypa dieback of grapevines. Plant Dis. 2005;89:734–738. doi: 10.1094/PD-89-0734. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...