A series of thirty-two anilides of 3-(trifluoromethyl)cinnamic acid (series 1) and 4-(trifluoromethyl)cinnamic acid (series 2) was prepared by microwave-assisted synthesis. All the compounds were tested against reference strains Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212 and resistant clinical isolates of methicillin-resistant S. aureus (MRSA) and vancomycin-resistant E. faecalis (VRE). All the compounds were evaluated in vitro against Mycobacterium smegmatis ATCC 700084 and M. marinum CAMP 5644. (2E)-3-[3-(Trifluoromethyl)phenyl]-N-[4-(trifluoromethyl)phenyl]prop-2-enamide (1j), (2E)-N-(3,5-dichlorophenyl)-3-[3-(trifluoromethyl)phenyl]prop-2-enamide (1o) and (2E)-N-[3-(trifluoromethyl)phenyl]-3-[4-(trifluoromethyl)-phenyl]prop-2-enamide (2i), (2E)-N-[3,5-bis(trifluoromethyl)phenyl]-3-[4-(trifluoromethyl)phenyl]-prop-2-enamide (2p) showed antistaphylococcal (MICs/MBCs 0.15-5.57 μM) as well as anti-enterococcal (MICs/MBCs 2.34-44.5 μM) activity. The growth of M. marinum was strongly inhibited by compounds 1j and 2p in a MIC range from 0.29 to 2.34 μM, while all the agents of series 1 showed activity against M. smegnatis (MICs ranged from 9.36 to 51.7 μM). The performed docking study demonstrated the ability of the compounds to bind to the active site of the mycobacterial enzyme InhA. The compounds had a significant effect on the inhibition of bacterial respiration, as demonstrated by the MTT assay. The compounds showed not only bacteriostatic activity but also bactericidal activity. Preliminary in vitro cytotoxicity screening was assessed using the human monocytic leukemia cell line THP-1 and, except for compound 2p, all effective agents did show insignificant cytotoxic effect. Compound 2p is an interesting anti-invasive agent with dual (cytotoxic and antibacterial) activity, while compounds 1j and 1o are the most interesting purely antibacterial compounds within the prepared molecules.
The oncogenic mutated kinase BRAFV600E is an attractive molecular target because it is expressed in several human cancers, including melanoma. To present, only three BRAF small inhibitors are approved by the FDA for the treatment of patients with metastatic melanoma: Vemurafenib, Dabrafenib and Encorafenib. Although many protocol treatments have been probed in clinical trials, BRAF inhibition has a limited effectiveness because patients invariably develop resistance and secondary toxic effects associated with the therapy. These limitations highlight the importance of designing new and better inhibitors with different structures that could establish different interactions in the active site of the enzyme and therefore decrease resistance progress. Considering the data from our previous report, here we studied two series of derivatives of structural scaffolds as potential BRAF inhibitors: hydroxynaphthalenecarboxamides and substituted piperazinylpropandiols. Our results indicate that structural analogues of substituted piperazinylpropandiols do not show significantly better activities to that previously reported. In contrast, the hydroxynaphthalenecarboxamides derivatives significantly inhibited cell viability and ERK phosphorylation, a measure of BRAF activity, in Lu1205 BRAFV600E melanoma cells. In order to better understand these experimental results, we carried out a molecular modeling study using different combined techniques: docking, MD simulations and quantum theory of atoms in molecules (QTAIM) calculations. Thus, by using this approach we determined that the molecular interactions that stabilize the different molecular complexes are closely related to Vemurafenib, a well-documented BRAF inhibitor. Furthermore, we found that bi-substituted compounds may interact more strongly respect to the mono-substituted analogues, by establishing additional interactions with the DFG-loop at the BRAF-active site. On the bases of these results we synthesized and tested a new series of hydroxynaphthalenecarboxamides bi-substituted. Remarkably, all these compounds displayed significant inhibitory effects on the bioassays performed. Thus, the structural information reported here is important for the design of new BRAFV600E inhibitors possessing this type of structural scaffold.
1-[2-[({[2-/3-(Alkoxy)phenyl]amino}carbonyl)oxy]-3-(dipropylammonio)propyl]pyrrolidinium/azepan- ium oxalates or dichlorides (alkoxy = butoxy to heptyloxy) were recently described as very promising antimycobacterial agents. These compounds were tested in vitro against Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212 (reference and control strains), three methicillin-resistant isolates of S. aureus, and three isolates of vancomycin-resistant E. faecalis. 1-[3-(Dipropylammonio)-2-({[3-(pentyloxy-/hexyloxy-/heptyloxy)phenyl]carbamoyl}oxy)propyl]pyrrolidinium dichlorides showed high activity against staphylococci and enterococci comparable with or higher than that of used controls (clinically used antibiotics and antiseptics). The screening of the cytotoxicity of the compounds as well as the used controls was performed using human monocytic leukemia cells. IC50 values of the most effective compounds ranged from ca. 3.5 to 6.3 µM, thus, it can be stated that the antimicrobial effect is closely connected with their cytotoxicity. The antibacterial activity is based on the surface activity of the compounds that are influenced by the length of their alkoxy side chain, the size of the azacyclic system, and hydro-lipophilic properties, as proven by in vitro experiments and chemometric principal component analyses. Synergistic studies showed the increased activity of oxacillin, gentamicin, and vancomycin, which could be explained by the direct activity of the compounds against the bacterial cell wall. All these compounds demonstrate excellent antibiofilm activity, when they inhibit and disrupt the biofilm of S. aureus in concentrations close to minimum inhibitory concentrations against planktonic cells. Expected interactions of the compounds with the cytoplasmic membrane are proven by in vitro crystal violet uptake assays.
- Publikační typ
- časopisecké články MeSH
Carbon allocation plays a key role in ecosystem dynamics and plant adaptation to changing environmental conditions. Hence, proper description of this process in vegetation models is crucial for the simulations of the impact of climate change on carbon cycling in forests. Here we review how carbon allocation modelling is currently implemented in 31 contrasting models to identify the main gaps compared with our theoretical and empirical understanding of carbon allocation. A hybrid approach based on combining several principles and/or types of carbon allocation modelling prevailed in the examined models, while physiologically more sophisticated approaches were used less often than empirical ones. The analysis revealed that, although the number of carbon allocation studies over the past 10 years has substantially increased, some background processes are still insufficiently understood and some issues in models are frequently poorly represented, oversimplified or even omitted. Hence, current challenges for carbon allocation modelling in forest ecosystems are (i) to overcome remaining limits in process understanding, particularly regarding the impact of disturbances on carbon allocation, accumulation and utilization of nonstructural carbohydrates, and carbon use by symbionts, and (ii) to implement existing knowledge of carbon allocation into defence, regeneration and improved resource uptake in order to better account for changing environmental conditions.
- MeSH
- ekosystém * MeSH
- klimatické změny * MeSH
- koloběh uhlíku MeSH
- lesy MeSH
- uhlík MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Transdermal administration of drugs that penetrate, in this case directly into the blood circulation, has many advantages and is promising for many drugs thanks to its easy application and good patient compliance. (S)-8-Methyl-6,9-diazaspiro[4.5]decan-7,10-dione (alaptide), has been studied as a potential chemical permeation enhancer. Based on its structure, four selected piperazine-2,5-diones were synthesized by means of multi-step synthetic pathways. All the compounds were investigated on their ability to enhance the permeation of the model drug theophylline from the hydrophilic medium propylene glycol:water (1:1). In vitro experiments were performed using vertical Franz diffusion cells at constant temperature 34 ± 0.5 °C and using full-thickness pig (Sus scrofa f. domestica) ear skin. Withdrawn samples were analyzed by RP-HPLC for determination of the permeated amount of theophylline. All the compounds were applied in ratio 1:10 (w/w) relative to the amount of theophylline. One hour after application, the permeated amount of theophylline from formulations with alaptide and (3S,6S)-3,6-dimethylpiperazine-2,5-dione, was ca. 15- and 12-fold higher, respectively, than from the formulation without the tested compounds. Despite the enhancement ratio of both enhancers in a steady state was ca. 2.3, the pseudo-enhancement ratio in the time range from 1 to 3 h was 4.4. These enhancement ratios indicate that the compounds are able to enhance the permeation of agents through the skin; however, the short-term application of both compound formulations seems to be more advantageous. In addition, the screening of the cytotoxicity of all the prepared compounds was performed using three cell lines, and the compounds did not show any significant toxic effect.
- MeSH
- kožní absorpce * MeSH
- lidé MeSH
- molekulární struktura MeSH
- nádorové buněčné linie MeSH
- permeabilita MeSH
- piperazin chemie farmakokinetika MeSH
- theofylin chemie farmakokinetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Chronic high deposition of nitrogen (N) to forest ecosystems can lead to increased leaching of inorganic N to surface waters, enhancing acidification and eutrophication. For 26 years nitrogen has been added as ammonium nitrate (NH4NO3) at 40 kg N ha-1 yr-1 to a whole forested catchment ecosystem at Gårdsjön, Sweden, to experimentally simulate the transition from a N-limited to N-rich state. Over the first 10 years of treatment there was an increasing amount of nitrate (NO3-) and to a lesser extent ammonium (NH4+) lost in runoff, but then N leaching stabilised, and for the subsequent 16 years the fraction of N added lost in runoff remained at 9%. NO3- concentrations in runoff were low in the summer during the first years of treatment, but now are high throughout the year. High frequency sampling showed that peaks in NO3- concentrations generally occurred with high discharge, and were enhanced if high discharge coincided with occasions of N addition. Approximately 50% of the added N has gone to the soil. The added N is equivalent to 140 years of ambient N deposition. At current ambient levels of N deposition there thus appears to be no immediate risk of N saturation at this coniferous forest ecosystem, and by inference to other such N-limited forests in Scandinavia.
- MeSH
- cévnaté rostliny MeSH
- chemické látky znečišťující vodu analýza MeSH
- chemické modely MeSH
- dusičnany analýza MeSH
- dusík analýza MeSH
- ekosystém MeSH
- lesy * MeSH
- monitorování životního prostředí MeSH
- oxidy dusíku MeSH
- půda MeSH
- stromy MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Skandinávie a severské státy MeSH
- Švédsko MeSH
This study describes the impacts of inorganic carbon limitation on the photosynthetic efficiency and operation of photosynthetic electron transport pathways in the biofuel-candidate microalga Nannochloropsis oculata. Using a combination of highly-controlled cultivation setup (photobioreactor), variable chlorophyll a fluorescence and transient spectroscopy methods (electrochromic shift (ECS) and P700 redox kinetics), we showed that net photosynthesis and effective quantum yield of Photosystem II (PSII) decreased in N. oculata under carbon limitation. This was accompanied by a transient increase in total proton motive force and energy-dependent non-photochemical quenching as well as slightly elevated respiration. On the other hand, under carbon limitation the rapid increase in proton motive force (PMF, estimated from the total ECS signal) was also accompanied by reduced conductivity of ATP synthase to protons (estimated from the rate of ECS decay in dark after actinic illumination). This indicates that the slow operation of ATP synthase results in the transient build-up of PMF, which leads to the activation of fast energy dissipation mechanisms such as energy-dependent non-photochemical quenching. N. oculata also increased content of lipids under carbon limitation, which compensated for reduced NAPDH consumption during decreased CO2 fixation. The integrated knowledge of the underlying energetic regulation of photosynthetic processes attained with a combination of biophysical methods may be used to identify photo-physiological signatures of the onset of carbon limitation in microalgal cultivation systems, as well as to potentially identify microalgal strains that can better acclimate to carbon limitation.
- MeSH
- adenosintrifosfát metabolismus MeSH
- fotosyntéza účinky záření MeSH
- fotosystém II - proteinový komplex chemie metabolismus MeSH
- mastné kyseliny chemie metabolismus MeSH
- mikrořasy metabolismus účinky záření MeSH
- oxid uhličitý chemie metabolismus MeSH
- protony MeSH
- světlo MeSH
- transport elektronů účinky záření MeSH
- tylakoidy chemie metabolismus MeSH
- uhlík chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
Series of twenty-five benzyl (2S)-2-(arylcarbamoyl)pyrrolidine-1-carboxylates was prepared and completely characterized. All the compounds were tested for their in vitro ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and the selectivity of compounds to individual cholinesterases was determined. Screening of the cytotoxicity of all the compounds was performed using a human monocytic leukaemia THP-1 cell line, and the compounds demonstrated insignificant toxicity. All the compounds showed rather moderate inhibitory effect against AChE; benzyl (2S)-2-[(2-chlorophenyl)carbamoyl]pyrrolidine-1-carboxylate (IC50 = 46.35 μM) was the most potent agent. On the other hand, benzyl (2S)-2-[(4-bromophenyl)-] and benzyl (2S)-2-[(2-bromophenyl)carbamoyl]pyrrolidine-1-carboxylates expressed anti-BChE activity (IC50 = 28.21 and 27.38 μM, respectively) comparable with that of rivastigmine. The ortho-brominated compound as well as benzyl (2S)-2-[(2-hydroxyphenyl)carbamoyl]pyrrolidine-1-carboxylate demonstrated greater selectivity to BChE. The in silico characterization of the structure-inhibitory potency for the set of proline-based carbamates considering electronic, steric and lipophilic properties was provided using comparative molecular surface analysis (CoMSA) and principal component analysis (PCA). Moreover, the systematic space inspection with splitting data into the training/test subset was performed to monitor the statistical estimators performance in the effort to map the probability-guided pharmacophore pattern. The comprehensive screening of the AChE/BChE profile revealed potentially relevant structural and physicochemical features that might be essential for mapping of the carbamates inhibition efficiency indicating qualitative variations exerted on the reaction site by the substituent in the 3'-/4'-position of the phenyl ring. In addition, the investigation was completed by a molecular docking study of recombinant human AChE.
- MeSH
- acetylcholinesterasa chemie MeSH
- butyrylcholinesterasa chemie MeSH
- cholinesterasové inhibitory chemická syntéza chemie farmakologie MeSH
- karbamáty chemická syntéza chemie farmakologie MeSH
- katalytická doména MeSH
- molekulární konformace MeSH
- prolin * chemie MeSH
- simulace molekulového dockingu MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
Naturally produced by microbial processes in soil, nitrous oxide (N2O) is an important greenhouse gas contributing to climate change. Accordingly, there is a need to accurately quantify the capability of forest ecosystems to exchange N2O with the atmosphere. While N2O emissions from soils have been well studied, trees have so far been overlooked in N2O inventories. Here, we show that stems of mature beech trees (Fagus sylvatica) may act as a substantial sink of N2O from the atmosphere under conditions of soils consuming N2O. Consistent consumption of N2O by all stems investigated (ranging between -2.4 and -3.8 µg m-2 h-1) is a novel finding in contrast to current studies presenting trees as N2O emitters. To understand these fluxes, N2O exchange of photoautotrophic organisms associated with beech bark (lichens, mosses and algae) was quantified under laboratory conditions. All these organisms were net N2O sinks at full rehydration and temperature of 25 °C. The consumption rates were comparable to stem consumption rates measured under field conditions. Cryptogamic stem covers could be a relevant sink of N2O in European beech forests.
- MeSH
- autotrofní procesy MeSH
- buk (rod) metabolismus MeSH
- oxid dusný metabolismus MeSH
- oxid uhličitý metabolismus MeSH
- půda MeSH
- půdní mikrobiologie * MeSH
- skleníkové plyny metabolismus MeSH
- stromy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
The biochemical responses of rock-inhabiting cyanobacteria towards native environmental stresses were observed in vivo in one of the Earth's most challenging extreme climatic environments. The cryptoendolithic cyanobacterial colonization, dominated by Chroococcidiopsis sp., was studied in an ignimbrite at a high altitude volcanic area in the Atacama Desert, Chile. Change in the carotenoid composition (red-shift) within a transect through the cyanobacteria dominant microbial community (average thickness ~1 mm) was unambiguously revealed in their natural endolithic microhabitat. The amount of red shifted carotenoid, observed for the first time in a natural microbial ecosystem, is depth dependent, and increased with increasing proximity to the rock surface, as proven by resonance Raman imaging and point resonance Raman profiling. It is attributed to a light-dependent change in carotenoid conjugation, associated with the light-adaptation strategy of cyanobacteria. A hypothesis is proposed for the possible role of an orange carotenoid protein (OCP) mediated non-photochemical quenching (NPQ) mechanism that influences the observed spectral behavior. Simultaneously, information about the distribution of scytonemin and phycobiliproteins was obtained. Scytonemin was detected in the uppermost cyanobacteria aggregates. A reverse signal intensity gradient of phycobiliproteins was registered, increasing with deeper positions as a response of the cyanobacterial light harvesting complex to low-light conditions.
- MeSH
- biologické pigmenty MeSH
- ekosystém MeSH
- fluorescenční mikroskopie MeSH
- karotenoidy chemie metabolismus MeSH
- konfokální mikroskopie MeSH
- mikrobiologie životního prostředí MeSH
- pouštní klima * MeSH
- sinice * izolace a purifikace metabolismus MeSH
- spektrální analýza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH