Drought Influences Fungal Community Dynamics in the Grapevine Rhizosphere and Root Microbiome

. 2021 Aug 25 ; 7 (9) : . [epub] 20210825

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34575724

Grantová podpora
TP01010018; CZ.02.1.01/0.0/0.0/16_017/0002334 Ministerstvo Zemědělství

Plant roots support complex microbial communities that can influence nutrition, plant growth, and health. In grapevine, little is known about the impact of abiotic stresses on the belowground microbiome. In this study, we examined the drought-induced shifts in fungal composition in the root endosphere, the rhizosphere and bulk soil by internal transcribed spacer (ITS) high-throughput amplicon sequencing (HTAS). We imposed three irrigation regimes (100%, 50%, and 25% of the field capacity) to one-year old grapevine rootstock plants cv. SO4 when plants had developed 2-3 roots. Root endosphere, rhizosphere, and bulk soil samples were collected 6- and 12-months post-plantation. Drought significantly modified the overall fungal composition of all three compartments, with the root endosphere compartment showing the greatest divergence from well-watered control (100%). The overall response of the fungal microbiota associated with black-foot disease (Dactylonectria and "Cylindrocarpon" genera) and the potential biocontrol agent Trichoderma to drought stress was consistent across compartments, namely that their relative abundances were significantly higher at 50-100% than at 25% irrigation regime. We identified a significant enrichment in several fungal genera such as the arbuscular mycorrhizal fungus Funneliformis during drought at 25% watering regime within the roots. Our results reveal that drought stress, in addition to its well-characterized effects on plant physiology, also results in the restructuring of grapevine root microbial communities, and suggest the possibility that members of the altered grapevine microbiota might contribute to plant survival under extreme environmental conditions.

Zobrazit více v PubMed

Lesk C., Rowhani P., Ramankutty N. Influence of extreme weather disasters on global crop production. Nature. 2016;529:84–87. doi: 10.1038/nature16467. PubMed DOI

Santillán D., Iglesias A., La Jeunesse I., Garrote L., Sotes V. Vineyards in transition: A global assessment of the adaptation needs of grape producing regions under climate change. Sci. Total Environ. 2019;657:839–852. doi: 10.1016/j.scitotenv.2018.12.079. PubMed DOI

Fang Y., Xiong L. General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol. Life Sci. 2015;72:673–689. doi: 10.1007/s00018-014-1767-0. PubMed DOI PMC

Yue B., Xue W., Xiong L., Yu X., Luo L., Cui K., Jin D., Xing Y., Zhang Q. Genetic basis of drought resistance at reproductive stage in rice: Separation of drought tolerance from drought avoidance. Genetics. 2006;172:1213–1228. doi: 10.1534/genetics.105.045062. PubMed DOI PMC

Santos-Medellín C., Edwards J., Liechty Z., Nguyen B., Sundaresan V. Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes. Mbio. 2017;8:e00764-17. doi: 10.1128/mBio.00764-17. PubMed DOI PMC

Trivedi P., Leach J.E., Tringe S.G., Sa T., Singh B.K. Plant-microbiome interactions: From community assembly to plant health. Nat. Rev. Microbiol. 2020;18:607–621. doi: 10.1038/s41579-020-0412-1. PubMed DOI

Yang J., Kloepper J.W., Ryu C.M. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant. Sci. 2009;14:1–4. doi: 10.1016/j.tplants.2008.10.004. PubMed DOI

Lugtenberg B., Kamilova F. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 2009;63:451–556. doi: 10.1146/annurev.micro.62.081307.162918. PubMed DOI

Wardle D.A., Bardgett R.D., Klironomos J.N., Setälä H., van der Putten W.H., Wall D.H. Ecological linkages between aboveground and belowground biota. Science. 2004;304:1629–1633. doi: 10.1126/science.1094875. PubMed DOI

Barnard R.L., Osborne C.A., Firestone M.K. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. ISME J. 2013;7:2229–2241. doi: 10.1038/ismej.2013.104. PubMed DOI PMC

Bouskill N.J., Lim H.C., Borglin S., Salve R., Wood T.E., Silver W.L., Brodie E.L. Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought. ISME J. 2013;7:384–394. doi: 10.1038/ismej.2012.113. PubMed DOI PMC

Naylor D., Coleman-Derr D. Drought stress and root-associated bacterial communities. Front. Plant. Sci. 2018;8:2223. doi: 10.3389/fpls.2017.02223. PubMed DOI PMC

Smith S., De Smet I. Root system architecture: Insights from Arabidopsis and cereal crops. Phil. Trans. R. Soc. B. 2012;367:1441–1452. doi: 10.1098/rstb.2011.0234. PubMed DOI PMC

Henry A., Doucette W., Norton J., Bugbee B. Changes in crested wheatgrass root exudation caused by flood, drought, and nutrient stress. J. Environ. Qual. 2007;36:904–912. doi: 10.2134/jeq2006.0425sc. PubMed DOI

Song F., Han X., Zhu X., Herbert S.J. Response to water stress of soil enzymes and root exudates from drought and non-drought tolerant corn hybrids at different growth stages. Can. J. Soil Sci. 2012;92:501–507. doi: 10.4141/cjss2010-057. DOI

Bouasria A., Mustafa T., De Bello F., Zinger L., Lemperiere G., Geremia R.A., Choler P. Changes in root-associated microbial communities are determined by species-specific plant growth responses to stress and disturbance. Eur. J. Soil Biol. 2012;52:59–66. doi: 10.1016/j.ejsobi.2012.06.003. DOI

Naylor D., DeGraaf S., Purdom E., Coleman-Derr D. Drought and host selection influence bacterial community dynamics in the grass root microbiome. ISME J. 2017;11:2691–2704. doi: 10.1038/ismej.2017.118. PubMed DOI PMC

Edwards J.A., Santos-Medellín C.M., Liechty Z.S., Nguyen B., Lurie E., Eason S., Phillips G., Sundaresan V. Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biol. 2018;16:e2003862. doi: 10.1371/journal.pbio.2003862. PubMed DOI PMC

Fitzpatrick C.R., Copeland J., Wang P.W., Guttman D.S., Kotanen P.M., Johnson M.T.J. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc. Natl. Acad. Sci. USA. 2018;115:E1157–E1165. doi: 10.1073/pnas.1717617115. PubMed DOI PMC

Xu L., Naylor D., Dong Z., Simmons T., Pierroz G., Hixson K.K., Kim Y.-M., Zink E.M., Engbrecht K.M., Wang Y., et al. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc. Natl. Acad. Sci. USA. 2018;115:E4284–E4293. doi: 10.1073/pnas.1717308115. PubMed DOI PMC

Simmons T., Styer A.B., Pierroz G., Gonçalves A.P., Pasricha R., Hazra A.B., Bubner P., Coleman-Derr D. Drought drives spatial variation in the millet root microbiome. Front. Plant. Sci. 2020;11:599. doi: 10.3389/fpls.2020.00599. PubMed DOI PMC

Fuchslueger L., Bahn M., Hasibeder R., Kienzl S., Fritz K., Schmitt M., Watzka M., Richter A. Drought history affects grassland plant and microbial carbon turnover during and after a subsequent drought event. J. Ecol. 2016;104:1453–1465. doi: 10.1111/1365-2745.12593. PubMed DOI PMC

Lovisolo C., Perrone I., Carra A., Ferrandino A., Flexas J., Medrano H., Schubert A. Drought-induced changes in development and function of grapevine (Vitis spp.) organs and in their hydraulic and non-hydraulic interactions at the whole-plant level: A physiological and molecular update. Funct. Plant. Biol. 2010;37:98–116. doi: 10.1071/FP09191. DOI

Vink S.N., Chrysargyris A., Tzortzakis N., Falcão Salles J. Bacterial community dynamics varies with soil management and irrigation practices in grapevines (Vitis vinifera L.) Appl. Soil Ecol. 2021;158:103807. doi: 10.1016/j.apsoil.2020.103807. DOI

Fraga H., Malheiro A.C., Moutinho-Pereira J., Santos J.A. An overview of climate change impacts on European viticulture. Food Energy Secur. 2012;1:94–110. doi: 10.1002/fes3.14. DOI

Zarraonaindia I., Owens S.M., Weisenhorn P., West K., Hampton-Marcell J., Lax S., Bokulich N.A., Mills D.A., Martin G., Taghavi S., et al. The soil microbiome influences grapevine-associated microbiota. Mbio. 2015;6:e02527-14. doi: 10.1128/mBio.02527-14. PubMed DOI PMC

Martínez-Diz M.P., Andrés-Sodupe M., Bujanda R., Díaz-Losada E., Eichmeier A., Gramaje D. Soil-plant compartments affect fungal microbiome diversity and composition in grapevine. Fungal Ecol. 2019;41:234–244. doi: 10.1016/j.funeco.2019.07.003. DOI

Marasco R., Rolli E., Fusi M., Michoud G., Daffonchio D. Grapevine rootstocks shape underground bacterial microbiome and networking but not potential functionality. Microbiome. 2018;6:3. doi: 10.1186/s40168-017-0391-2. PubMed DOI PMC

Berlanas C., Berbegal M., Elena G., Laidani M., Cibriain J.F., Sagües A., Gramaje D. The fungal and bacterial rhizosphere microbiome associated with grapevine rootstock genotypes in mature and young vineyards. Front. Microbiol. 2019;10:1142. doi: 10.3389/fmicb.2019.01142. PubMed DOI PMC

Liu D., Howell K. Community succession of the grapevine fungal microbiome in the annual growth cycle. Environ. Microbiol. 2021;23:1842–1857. doi: 10.1111/1462-2920.15172. PubMed DOI

Fernández-Calviño D., Martín A., Arias-Estévez M., Baath E., Díaz-Raviña M. Microbial community structure of vineyard soils with different pH and copper content. Appl. Soil Ecol. 2010;46:276–282. doi: 10.1016/j.apsoil.2010.08.001. DOI

Burns K.N., Kluepfel D.A., Strauss S.L., Bokulich N.A., Cantu D., Steenwerth K.L. Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes: Differentiation by geographic features. Soil Biol. Biochem. 2015;91:232–247. doi: 10.1016/j.soilbio.2015.09.002. DOI

Holland T.C., Bowen P.A., Bogdanoff C.P., Lowery T.D., Shaposhnikova O., Smith S., Hart M.M. Evaluating the diversity of soil microbial communities in vineyards relative to adjacent native ecosystems. Appl. Soil Ecol. 2016;100:91–103. doi: 10.1016/j.apsoil.2015.12.001. DOI

Halleen F., Fourie P.H., Crous W. A review of black foot disease of grapevine. Phytopathol. Mediterr. 2006;45:S55–S67.

Gramaje D., Armengol J. Fungal trunk pathogens in the grapevine propagation process: Potential inoculum sources, detection, identification, and management strategies. Plant. Dis. 2011;95:1040–1055. doi: 10.1094/PDIS-01-11-0025. PubMed DOI

Gramaje D., Úrbez-Torres J.R., Sosnowski M.R. Managing grapevine trunk diseases with respect to etiology and epidemiology: Current strategies and future prospects. Plant. Dis. 2018;102:12–39. doi: 10.1094/PDIS-04-17-0512-FE. PubMed DOI

Aigoun-Mouhous W., Elena G., Cabral A., León M., Sabaou N., Armengol J., Chaouia C., Mahamedi A.E., Berraf-Tebbal A. Characterization and pathogenicity of Cylindrocarpon-like asexual morphs associated with black foot disease in Algerian grapevine nurseries, with the description of Pleiocarpon algeriense sp. nov. Eur. J. Plant. Pathol. 2019;154:887–901. doi: 10.1007/s10658-019-01708-z. DOI

Silva A., Docampo R., Camejo C., Barboza C. Inventario de Los Suelos Bajo Viña Del Uruguay. Principales Características Edafológicas de Los Viñedos Uruguayos. INIA; Montevideo, Uruguay: 2018. pp. 59–71.

Bertola B., Crovetto A., Secco Y., Bertola L. Estadísticas de Viñedos 2020 Datos Nacionales. INAVI; Canelones, Uruguay: 2020. p. 59.

Silva A., Ponce de León J., García F., Durán A. Aspectos Metodológicos en la Determinación de la Capacidad de Retener Agua de Los Suelos Del Uruguay. Facultad de Agronomía; Montevideo, Uruguay: 1988. pp. 14–15.

Scholander P.F., Bradstreet E.D., Hemmingsen E.A., Hammel H.T. Sap pressure in vascular plants: Negative hydrostatic pressure can be measured in plants. Science. 1965;148:339–346. doi: 10.1126/science.148.3668.339. PubMed DOI

Turenne C.Y., Sanche S.E., Hoban D.J., Karlowsky J.A., Kabani A.M. Rapid identification of fungi by using the ITS2 genetic region and an automated fluorescent capillary electrophoresis system. J. Clin. Microbiol. 1999;37:1846–1851. doi: 10.1128/JCM.37.6.1846-1851.1999. PubMed DOI PMC

White T.J., Bruns T., Lee S.H., Taylor J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.A., Gelfand D.H., Sninsky J.J., White T.J., editors. PCR Protocols: A Guide to Methods and Applications. Academic Press; San Diego, CA, USA: 1990. pp. 315–322. DOI

Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. [(accessed on 28 September 2020)]. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.

Vetrovsky T., Baldrian P., Morais D. SEED 2: A user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics. 2018;34:2292–2294. doi: 10.1093/bioinformatics/bty071. PubMed DOI PMC

Aronesty E. Ea-Utils: Command-Line Tools for Processing Bbiological Sequencing Data. [(accessed on 10 October 2020)];Expr. Anal. Durham. 2011 Available online: http://code.google.com/p/ea-utils.

Bengtsson-Palme J., Ryberg M., Hartmann M., Branco S., Wang Z., Godhe A., De Wit P., Sanchez-García M., Ebersberger I., de Sousa F., et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for use in environmental sequencing. Methods Ecol. Evol. 2013;4:914–919. doi: 10.1111/2041-210X.12073. DOI

Edgar R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods. 2013;10:996–998. doi: 10.1038/nmeth.2604. PubMed DOI

Abarenkov K., Henrik Nilsson R., Larsson K.H., Alexander I.J., Eberhardt U., Erland S., Kõljalg U. The UNITE database for molecular identification of fungi–recent updates and future perspectives. New Phytologist. 2010;186:281–285. doi: 10.1111/j.1469-8137.2009.03160.x. PubMed DOI

Katoh K., Asimenos G., Toh H. Multiple Alignment of DNA Sequences with MAFFT. In: Posada D., editor. Bioinformatics for DNA Sequence Analysis. Methods in Molecular Biology. Volume 537. Humana Press; Totowa, NJ, USA: 2009. pp. 39–64. PubMed DOI

Dhariwal A., Chong J., Habib S., King I.L., Agellon L.B., Xia J. MicrobiomeAnalyst: A web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 2017;45:W180–W188. doi: 10.1093/nar/gkx295. PubMed DOI PMC

Chong J., Liu P., Zhou G., Xia J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat. Protoc. 2020;15:799–821. doi: 10.1038/s41596-019-0264-1. PubMed DOI

Vázquez-Baeza Y., Pirrung M., Gonzalez A., Knight R. EMPeror: A tool for visualizing high-throughput microbial community data. GigaScience. 2013;2:16. doi: 10.1186/2047-217X-2-16. PubMed DOI PMC

Segata N., Izard J., Waldron L., Gevers D., Miropolsky L., Garrett W.S., Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60. doi: 10.1186/gb-2011-12-6-r60. PubMed DOI PMC

Friedman J., Alm E.J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 2012;8:e1002687. doi: 10.1371/journal.pcbi.1002687. PubMed DOI PMC

Nguyen N.H., Song Z., Bates S.T., Branco S., Tedersoo L., Menke J., Schilling J.S., Kennedy P.G. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–248. doi: 10.1016/j.funeco.2015.06.006. DOI

Deyett E., Rolshausen P.E. Endophytic microbial assemblage in grapevine. FEMS Microbiol. Ecol. 2020;96:5. doi: 10.1093/femsec/fiaa053. PubMed DOI

Swift J.F., Hall M.E., Harris Z.N., Kwasniewski M.T., Miller A.J. Grapevine microbiota reflect diversity among compartments and complex interactions within and among root and shoot systems. Microorganisms. 2021;9:92. doi: 10.3390/microorganisms9010092. PubMed DOI PMC

Castañeda L.E., Barbosa O. Metagenomic analysis exploring taxonomic and functional diversity of soil microbial communities in Chilean vineyards and surrounding native forests. PeerJ. 2017;5:e3098. doi: 10.7717/peerj.3098. PubMed DOI PMC

Longa C., Nicola L., Antonielli L., Mescalchin E., Zanzotti R., Turco E., Pertot I. Soil microbiota respond to green manure in organic vineyards. J. Appl. Microbiol. 2017;123:1547–1560. doi: 10.1111/jam.13606. PubMed DOI

Manici L.M., Saccà M.L., Caputo F., Zanzotto A., Gardiman M., Fila G. Long-term grapevine cultivation and agro-environment affect rhizosphere microbiome rather than plant age. Appl. Soil Ecol. 2017;119:214–225. doi: 10.1016/j.apsoil.2017.06.027. DOI

Radić T., Likar M., Hančević K., Regvar M., Čarija M., Zdunić G. Root-associated community composition and co-occurrence patterns of fungi in wild grapevine. Fungal Ecol. 2021;50:101034. doi: 10.1016/j.funeco.2020.101034. DOI

Cureau N., Threlfall R., Savin M., Marasini D., Lavefve L., Carbonero F. Year, location, and variety impact on grape-, soil-, and leaf-associated fungal microbiota of arkansas-grown table grapes. Microb. Ecol. 2021;82:73–86. doi: 10.1007/s00248-021-01698-8. PubMed DOI

Osorio N.W., Habte M. Synergistic influence of an arbuscular mycorrhizal fungus and a P solubilizing fungus on growth and P uptake of Leucaena leucocephala in an oxisol. Arid Land Res. Manag. 2001;15:263–274. doi: 10.1080/15324980152119810. DOI

Tamayo-Velez A., Osorio N.W. Co-inoculation with an arbuscular mycorrhizal fungus and a phosphate-solubilizing fungus promotes the plant growth and phosphate uptake of avocado plantlets in a nursery. Botany. 2017;95:539–545. doi: 10.1139/cjb-2016-0224. DOI

Berg G., Smalla K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 2009;68:1–13. doi: 10.1111/j.1574-6941.2009.00654.x. PubMed DOI

Wagner M.R., Lundberg D.S., del Rio T.G., Tringe S.G., Dangl J.L., Mitchell-Olds T. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat. Commun. 2016;7:12151. doi: 10.1038/ncomms12151. PubMed DOI PMC

Marasco R., Rolli E., Ettoumi B., Vigani G., Mapelli F., Borin S., Abou-Hadid A.F., El-Behairy U.A., Sorlini C., Cherif A., et al. A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS ONE. 2012;7:e48479. doi: 10.1371/journal.pone.0048479. PubMed DOI PMC

Rolli E., Marasco R., Vigani G., Ettoumi B., Mapelli F., Deangelis M.L., Gandolfi C., Casati E., Previtali F., Gerbino R., et al. Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ. Microbiol. 2015;17:316–331. doi: 10.1111/1462-2920.12439. PubMed DOI

Schreiner R.P., Mihara K.L. The diversity of arbuscular mycorrhizal fungi amplified from grapevine roots (Vitis vinifera L.) in Oregon vineyards is seasonally stable and influenced by soil and vine age. Mycologia. 2009;101:599–611. doi: 10.3852/08-169. PubMed DOI

Likar M., Hančević K., Radić T., Regvar M. Distribution and diversity of arbuscular mycorrhizal fungi in grapevines from production vineyards along the eastern Adriatic coast. Mycorrhiza. 2013;23:209–219. doi: 10.1007/s00572-012-0463-x. PubMed DOI

Massa N., Bona E., Novello G., Todeschini L., Boatti F., Mignone E., Gamalero G., Lingua G., Berta G., Cesaro P. AMF communities associated to Vitis vinifera in an Italian vineyard subjected to integrated pest management at two different phenological stages. Sci. Rep. 2020;10:9197. doi: 10.1038/s41598-020-66067-w. PubMed DOI PMC

Trouvelot S., Bonneau L., Redecker D., van Tuinen D., Adrian M., Wipf D. Arbuscular mycorrhiza symbiosis in viticulture: A review. Agron. Sustain. Dev. 2015;35:1449–1467. doi: 10.1007/s13593-015-0329-7. DOI

Donkó Á., Zanathy G., Èros-Honti Z., Villangó S., Bisztray G.D. Changes of mycorrhizal colonization along moist gradient in a vineyard of Eger (Hungary) Acta Univ. Sapientiae Agric. Environ. 2014;6:13–23. doi: 10.2478/ausae-2014-0008. DOI

Balestrini R., Magurno F., Walker C., Lumini E., Bianciotto V. Cohorts of arbuscular mycorrhizal fungi (AMF) in Vitis vinifera, a typical Mediterranean fruit crop. Environ. Microbiol. Rep. 2010;2:594–604. doi: 10.1111/j.1758-2229.2010.00160.x. PubMed DOI

Verbruggen E., Kiers E.T. Evolutionary ecology of mycorrhizal functional diversity in agricultural systems. Evol. Appl. 2010;3:547–560. doi: 10.1111/j.1752-4571.2010.00145.x. PubMed DOI PMC

Likar M., Stres B., Rusjan D., Potisek M., Regvar M. Ecological and conventional viticulture gives rise to distinct fungal and bacterial microbial communities in vineyard soils. Appl. Soil Ecol. 2017;113:86–95. doi: 10.1016/j.apsoil.2017.02.007. DOI

Zaller J.G., Cantelmo C., Santos G.D., Muther S., Gruber E., Pallua P., Mandl K., Friedrich B., Hofstetter I., Schmuckenschlager B., et al. Herbicides in vineyards reduce grapevine root mycorrhization and alter soil microorganisms and the nutrient composition in grapevine roots, leaves, xylem sap and grape juice. Environ. Sci. Pollut. Res. 2018;25:23215–23226. doi: 10.1007/s11356-018-2422-3. PubMed DOI PMC

Moukarzel R., Ridgway H., Guerin-Laguette A., Jones E. Grapevine rootstocks drive the community structure of arbuscular mycorrhizal fungi in New Zealand vineyards. J. Appl. Microbiol. 2021 doi: 10.1111/jam.15160. in press. PubMed DOI

Schreiner R.P. Spatial and temporal variation of roots, arbuscular mycorrhizal fungi, and plant and soil nutrients in a mature Pinot Noir (Vitis vinifera L.) vineyard in Oregon, USA. Plant. Soil. 2005;276:219–234. doi: 10.1007/s11104-005-4895-0. DOI

Berlanas C., Ojeda S., López-Manzanares B., Andrés-Sodupe M., Bujanda R., Martínez-Diz M.P., Díaz-Losada E., Gramaje D. Occurrence and diversity of black-foot disease fungi in symptomless grapevine nursery stock in Spain. Plant. Dis. 2020;104:94–104. doi: 10.1094/PDIS-03-19-0484-RE. PubMed DOI

Whitelaw-Weckert M., Rahman L., Appleby L.M., Hall A., Clark A.C., Waite H., Hardie W.J. Co-infection by Botryosphaeriaceae and Ilyonectria spp. fungi during propagation causes decline of young grafted grapevines. Plant. Pathol. 2013;62:1226–1237. doi: 10.1111/ppa.12059. DOI

Probst C., Jones E.E., Ridgway H.J., Jaspers M.V. Cylindrocarpon black foot in nurseries-two factors that can increase infection. Aust. Plant. Pathol. 2012;41:157–163. doi: 10.1007/s13313-011-0103-5. DOI

Agustí-Brisach C., Armengol J. Effects of temperature, pH and water potential on mycelial growth, sporulation and chlamydospore production in culture of Cylindrocarpon spp. associated with black foot of grapevines. Phytopathol. Mediterr. 2012;51:37–50. doi: 10.14601/Phytopathol_Mediterr-9499. DOI

Tahat M.M., Kamaruzaman S., Othman R. Mycorrhizal fungi as a biocontrol agent. Plant. Pathol. J. 2010;9:198–207. doi: 10.3923/ppj.2010.198.207. DOI

Petit E., Gubler W.D. Influence of Glomus intraradices on black foot disease caused by Cylindrocarpon macrodidymum on Vitis rupestris under controlled conditions. Plant. Dis. 2006;90:1481–1484. doi: 10.1094/PD-90-1481. PubMed DOI

Holland T., Bowen P., Kokkoris V., Úrbez-Torres J.R., Hart M. Does inoculation with arbuscular mycorrhizal fungi reduce trunk disease in grapevine rootstocks? Horticulturae. 2019;5:61. doi: 10.3390/horticulturae5030061. DOI

Fourie P.H., Halleen F., van der Vyver J., Schreuder W. Effect of Trichoderma treatments on the occurrence of decline pathogens in the roots and rootstocks of nursery grapevines. Phytopathol. Mediterr. 2001;40:S473–S478.

Fourie P.H., Halleen F. Chemical and biological protection of grapevine propagation material from trunk disease pathogens. Eur. J. Plant. Pathol. 2006;116:255–265. doi: 10.1007/s10658-006-9057-9. DOI

Santos R., Heckler L., Lazarotto M., Garrido L., Rego C., Blume E. Trichoderma spp. and Bacillus subtilis for control of Dactylonectria macrodidyma in grapevine. Phytopathol. Mediterr. 2016;55:293–300. doi: 10.14601/Phytopathol_Mediterr-18048. DOI

Berlanas C., Andrés-Sodupe M., López-Manzanares B., Maldonado-González M.M., Gramaje D. Effect of white mustard cover crop residue, soil chemical fumigation and Trichoderma spp. root treatment on black-foot disease control in grapevine. Pest. Manag. Sci. 2018;74:2864–2873. doi: 10.1002/ps.5078. PubMed DOI

Berbegal M., Ramón-Albalat A., León M., Armengol J. Evaluation of long-term protection from nursery to vineyard provided by Trichoderma atroviride SC1 against fungal grapevine trunk pathogens. Pest. Manag. Sci. 2020;76:967–977. doi: 10.1002/ps.5605. PubMed DOI

Martínez-Diz M.P., Díaz-Losada E., Andrés-Sodupe M., Bujanda R., Maldonado-González M.M., Ojeda S., Yacoub A., Rey P., Gramaje D. Field evaluation of biocontrol agents against black-foot and Petri diseases of grapevine. Pest. Manag. Sci. 2021;77:697–708. doi: 10.1002/ps.6064. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace