MicroRNAs in Vitis vinifera cv. Chardonnay Are Differentially Expressed in Response to Diaporthe Species
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31703418
PubMed Central
PMC6896114
DOI
10.3390/genes10110905
PII: genes10110905
Knihovny.cz E-zdroje
- Klíčová slova
- RT-qPCR, grapevine, high-throughput sequencing, miRNA,
- MeSH
- Ascomycota patogenita MeSH
- mikro RNA genetika metabolismus MeSH
- regulace genové exprese u rostlin * MeSH
- transkriptom MeSH
- Vitis genetika mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mikro RNA MeSH
Diaporthe species are important pathogens, saprobes, and endophytes on grapevines. Several species are known, either as agents of pre- or post-harvest infections, as causal agents of many relevant diseases, including swelling arm, trunk cankers, leaf spots, root and fruit rots, wilts, and cane bleaching. A growing body of evidence exists that a class of small non-coding endogenous RNAs, known as microRNAs (miRNAs), play an important role in post-transcriptional gene regulation, during plant development and responses to biotic and abiotic stresses. In this study, we explored differentially expressed miRNAs in response to Diaporthe eres and Diaporthe bohemiae infection in Vitis vinifera cv. Chardonnay under in vitro conditions. We used computational methods to predict putative miRNA targets in order to explore the involvement of possible pathogen response pathways. We identified 136 known and 41 new miRNA sequence variants, likely generated through post-transcriptional modifications. In the Diaporthe eres treatment, 61 known and 17 new miRNAs were identified while in the Diaporthe bohemiae treatment, 101 known and 21 new miRNAs were revealed. Our results contribute to further understanding the role miRNAs play during plant pathogenesis, which is possibly crucial in understanding disease symptom development in grapevines infected by D. eres and D. bohemiae.
Zobrazit více v PubMed
Muralli T.S., Suryanarayanan T.S., Geeta R. Endophytic Phomopsis species: Host range and implications for diversity estimates. Can. J. Microbiol. 2006;52:673–680. doi: 10.1139/w06-020. PubMed DOI
Garcia-Reyne A., López-Medrano F., Morales J.M., García Esteban C., Martín I., Eraña I., Meije Y., Lalueza A., Alastruey-Izquierdo A., Rodríguez-Tudela J.L., et al. Cutaneous infection by Phomopsis longicolla in a renal transplant recipient from Guinea: First report of human infection by this fungus. Transpl. Infect. Dis. 2011;13:204–207. doi: 10.1111/j.1399-3062.2010.00570.x. PubMed DOI
Santos J.M., Vrandecčicć K., CĆosicć J., Duvnjak T., Phillips A. Resolving the Diaporthe species occurring on soybean in Croatia. Persoonia. 2011;27:9–19. doi: 10.3767/003158511X603719. PubMed DOI PMC
Guarnaccia V., Groenewald J.Z., Woodhall J., Armengol J., Cinelli T., Eichmeier A., Ezra D., Fontaine F., Gramaje D., Gutierrez-Aguirregabiria A., et al. Diaporthe diversity and pathogenicity revealed from a broad survey of grapevine diseases in Europe. Pers. Mol. Phylogeny Evol. Fungi. 2018;40:135–153. doi: 10.3767/persoonia.2018.40.06. PubMed DOI PMC
Gramaje D., Úrbez-Torres J.R., Sosnowski M.R. Managing grapevine trunk diseases with respect to etiology and epidemiology: Current strategies and future prospects. Plant Dis. 2018;102:12–39. doi: 10.1094/PDIS-04-17-0512-FE. PubMed DOI
Van Rensburg J.C.J., Lamprecht S.C., Groenewald J.Z., Castlebury L.A., Crous P.W., Van Rensburg J.C.J. Characterization of Phomopsis spp. associated with die-back of rooibos (Aspalathus linearis) in South Africa. Stud. Mycol. 2006;55:65–74. doi: 10.3114/sim.55.1.65. PubMed DOI PMC
Santos J.M., Phillips A.J.L. Resolving the complex of Diaporthe (Phomopsis) species occurring on Foeniculum vulgare in Portugal. Fungal Divers. 2009;34:111–125.
Crous P., Groenewald J., Shivas R., Edwards J., Seifert K., Alfenas A., Alfenas R., Burgess T., Carnegie A., Hardy G., et al. Fungal Planet description sheets: 69–91. Persoonia. 2011;26:108–156. doi: 10.3767/003158511X581723. PubMed DOI PMC
Crous P.W., Summerell B.A., Swart L., Denman S., Taylor J.E., Bezuidenhout C.M., Palm M.E., Marincowitz S., Groenewald J.Z. Fungal pathogens of Proteaceae. Persoonia. 2011;27:20–45. doi: 10.3767/003158511X606239. PubMed DOI PMC
Thompson S., Tan Y., Young A., Neate S., Aitken E., Shivas R. Stem cankers on sunflower (Helianthus annuus) in Australia reveal a complex of pathogenic Diaporthe (Phomopsis) species. Persoonia. 2011;27:80–89. doi: 10.3767/003158511X617110. PubMed DOI PMC
Gramaje D., Agustí-Brisach C., Pérez-Sierra A., Moralejo E., Olmo D., Mostert L., Damm U., Armengol J. Fungal trunk pathogens associated with wood decay of almond trees on Mallorca (Spain) Pers. Mol. Phylogeny Evol. Fungi. 2012;28:1. doi: 10.3767/003158512X626155. PubMed DOI PMC
Grasso F.M., Marini M., Vitale A., Firrao G., Granata G. Canker and dieback on Platanus × acerifolia caused by Diaporthe scabra. For. Pathol. 2012;42:510–513. doi: 10.1111/j.1439-0329.2012.00785.x. DOI
Huang F., Hou X., Dewdney M.M., Fu Y., Chen G., Hyde K.D., Li H. Diaporthe species occurring on citrus in China. Fungal Diversity. 2013;61:237–250. doi: 10.1007/s13225-013-0245-6. DOI
Lombard L., Van Leeuwen G.C.M., Guarnaccia V., Polizzi Z., Rijswick P.C.J.V., Rosendahl K.C.H.M.V., Gabler J., Crous P.W. Diaporthe species associated with Vaccinium, with specific reference to Europe. Phytopathol. Mediterr. 2014;53:287–299. doi: 10.14601/Phytopathol_Mediterr-14034. DOI
Gao Y.H., Liu F., Cai L. Unravelling Diaporthe species associated with Camellia. Syst. Biodivers. 2016;14:102–117. doi: 10.1080/14772000.2015.1101027. DOI
Udayanga D., Castlebury L.A., Rossman A.Y., Chukeatirote E., Hyde K.D. The Diaporthe sojae species complex: Phylogenetic re-assessment of pathogens associated with soybean, cucurbits and other field crops. Fungal Biol. 2015;119:383–407. doi: 10.1016/j.funbio.2014.10.009. PubMed DOI
Guarnaccia V., Vitale A., Cirvilleri G., Aiello D., Susca A., Epifani F., Perrone G., Polizzi G. Characterisation and pathogenicity of fungal species associated with branch cankers and stem-end rot of avocado in Italy. Eur. J. Plant Pathol. 2016;146:963–976. doi: 10.1007/s10658-016-0973-z. DOI
Guarnaccia V., Crous P.W. Emerging citrus diseases in Europe caused by Diaporthe spp. IMA Fungus 8. 2017:317–334. doi: 10.5598/imafungus.2017.08.02.07. PubMed DOI PMC
Mostert L., Crous P.W., Kang J.-C., Phillips A.J.L. Species of Phomopsis and a Libertella sp. occurring on grapevines with specific reference to South Africa: Morphological, cultural, molecular and pathological characterization. Mycologia. 2001;93:146–167. doi: 10.1080/00275514.2001.12061286. DOI
Mostert L., Kang J.C., Crous P.W., Denman S. Phomopsis saccharata sp. nov., causing a canker and die-back disease of Protea repens in South Africa. Sydowia. 2001;53:227–235.
Udayanga D., Liu X., McKenzie E.H.C., Chukeatirote E., Bahkali A.H.A., Hyde K.D. The genus Phomopsis: Biology, applications, species concepts and names of common phytopathogens. Fungal Divers. 2011;50:189–225. doi: 10.1007/s13225-011-0126-9. DOI
Santos L., Alves A., Alves R. Evaluating multi-locus phylogenies for species boundaries determination in the genus Diaporthe. PeerJ. 2017;5:e3120. doi: 10.7717/peerj.3120. PubMed DOI PMC
Yang Q., Fan X.-L., Guarnaccia V., Tian C.-M. High diversity of Diaporthe species associated with dieback diseases in China, with twelve new species described. MycoKeys. 2018;39:97–149. doi: 10.3897/mycokeys.39.26914. PubMed DOI PMC
Van Niekerk J.M., Groenewald J.Z., Farr D.F., Fourie P.H., Halleen F., Crous P.W., Halleer F. Reassessment of Phomopsis species on grapevines. Australas. Plant Pathol. 2005;34:27–39. doi: 10.1071/AP04072. DOI
Gomes R.R., Glienke C., Videira S., Lombard L., Groenewald J.Z., Crous P.W. Diaporthe: A genus of endophytic, saprobic and plant pathogenic fungi. Persoonia. 2013;31:1–41. doi: 10.3767/003158513X666844. PubMed DOI PMC
Úrbez-Torres J.R., Peduto F., Smith R.J., Gubler W.D. Phomopsis dieback: A grapevine trunk disease caused by Phomopsis viticola in California. Plant Dis. 2013;97:1571–1579. doi: 10.1094/PDIS-11-12-1072-RE. PubMed DOI
Dissanayake A.J., Liu M., Zhang W., Chen Z., Udayanga D., Chukeatirote E., Li X., Yan J., Hyde K.D. Morphological and molecular characterisation of Diaporthe species associated with grapevine trunk disease in China. Fungal Biol. 2015;119:283–294. doi: 10.1016/j.funbio.2014.11.003. PubMed DOI
Calvo A.M., Wilson R.A., Bok J.W., Keller N.P. Relationship between secondary metabolism and fungal development. Microbiol. Mol. Biol. Rev. 2002;66:447–459. doi: 10.1128/MMBR.66.3.447-459.2002. PubMed DOI PMC
Chaves M.M., Zarrouk O., Francisco R., Costa J.M., Santos T., Regalado A.P., Rodrigues M.L., Lopes C.M. Grapevine under deficit irrigation: Hints from physiological and molecular data. Ann. Bot. 2010;105:661–676. doi: 10.1093/aob/mcq030. PubMed DOI PMC
Abdelrahman M., Suzumura N., Mitoma M., Matsuo S., Ikeuchi T., Mori M., Murakami K., Ozaki Y., Matsumoto M., Uragami A., et al. Comparative de novo transcriptome profiles in Asparagus officinali s and A. kiusianus during the early stage of Phomopsis asparagi infection. Sci. Rep. 2017;7:2608. doi: 10.1038/s41598-017-02566-7. PubMed DOI PMC
Zhou J., Li X., Chen Y., Dai C. De novo transcriptome assembly of Phomopsis liquidambari provides insights into genes associated with different lifestyles in rice (Oryza sativa L.) Front. Plant Sci. 2017;8:121. doi: 10.3389/fpls.2017.00121. PubMed DOI PMC
Abdelrahman M., Mitoma M., Ikeuchi T., Mori M., Murakami K., Ozaki Y., Matsumoto M., Uragami A., Kanno A. Differential gene expression analysis and SNP/InDel marker discovery in resistant wild Asparagus kiusianus and susceptible A. officinalis in response to Phomopsis asparagi infection. Data Brief. 2018;21:2117–2121. doi: 10.1016/j.dib.2018.11.034. PubMed DOI PMC
Ruiz-Ferrer V., Voinnet O. Roles of plant small RNAs in biotic stress responses. Annu. Rev. Plant Biol. 2009;60:485–510. doi: 10.1146/annurev.arplant.043008.092111. PubMed DOI
Sunkar R., Li Y.F., Jagadeeswaran G. Functions of microRNAs in plant stress responses. Trends Plant Sci. 2012;17:196–203. doi: 10.1016/j.tplants.2012.01.010. PubMed DOI
Voinnet O. Origin, biogenesis, and activity of plant microRNAs. Cell. 2009;136:669–687. doi: 10.1016/j.cell.2009.01.046. PubMed DOI
Allen E., Xie Z., Gustafson A.M., Carrington J.C. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell. 2005;121:207–221. doi: 10.1016/j.cell.2005.04.004. PubMed DOI
Vaucheret H. Post-transcriptional small RNA pathways in plants: Mechanisms and regulations. Genes Dev. 2006;20:759–771. doi: 10.1101/gad.1410506. PubMed DOI
Budak H., Akpinar B.A. Plant miRNAs: Biogenesis, organization and origins. Funct. Integr. Genom. 2015;15:523–531. doi: 10.1007/s10142-015-0451-2. PubMed DOI
Eichmeier A., Komínková M., Komínek P., Baránek M. Comprehensive virus detection using next generation sequencing in grapevine vascular tissues of plants obtained from the wine regions of Bohemia and Moravia (Czech Republic) PLoS ONE. 2016;11:e0167966. doi: 10.1371/journal.pone.0167966. PubMed DOI PMC
Baldrich P., Campo S., Wu M.T., Liu T.T., Hsing Y.I.C., Segundo B.S. MicroRNA-mediated regulation of gene expression in the response of rice plants to fungal elicitors. RNA Biol. 2015;12:847–863. doi: 10.1080/15476286.2015.1050577. PubMed DOI PMC
Soto-Suárez M., Baldrich P., Weigel D., Rubio-Somoza I., San Segundo B. The Arabidopsis miR396 mediates pathogen-associated molecular pattern-triggered immune responses against fungal pathogens. Sci. Rep. 2017;7:44898. doi: 10.1038/srep44898. PubMed DOI PMC
Hua C., Zhao J.H., Guo H.S. Trans-kingdom RNA silencing in plant–fungal pathogen interactions. Mol. Plant. 2018;11:235–244. doi: 10.1016/j.molp.2017.12.001. PubMed DOI
The French–Italian Public Consortium for Grapevine Genome Characterization. Jaillon O., Aury J.-M., Noel B., Policriti A., Clepet C., Casagrande A., Choisne N., Aubourg S., Vitulo N., et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature. 2007;449:463. doi: 10.1038/nature06148. PubMed DOI
Velasco R., Zharkikh A., Troggio M., Cartwright D.A., Cestaro A., Pruss D., Pindo M., Fitzgerald L.M., Vezzulli S., Reid J., et al. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE. 2007;2:e1326. doi: 10.1371/journal.pone.0001326. PubMed DOI PMC
Pantaleo V., Szittya G., Moxon S., Miozzi L., Moulton V., Dalmay T., Burgyan J. Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant J. 2010;62:960–976. doi: 10.1111/j.1365-313x.2010.04208.x. PubMed DOI
Mica E., Piccolo V., Delledonne M., Ferrarini A., Pezzotti M., Casati C., Del Fabbro C., Valle G., Policriti A., Morgante M., et al. High throughput approaches reveal splicing of primary microRNA transcripts and tissue specific expression of mature microRNAs in Vitis vinifera. BMC Genomics. 2009;10:558. doi: 10.1186/1471-2164-10-558. PubMed DOI PMC
Kozomara A., Griffiths-Jones S. miRBase: Integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2010;39(Suppl. 1):D152–D157. doi: 10.1093/nar/gkq1027. PubMed DOI PMC
Baránek M., Křižan B., Ondrušíková E., Pidra M. DNA-methylation changes in grapevine somaclones following in vitro culture and thermotherapy. Plant Celltissue Organ Cult. 2010;101:11–22. doi: 10.1007/s11240-009-9656-1. DOI
Andrews S. FastQC: A quality control tool for high throughput sequence data. [(accessed on 5 November 2019)]; Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
Dai X., Zhao P.X. psRNATarget: A plant small RNA target analysis server. Nucleic Acids Res. 2011;39(Suppl. 2):W155–W159. doi: 10.1093/nar/gkr319. PubMed DOI PMC
Dai X., Zhao P.X. pssRNAMiner: A plant short small RNA regulatory cascade analysis server. Nucleic Acids Res. 2008;36(Suppl. 2):W114–W118. doi: 10.1093/nar/gkn297. PubMed DOI PMC
Chen C., Ridzon D.A., Broomer A.J., Zhou Z., Lee D.H., Nguyen J.T., Barbisin M., Xu N.L., Mahuvakar V.R., Andersen M.R., et al. Real-time quantification of microRNAs by stem–loop RT–PCR. Nucleic Acids Res. 2005;33:e179. doi: 10.1093/nar/gni178. PubMed DOI PMC
Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3 doi: 10.1186/gb-2002-3-7-research0034. PubMed DOI PMC
Pfaffl M.W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC
Hellemans J., Mortier G., De Paepe A., Speleman F., Vandesompele J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007;8:R19. doi: 10.1186/gb-2007-8-2-r19. PubMed DOI PMC
Fan J., Liu J., Culty M., Papadopoulos V. Acyl-coenzyme A binding domain containing 3 (ACBD3; PAP7; GCP60): An emerging signaling molecule. Prog. Lipid Res. 2010;49:218–234. doi: 10.1016/j.plipres.2009.12.003. PubMed DOI PMC
OIV . OIV FOCUS 2017 Distribution of the World’s Grapevine Varieties. International Organisation of Vine and Wine; Paris, France: 2017. p. 54.
Liu W., Cheng C., Chen F., Ni S., Lin Y., Lai Z. High-throughput sequencing of small RNAs revealed the diversified cold-responsive pathways during cold stress in the wild banana (Musa itinerans) BMC Plant Biol. 2018;18:308. doi: 10.1186/s12870-018-1483-2. PubMed DOI PMC
Ma X., Bologna N., Palma-Guerrero J. Small RNA bidirectional crosstalk during the interaction between wheat and Zymoseptoria tritici. bioRxiv. 2018:501593. doi: 10.1101/501593. PubMed DOI PMC
Marchi G. Susceptibility to esca of various grapevine (Vitis vinifera) cultivars grafted on different rootstocks in a vineyard in the province of Siena (Italy) Phytopathol. Mediterr. 2001;40:27–36. doi: 10.14601/Phytopathol_Mediterr-1589. DOI
Murolo S., Romanazzi G. Effects of grapevine cultivar, rootstock and clone on esca disease. Australas. Plant Pathol. 2014;43:215–221. doi: 10.1007/s13313-014-0276-9. DOI
Rajagopalan R., Vaucheret H., Trejo J., Bartel D.P. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev. 2006;20:3407–3425. doi: 10.1101/gad.1476406. PubMed DOI PMC
Fahlgren N., Howell M.D., Kasschau K.D., Chapman E.J., Sullivan C.M., Cumbie J.S., Givan S.A., Law T.F., Grant S.R., Dangl J.L., et al. High-throughput sequencing of Arabidopsis microRNAs: Evidence for frequent birth and death of MIRNA genes. PLoS ONE. 2007;2:e219. doi: 10.1371/journal.pone.0000219. PubMed DOI PMC
Moxon S., Jing R., Szittya G., Schwach F., Pilcher R.L.R., Moulton V., Dalmay T. Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res. 2008;18:1602–1609. doi: 10.1101/gr.080127.108. PubMed DOI PMC
Xie Z., Johansen L.K., Gustafson A.M., Kasschau K.D., Lellis A.D., Zilberman D., Jacobsen S.E., Carrington J.C. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2004;2:e104. doi: 10.1371/journal.pbio.0020104. PubMed DOI PMC
Chan S.W.L., Henderson I.R., Jacobsen S.E. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat. Rev. Genet. 2005;6:351. doi: 10.1038/nrg1601. PubMed DOI
Pantaleo V., Vitali M., Boccacci P., Miozzi L., Cuozzo D., Chitarra W., Mannini F., Lovisolo C., Gambino G. Novel functional microRNAs from virus-free and infected Vitis vinifera plants under water stress. Sci. Rep. 2016;6:20167. doi: 10.1038/srep20167. PubMed DOI PMC
Raabe C.A., Tang T.H., Brosius J., Rozhdestvensky T.S. Biases in small RNA deep sequencing data. Nucleic Acids Res. 2013;42:1414–1426. doi: 10.1093/nar/gkt1021. PubMed DOI PMC
Baev V., Milev I., Naydenov M., Apostolova E., Minkov G., Minkov I., Yahubyan G. Implementation of a de novo genome-wide computational approach for updating Brachypodium miRNAs. Genomics. 2011;97:282–293. doi: 10.1016/j.ygeno.2011.02.008. PubMed DOI
Axtell M.J., Snyder J.A., Bartel D.P. Common functions for diverse small RNAs of land plants. Plant Cell. 2007;19:1750–1769. doi: 10.1105/tpc.107.051706. PubMed DOI PMC
Bittner-Eddy P.D., Beynon J.L. The Arabidopsis downy mildew resistance gene, RPP13-Nd, functions independently of NDR1 and EDS1 and does not require the accumulation of salicylic acid. Mol. Plant Microbe Interact. 2007;14:416–421. doi: 10.1094/MPMI.2001.14.3.416. PubMed DOI
Bhattarai K., Wang W., Cao Z., Deng Z. Comparative analysis of impatiens leaf transcriptomes reveal candidate genes for resistance to downy mildew caused by Plasmopara obducens. Int. J. Mol. Sci. 2018;19:2057. doi: 10.3390/ijms19072057. PubMed DOI PMC
Rhoades M.W., Reinhart B.J., Lim L.P., Burge C.B., Bartel B., Bartel D.P. Prediction of plant microRNA targets. Cell. 2002;110:513–520. doi: 10.1016/S0092-8674(02)00863-2. PubMed DOI
Zhong R., Ye Z.H. Regulation of HD-ZIP III genes by microRNA 165. Plant Signal. Behav. 2007;2:351–353. doi: 10.4161/psb.2.5.4119. PubMed DOI PMC
Du Q., Wang H. The role of HD-ZIP III transcription factors and miR165/166 in vascular development and secondary cell wall formation. Plant Signal. Behav. 2015;10:e1078955. doi: 10.1080/15592324.2015.1078955. PubMed DOI PMC
Ohashi-Ito K., Kubo M., Demura T., Fukuda H. Class III homeodomain leucine-zipper proteins regulate xylem cell differentiation. Plant Cell Physiol. 2005;46:1646–1656. doi: 10.1093/pcp/pci180. PubMed DOI
Prigge M.J., Otsuga D., Alonso J.M., Ecker J.R., Drews G.N., Clark S.E. Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell. 2005;17:61–76. doi: 10.1105/tpc.104.026161. PubMed DOI PMC
Jung J.H., Park C.M. MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis. Planta. 2007;225:1327–1338. doi: 10.1007/s00425-006-0439-1. PubMed DOI
Kim J., Jung J.-H., Reyes J.L., Kim Y.-S., Kim S.-Y., Chung K.-S., Kim J.A., Lee M., Lee Y., Kim V.N., et al. microRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant J. 2005;42:84–94. doi: 10.1111/j.1365-313X.2005.02354.x. PubMed DOI PMC
Dugas D.V., Bartel B. Sucrose induction of Arabidopsis miR398 represses two Cu/Zn superoxide dismutases. Plant Mol. Biol. 2008;67:403–417. doi: 10.1007/s11103-008-9329-1. PubMed DOI
Chitarra W., Pagliarani C., Abbà S., Boccacci P., Birello G., Rossi M., Palmano S., Marzachì C., Perrone I., Gambino G. miRVIT: A novel miRNA database and its application to uncover vitis responses to flavescence dorée infection. Front. Plant Sci. 2018;9:1034. doi: 10.3389/fpls.2018.01034. PubMed DOI PMC
Abdel-Ghany S.E., Pilon M. MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J. Biol. Chem. 2008;283:15932–15945. doi: 10.1074/jbc.M801406200. PubMed DOI PMC
Zhang X., Zhao H., Gao S., Wang W.-C., Katiyar-Agarwal S., Huang H.-D., Raikhel N., Jin H. Arabidopsis Argonaute 2 regulates innate immunity via miRNA393∗-mediated silencing of a Golgi-localized SNARE gene, MEMB12. Mol. Cell. 2011;42:356–366. doi: 10.1016/j.molcel.2011.04.010. PubMed DOI PMC
Zeng R.F., Zhou J.J., Liu S.R., Gan Z.M., Zhang J.Z., Hu C.G. Genome-Wide Identification and Characterization of SQUAMOSA—Promoter-Binding Protein (SBP) Genes Involved in the Flowering Development of Citrus Clementina. Biomolecules. 2019;9:66. doi: 10.3390/biom9020066. PubMed DOI PMC
Weigel D., Alvarez J., Smyth D.R., Yanofsky M.F., Meyerowitz E.M. LEAFY controls floral meristem identity in Arabidopsis. Cell. 1992;69:843–859. doi: 10.1016/0092-8674(92)90295-N. PubMed DOI
Bettiga L.J. Grape Pest Management. University of California Agriculture and Natural Resources (UCANR); Santa Maria, CA, USA: 2013.
Lignans Extract from Knotwood of Norway Spruce-A Possible New Weapon against GTDs