MicroRNAs in Vitis vinifera cv. Chardonnay Are Differentially Expressed in Response to Diaporthe Species

. 2019 Nov 07 ; 10 (11) : . [epub] 20191107

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31703418

Diaporthe species are important pathogens, saprobes, and endophytes on grapevines. Several species are known, either as agents of pre- or post-harvest infections, as causal agents of many relevant diseases, including swelling arm, trunk cankers, leaf spots, root and fruit rots, wilts, and cane bleaching. A growing body of evidence exists that a class of small non-coding endogenous RNAs, known as microRNAs (miRNAs), play an important role in post-transcriptional gene regulation, during plant development and responses to biotic and abiotic stresses. In this study, we explored differentially expressed miRNAs in response to Diaporthe eres and Diaporthe bohemiae infection in Vitis vinifera cv. Chardonnay under in vitro conditions. We used computational methods to predict putative miRNA targets in order to explore the involvement of possible pathogen response pathways. We identified 136 known and 41 new miRNA sequence variants, likely generated through post-transcriptional modifications. In the Diaporthe eres treatment, 61 known and 17 new miRNAs were identified while in the Diaporthe bohemiae treatment, 101 known and 21 new miRNAs were revealed. Our results contribute to further understanding the role miRNAs play during plant pathogenesis, which is possibly crucial in understanding disease symptom development in grapevines infected by D. eres and D. bohemiae.

Zobrazit více v PubMed

Muralli T.S., Suryanarayanan T.S., Geeta R. Endophytic Phomopsis species: Host range and implications for diversity estimates. Can. J. Microbiol. 2006;52:673–680. doi: 10.1139/w06-020. PubMed DOI

Garcia-Reyne A., López-Medrano F., Morales J.M., García Esteban C., Martín I., Eraña I., Meije Y., Lalueza A., Alastruey-Izquierdo A., Rodríguez-Tudela J.L., et al. Cutaneous infection by Phomopsis longicolla in a renal transplant recipient from Guinea: First report of human infection by this fungus. Transpl. Infect. Dis. 2011;13:204–207. doi: 10.1111/j.1399-3062.2010.00570.x. PubMed DOI

Santos J.M., Vrandecčicć K., CĆosicć J., Duvnjak T., Phillips A. Resolving the Diaporthe species occurring on soybean in Croatia. Persoonia. 2011;27:9–19. doi: 10.3767/003158511X603719. PubMed DOI PMC

Guarnaccia V., Groenewald J.Z., Woodhall J., Armengol J., Cinelli T., Eichmeier A., Ezra D., Fontaine F., Gramaje D., Gutierrez-Aguirregabiria A., et al. Diaporthe diversity and pathogenicity revealed from a broad survey of grapevine diseases in Europe. Pers. Mol. Phylogeny Evol. Fungi. 2018;40:135–153. doi: 10.3767/persoonia.2018.40.06. PubMed DOI PMC

Gramaje D., Úrbez-Torres J.R., Sosnowski M.R. Managing grapevine trunk diseases with respect to etiology and epidemiology: Current strategies and future prospects. Plant Dis. 2018;102:12–39. doi: 10.1094/PDIS-04-17-0512-FE. PubMed DOI

Van Rensburg J.C.J., Lamprecht S.C., Groenewald J.Z., Castlebury L.A., Crous P.W., Van Rensburg J.C.J. Characterization of Phomopsis spp. associated with die-back of rooibos (Aspalathus linearis) in South Africa. Stud. Mycol. 2006;55:65–74. doi: 10.3114/sim.55.1.65. PubMed DOI PMC

Santos J.M., Phillips A.J.L. Resolving the complex of Diaporthe (Phomopsis) species occurring on Foeniculum vulgare in Portugal. Fungal Divers. 2009;34:111–125.

Crous P., Groenewald J., Shivas R., Edwards J., Seifert K., Alfenas A., Alfenas R., Burgess T., Carnegie A., Hardy G., et al. Fungal Planet description sheets: 69–91. Persoonia. 2011;26:108–156. doi: 10.3767/003158511X581723. PubMed DOI PMC

Crous P.W., Summerell B.A., Swart L., Denman S., Taylor J.E., Bezuidenhout C.M., Palm M.E., Marincowitz S., Groenewald J.Z. Fungal pathogens of Proteaceae. Persoonia. 2011;27:20–45. doi: 10.3767/003158511X606239. PubMed DOI PMC

Thompson S., Tan Y., Young A., Neate S., Aitken E., Shivas R. Stem cankers on sunflower (Helianthus annuus) in Australia reveal a complex of pathogenic Diaporthe (Phomopsis) species. Persoonia. 2011;27:80–89. doi: 10.3767/003158511X617110. PubMed DOI PMC

Gramaje D., Agustí-Brisach C., Pérez-Sierra A., Moralejo E., Olmo D., Mostert L., Damm U., Armengol J. Fungal trunk pathogens associated with wood decay of almond trees on Mallorca (Spain) Pers. Mol. Phylogeny Evol. Fungi. 2012;28:1. doi: 10.3767/003158512X626155. PubMed DOI PMC

Grasso F.M., Marini M., Vitale A., Firrao G., Granata G. Canker and dieback on Platanus × acerifolia caused by Diaporthe scabra. For. Pathol. 2012;42:510–513. doi: 10.1111/j.1439-0329.2012.00785.x. DOI

Huang F., Hou X., Dewdney M.M., Fu Y., Chen G., Hyde K.D., Li H. Diaporthe species occurring on citrus in China. Fungal Diversity. 2013;61:237–250. doi: 10.1007/s13225-013-0245-6. DOI

Lombard L., Van Leeuwen G.C.M., Guarnaccia V., Polizzi Z., Rijswick P.C.J.V., Rosendahl K.C.H.M.V., Gabler J., Crous P.W. Diaporthe species associated with Vaccinium, with specific reference to Europe. Phytopathol. Mediterr. 2014;53:287–299. doi: 10.14601/Phytopathol_Mediterr-14034. DOI

Gao Y.H., Liu F., Cai L. Unravelling Diaporthe species associated with Camellia. Syst. Biodivers. 2016;14:102–117. doi: 10.1080/14772000.2015.1101027. DOI

Udayanga D., Castlebury L.A., Rossman A.Y., Chukeatirote E., Hyde K.D. The Diaporthe sojae species complex: Phylogenetic re-assessment of pathogens associated with soybean, cucurbits and other field crops. Fungal Biol. 2015;119:383–407. doi: 10.1016/j.funbio.2014.10.009. PubMed DOI

Guarnaccia V., Vitale A., Cirvilleri G., Aiello D., Susca A., Epifani F., Perrone G., Polizzi G. Characterisation and pathogenicity of fungal species associated with branch cankers and stem-end rot of avocado in Italy. Eur. J. Plant Pathol. 2016;146:963–976. doi: 10.1007/s10658-016-0973-z. DOI

Guarnaccia V., Crous P.W. Emerging citrus diseases in Europe caused by Diaporthe spp. IMA Fungus 8. 2017:317–334. doi: 10.5598/imafungus.2017.08.02.07. PubMed DOI PMC

Mostert L., Crous P.W., Kang J.-C., Phillips A.J.L. Species of Phomopsis and a Libertella sp. occurring on grapevines with specific reference to South Africa: Morphological, cultural, molecular and pathological characterization. Mycologia. 2001;93:146–167. doi: 10.1080/00275514.2001.12061286. DOI

Mostert L., Kang J.C., Crous P.W., Denman S. Phomopsis saccharata sp. nov., causing a canker and die-back disease of Protea repens in South Africa. Sydowia. 2001;53:227–235.

Udayanga D., Liu X., McKenzie E.H.C., Chukeatirote E., Bahkali A.H.A., Hyde K.D. The genus Phomopsis: Biology, applications, species concepts and names of common phytopathogens. Fungal Divers. 2011;50:189–225. doi: 10.1007/s13225-011-0126-9. DOI

Santos L., Alves A., Alves R. Evaluating multi-locus phylogenies for species boundaries determination in the genus Diaporthe. PeerJ. 2017;5:e3120. doi: 10.7717/peerj.3120. PubMed DOI PMC

Yang Q., Fan X.-L., Guarnaccia V., Tian C.-M. High diversity of Diaporthe species associated with dieback diseases in China, with twelve new species described. MycoKeys. 2018;39:97–149. doi: 10.3897/mycokeys.39.26914. PubMed DOI PMC

Van Niekerk J.M., Groenewald J.Z., Farr D.F., Fourie P.H., Halleen F., Crous P.W., Halleer F. Reassessment of Phomopsis species on grapevines. Australas. Plant Pathol. 2005;34:27–39. doi: 10.1071/AP04072. DOI

Gomes R.R., Glienke C., Videira S., Lombard L., Groenewald J.Z., Crous P.W. Diaporthe: A genus of endophytic, saprobic and plant pathogenic fungi. Persoonia. 2013;31:1–41. doi: 10.3767/003158513X666844. PubMed DOI PMC

Úrbez-Torres J.R., Peduto F., Smith R.J., Gubler W.D. Phomopsis dieback: A grapevine trunk disease caused by Phomopsis viticola in California. Plant Dis. 2013;97:1571–1579. doi: 10.1094/PDIS-11-12-1072-RE. PubMed DOI

Dissanayake A.J., Liu M., Zhang W., Chen Z., Udayanga D., Chukeatirote E., Li X., Yan J., Hyde K.D. Morphological and molecular characterisation of Diaporthe species associated with grapevine trunk disease in China. Fungal Biol. 2015;119:283–294. doi: 10.1016/j.funbio.2014.11.003. PubMed DOI

Calvo A.M., Wilson R.A., Bok J.W., Keller N.P. Relationship between secondary metabolism and fungal development. Microbiol. Mol. Biol. Rev. 2002;66:447–459. doi: 10.1128/MMBR.66.3.447-459.2002. PubMed DOI PMC

Chaves M.M., Zarrouk O., Francisco R., Costa J.M., Santos T., Regalado A.P., Rodrigues M.L., Lopes C.M. Grapevine under deficit irrigation: Hints from physiological and molecular data. Ann. Bot. 2010;105:661–676. doi: 10.1093/aob/mcq030. PubMed DOI PMC

Abdelrahman M., Suzumura N., Mitoma M., Matsuo S., Ikeuchi T., Mori M., Murakami K., Ozaki Y., Matsumoto M., Uragami A., et al. Comparative de novo transcriptome profiles in Asparagus officinali s and A. kiusianus during the early stage of Phomopsis asparagi infection. Sci. Rep. 2017;7:2608. doi: 10.1038/s41598-017-02566-7. PubMed DOI PMC

Zhou J., Li X., Chen Y., Dai C. De novo transcriptome assembly of Phomopsis liquidambari provides insights into genes associated with different lifestyles in rice (Oryza sativa L.) Front. Plant Sci. 2017;8:121. doi: 10.3389/fpls.2017.00121. PubMed DOI PMC

Abdelrahman M., Mitoma M., Ikeuchi T., Mori M., Murakami K., Ozaki Y., Matsumoto M., Uragami A., Kanno A. Differential gene expression analysis and SNP/InDel marker discovery in resistant wild Asparagus kiusianus and susceptible A. officinalis in response to Phomopsis asparagi infection. Data Brief. 2018;21:2117–2121. doi: 10.1016/j.dib.2018.11.034. PubMed DOI PMC

Ruiz-Ferrer V., Voinnet O. Roles of plant small RNAs in biotic stress responses. Annu. Rev. Plant Biol. 2009;60:485–510. doi: 10.1146/annurev.arplant.043008.092111. PubMed DOI

Sunkar R., Li Y.F., Jagadeeswaran G. Functions of microRNAs in plant stress responses. Trends Plant Sci. 2012;17:196–203. doi: 10.1016/j.tplants.2012.01.010. PubMed DOI

Voinnet O. Origin, biogenesis, and activity of plant microRNAs. Cell. 2009;136:669–687. doi: 10.1016/j.cell.2009.01.046. PubMed DOI

Allen E., Xie Z., Gustafson A.M., Carrington J.C. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell. 2005;121:207–221. doi: 10.1016/j.cell.2005.04.004. PubMed DOI

Vaucheret H. Post-transcriptional small RNA pathways in plants: Mechanisms and regulations. Genes Dev. 2006;20:759–771. doi: 10.1101/gad.1410506. PubMed DOI

Budak H., Akpinar B.A. Plant miRNAs: Biogenesis, organization and origins. Funct. Integr. Genom. 2015;15:523–531. doi: 10.1007/s10142-015-0451-2. PubMed DOI

Eichmeier A., Komínková M., Komínek P., Baránek M. Comprehensive virus detection using next generation sequencing in grapevine vascular tissues of plants obtained from the wine regions of Bohemia and Moravia (Czech Republic) PLoS ONE. 2016;11:e0167966. doi: 10.1371/journal.pone.0167966. PubMed DOI PMC

Baldrich P., Campo S., Wu M.T., Liu T.T., Hsing Y.I.C., Segundo B.S. MicroRNA-mediated regulation of gene expression in the response of rice plants to fungal elicitors. RNA Biol. 2015;12:847–863. doi: 10.1080/15476286.2015.1050577. PubMed DOI PMC

Soto-Suárez M., Baldrich P., Weigel D., Rubio-Somoza I., San Segundo B. The Arabidopsis miR396 mediates pathogen-associated molecular pattern-triggered immune responses against fungal pathogens. Sci. Rep. 2017;7:44898. doi: 10.1038/srep44898. PubMed DOI PMC

Hua C., Zhao J.H., Guo H.S. Trans-kingdom RNA silencing in plant–fungal pathogen interactions. Mol. Plant. 2018;11:235–244. doi: 10.1016/j.molp.2017.12.001. PubMed DOI

The French–Italian Public Consortium for Grapevine Genome Characterization. Jaillon O., Aury J.-M., Noel B., Policriti A., Clepet C., Casagrande A., Choisne N., Aubourg S., Vitulo N., et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature. 2007;449:463. doi: 10.1038/nature06148. PubMed DOI

Velasco R., Zharkikh A., Troggio M., Cartwright D.A., Cestaro A., Pruss D., Pindo M., Fitzgerald L.M., Vezzulli S., Reid J., et al. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE. 2007;2:e1326. doi: 10.1371/journal.pone.0001326. PubMed DOI PMC

Pantaleo V., Szittya G., Moxon S., Miozzi L., Moulton V., Dalmay T., Burgyan J. Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant J. 2010;62:960–976. doi: 10.1111/j.1365-313x.2010.04208.x. PubMed DOI

Mica E., Piccolo V., Delledonne M., Ferrarini A., Pezzotti M., Casati C., Del Fabbro C., Valle G., Policriti A., Morgante M., et al. High throughput approaches reveal splicing of primary microRNA transcripts and tissue specific expression of mature microRNAs in Vitis vinifera. BMC Genomics. 2009;10:558. doi: 10.1186/1471-2164-10-558. PubMed DOI PMC

Kozomara A., Griffiths-Jones S. miRBase: Integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2010;39(Suppl. 1):D152–D157. doi: 10.1093/nar/gkq1027. PubMed DOI PMC

Baránek M., Křižan B., Ondrušíková E., Pidra M. DNA-methylation changes in grapevine somaclones following in vitro culture and thermotherapy. Plant Celltissue Organ Cult. 2010;101:11–22. doi: 10.1007/s11240-009-9656-1. DOI

Andrews S. FastQC: A quality control tool for high throughput sequence data. [(accessed on 5 November 2019)]; Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.

Dai X., Zhao P.X. psRNATarget: A plant small RNA target analysis server. Nucleic Acids Res. 2011;39(Suppl. 2):W155–W159. doi: 10.1093/nar/gkr319. PubMed DOI PMC

Dai X., Zhao P.X. pssRNAMiner: A plant short small RNA regulatory cascade analysis server. Nucleic Acids Res. 2008;36(Suppl. 2):W114–W118. doi: 10.1093/nar/gkn297. PubMed DOI PMC

Chen C., Ridzon D.A., Broomer A.J., Zhou Z., Lee D.H., Nguyen J.T., Barbisin M., Xu N.L., Mahuvakar V.R., Andersen M.R., et al. Real-time quantification of microRNAs by stem–loop RT–PCR. Nucleic Acids Res. 2005;33:e179. doi: 10.1093/nar/gni178. PubMed DOI PMC

Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3 doi: 10.1186/gb-2002-3-7-research0034. PubMed DOI PMC

Pfaffl M.W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC

Hellemans J., Mortier G., De Paepe A., Speleman F., Vandesompele J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007;8:R19. doi: 10.1186/gb-2007-8-2-r19. PubMed DOI PMC

Fan J., Liu J., Culty M., Papadopoulos V. Acyl-coenzyme A binding domain containing 3 (ACBD3; PAP7; GCP60): An emerging signaling molecule. Prog. Lipid Res. 2010;49:218–234. doi: 10.1016/j.plipres.2009.12.003. PubMed DOI PMC

OIV . OIV FOCUS 2017 Distribution of the World’s Grapevine Varieties. International Organisation of Vine and Wine; Paris, France: 2017. p. 54.

Liu W., Cheng C., Chen F., Ni S., Lin Y., Lai Z. High-throughput sequencing of small RNAs revealed the diversified cold-responsive pathways during cold stress in the wild banana (Musa itinerans) BMC Plant Biol. 2018;18:308. doi: 10.1186/s12870-018-1483-2. PubMed DOI PMC

Ma X., Bologna N., Palma-Guerrero J. Small RNA bidirectional crosstalk during the interaction between wheat and Zymoseptoria tritici. bioRxiv. 2018:501593. doi: 10.1101/501593. PubMed DOI PMC

Marchi G. Susceptibility to esca of various grapevine (Vitis vinifera) cultivars grafted on different rootstocks in a vineyard in the province of Siena (Italy) Phytopathol. Mediterr. 2001;40:27–36. doi: 10.14601/Phytopathol_Mediterr-1589. DOI

Murolo S., Romanazzi G. Effects of grapevine cultivar, rootstock and clone on esca disease. Australas. Plant Pathol. 2014;43:215–221. doi: 10.1007/s13313-014-0276-9. DOI

Rajagopalan R., Vaucheret H., Trejo J., Bartel D.P. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev. 2006;20:3407–3425. doi: 10.1101/gad.1476406. PubMed DOI PMC

Fahlgren N., Howell M.D., Kasschau K.D., Chapman E.J., Sullivan C.M., Cumbie J.S., Givan S.A., Law T.F., Grant S.R., Dangl J.L., et al. High-throughput sequencing of Arabidopsis microRNAs: Evidence for frequent birth and death of MIRNA genes. PLoS ONE. 2007;2:e219. doi: 10.1371/journal.pone.0000219. PubMed DOI PMC

Moxon S., Jing R., Szittya G., Schwach F., Pilcher R.L.R., Moulton V., Dalmay T. Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res. 2008;18:1602–1609. doi: 10.1101/gr.080127.108. PubMed DOI PMC

Xie Z., Johansen L.K., Gustafson A.M., Kasschau K.D., Lellis A.D., Zilberman D., Jacobsen S.E., Carrington J.C. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2004;2:e104. doi: 10.1371/journal.pbio.0020104. PubMed DOI PMC

Chan S.W.L., Henderson I.R., Jacobsen S.E. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat. Rev. Genet. 2005;6:351. doi: 10.1038/nrg1601. PubMed DOI

Pantaleo V., Vitali M., Boccacci P., Miozzi L., Cuozzo D., Chitarra W., Mannini F., Lovisolo C., Gambino G. Novel functional microRNAs from virus-free and infected Vitis vinifera plants under water stress. Sci. Rep. 2016;6:20167. doi: 10.1038/srep20167. PubMed DOI PMC

Raabe C.A., Tang T.H., Brosius J., Rozhdestvensky T.S. Biases in small RNA deep sequencing data. Nucleic Acids Res. 2013;42:1414–1426. doi: 10.1093/nar/gkt1021. PubMed DOI PMC

Baev V., Milev I., Naydenov M., Apostolova E., Minkov G., Minkov I., Yahubyan G. Implementation of a de novo genome-wide computational approach for updating Brachypodium miRNAs. Genomics. 2011;97:282–293. doi: 10.1016/j.ygeno.2011.02.008. PubMed DOI

Axtell M.J., Snyder J.A., Bartel D.P. Common functions for diverse small RNAs of land plants. Plant Cell. 2007;19:1750–1769. doi: 10.1105/tpc.107.051706. PubMed DOI PMC

Bittner-Eddy P.D., Beynon J.L. The Arabidopsis downy mildew resistance gene, RPP13-Nd, functions independently of NDR1 and EDS1 and does not require the accumulation of salicylic acid. Mol. Plant Microbe Interact. 2007;14:416–421. doi: 10.1094/MPMI.2001.14.3.416. PubMed DOI

Bhattarai K., Wang W., Cao Z., Deng Z. Comparative analysis of impatiens leaf transcriptomes reveal candidate genes for resistance to downy mildew caused by Plasmopara obducens. Int. J. Mol. Sci. 2018;19:2057. doi: 10.3390/ijms19072057. PubMed DOI PMC

Rhoades M.W., Reinhart B.J., Lim L.P., Burge C.B., Bartel B., Bartel D.P. Prediction of plant microRNA targets. Cell. 2002;110:513–520. doi: 10.1016/S0092-8674(02)00863-2. PubMed DOI

Zhong R., Ye Z.H. Regulation of HD-ZIP III genes by microRNA 165. Plant Signal. Behav. 2007;2:351–353. doi: 10.4161/psb.2.5.4119. PubMed DOI PMC

Du Q., Wang H. The role of HD-ZIP III transcription factors and miR165/166 in vascular development and secondary cell wall formation. Plant Signal. Behav. 2015;10:e1078955. doi: 10.1080/15592324.2015.1078955. PubMed DOI PMC

Ohashi-Ito K., Kubo M., Demura T., Fukuda H. Class III homeodomain leucine-zipper proteins regulate xylem cell differentiation. Plant Cell Physiol. 2005;46:1646–1656. doi: 10.1093/pcp/pci180. PubMed DOI

Prigge M.J., Otsuga D., Alonso J.M., Ecker J.R., Drews G.N., Clark S.E. Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell. 2005;17:61–76. doi: 10.1105/tpc.104.026161. PubMed DOI PMC

Jung J.H., Park C.M. MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis. Planta. 2007;225:1327–1338. doi: 10.1007/s00425-006-0439-1. PubMed DOI

Kim J., Jung J.-H., Reyes J.L., Kim Y.-S., Kim S.-Y., Chung K.-S., Kim J.A., Lee M., Lee Y., Kim V.N., et al. microRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant J. 2005;42:84–94. doi: 10.1111/j.1365-313X.2005.02354.x. PubMed DOI PMC

Dugas D.V., Bartel B. Sucrose induction of Arabidopsis miR398 represses two Cu/Zn superoxide dismutases. Plant Mol. Biol. 2008;67:403–417. doi: 10.1007/s11103-008-9329-1. PubMed DOI

Chitarra W., Pagliarani C., Abbà S., Boccacci P., Birello G., Rossi M., Palmano S., Marzachì C., Perrone I., Gambino G. miRVIT: A novel miRNA database and its application to uncover vitis responses to flavescence dorée infection. Front. Plant Sci. 2018;9:1034. doi: 10.3389/fpls.2018.01034. PubMed DOI PMC

Abdel-Ghany S.E., Pilon M. MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J. Biol. Chem. 2008;283:15932–15945. doi: 10.1074/jbc.M801406200. PubMed DOI PMC

Zhang X., Zhao H., Gao S., Wang W.-C., Katiyar-Agarwal S., Huang H.-D., Raikhel N., Jin H. Arabidopsis Argonaute 2 regulates innate immunity via miRNA393∗-mediated silencing of a Golgi-localized SNARE gene, MEMB12. Mol. Cell. 2011;42:356–366. doi: 10.1016/j.molcel.2011.04.010. PubMed DOI PMC

Zeng R.F., Zhou J.J., Liu S.R., Gan Z.M., Zhang J.Z., Hu C.G. Genome-Wide Identification and Characterization of SQUAMOSA—Promoter-Binding Protein (SBP) Genes Involved in the Flowering Development of Citrus Clementina. Biomolecules. 2019;9:66. doi: 10.3390/biom9020066. PubMed DOI PMC

Weigel D., Alvarez J., Smyth D.R., Yanofsky M.F., Meyerowitz E.M. LEAFY controls floral meristem identity in Arabidopsis. Cell. 1992;69:843–859. doi: 10.1016/0092-8674(92)90295-N. PubMed DOI

Bettiga L.J. Grape Pest Management. University of California Agriculture and Natural Resources (UCANR); Santa Maria, CA, USA: 2013.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...