Comprehensive Virus Detection Using Next Generation Sequencing in Grapevine Vascular Tissues of Plants Obtained from the Wine Regions of Bohemia and Moravia (Czech Republic)
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27959951
PubMed Central
PMC5154529
DOI
10.1371/journal.pone.0167966
PII: PONE-D-16-29865
Knihovny.cz E-zdroje
- MeSH
- DNA virů chemie MeSH
- farmy MeSH
- rostlinné viry izolace a purifikace MeSH
- sekvenční analýza DNA metody MeSH
- viroidy izolace a purifikace MeSH
- Vitis virologie MeSH
- vysoce účinné nukleotidové sekvenování metody MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- DNA virů MeSH
Comprehensive next generation sequencing virus detection was used to detect the whole spectrum of viruses and viroids in selected grapevines from the Czech Republic. The novel NGS approach was based on sequencing libraries of small RNA isolated from grapevine vascular tissues. Eight previously partially-characterized grapevines of diverse varieties were selected and subjected to analysis: Chardonnay, Laurot, Guzal Kara, and rootstock Kober 125AA from the Moravia wine-producing region; plus Müller-Thurgau and Pinot Noir from the Bohemia wine-producing region, both in the Czech Republic. Using next generation sequencing of small RNA, the presence of 8 viruses and 2 viroids were detected in a set of eight grapevines; therefore, confirming the high effectiveness of the technique in plant virology and producing results supporting previous data on multiple infected grapevines in Czech vineyards. Among the pathogens detected, the Grapevine rupestris vein feathering virus and Grapevine yellow speckle viroid 1 were recorded in the Czech Republic for the first time.
Zobrazit více v PubMed
Jones RAC. Plant virus emergence and evolution: Origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Res. 2009; 141: 113–130. 10.1016/j.virusres.2008.07.028 PubMed DOI
Al Rwahnih M, Daubert S, Golino D, Rowhani A. Deep sequencing analysis of RNAs from a grapevine showing Syrah decline symptoms reveals a multiple virus infection that includes a novel virus. Virology. 2009; 387: 395–401. 10.1016/j.virol.2009.02.028 PubMed DOI
Giampetruzzi A, Roumi V, Roberto R, Malossini U, Yoshikawa N, La Notte P, et al. A new grapevine virus discovered by deep sequencing of virus-and viroid-derived small RNAs in Cv Pinot gris. Virus Res. 2012; 163: 262–268. 10.1016/j.virusres.2011.10.010 PubMed DOI
Kreuze JF, Perez A, Untiveros M, Quispe D, Fuentes S, Barker I, et al. Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses. Virology. 2009; 388: 1–7. 10.1016/j.virol.2009.03.024 PubMed DOI
Coetzee B, Freeborough MJ, Maree HJ, Celton JM, Jasper D, Rees G, et al. Deep sequencing analysis of viruses infecting grapevines: virome of a vineyard. Virology. 2010; 400: 157–163. 10.1016/j.virol.2010.01.023 PubMed DOI
Baránek M, Raddová J, Křižan B, Pidra M. Genetic changes in grapevine genomes after stress induced by in vitro cultivation, thermotherapy and virus infection, as revealed by AFLP. Genet Mol Biol. 2009; 32:834–839. 10.1590/S1415-47572009005000079 PubMed DOI PMC
Sastry KS. Plant virus transmission through vegetative propagules (asexual reproduction) In: Seed-borne plant virus diseases. Springer India; 2013. p. 285–305.
Wu Q, Luo Y, Lu R, Lau N, Lai EC, Li WX, et al. Virus discovery by deep sequencing and assembly of virus-derived small silencing RNAs. Proc Natl Acad Sci U S A. 2010; 107(4), 1606–1611. 10.1073/pnas.0911353107 PubMed DOI PMC
Saldarelli P, Giampetruzzi A, Morelli M, Malossini U, Pirolo C, Bianchedi P, et al. Genetic variability of Grapevine Pinot gris virus and its association with grapevine leaf mottling and deformation. Phytopathology. 2015; 105: 555–563. 10.1094/PHYTO-09-14-0241-R PubMed DOI
Komínek P. Distribution of grapevine viruses in vineyards of the Czech Republic. J Plant Pathol. 2008; 90: 357–358.
Komínek P, Glasa M, Komínková M. Analysis of multiple virus-infected grapevine plant reveals persistence but uneven virus distribution. Acta Virol. 2009; 53: 281–285. PubMed
Sabanadzovic S, Abou-Ghanem N, Castellano MA, Digiaro M, Martelli GP. Grapevine fleck virus-like viruses in Vitis. Arch Virol. 2000; 145: 553–565. PubMed
Glasa M, Predajňa L, Komínek P, Nagyová A, Candresse T, Olmos A. Molecular characterization of divergent Grapevine Pinot gris virus isolates and their detection in Slovak and Czech grapevines. Arch Virol. 2014; 159: 2103–2107. 10.1007/s00705-014-2031-5 PubMed DOI
Pantaleo V, Saldarelli P, Miozzi L, Giampetruzzi A, Gisel A, Moxon S, et al. Deep sequencing analysis of viral short RNAs from an infected Pinot Noir grapevine. Virology. 2010; 408: 49–56. 10.1016/j.virol.2010.09.001 PubMed DOI
Hamilton AJ, Baulcombe DC. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science. 1999; 286: 950–952. PubMed
Lu C, Meyers BC., Green PJ. Construction of small RNA cDNA libraries for deep sequencing. Methods. 2007; 43: 110–117. 10.1016/j.ymeth.2007.05.002 PubMed DOI
Andrews S. (2010). FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc
Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008; 18, 821–829. 10.1101/gr.074492.107 PubMed DOI PMC
Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 2010; 20: 265–272. 10.1101/gr.097261.109 PubMed DOI PMC
Milne I, Bayer M, Cardle L, Shaw P, Stephen G, Wright F, et al. Tablet–next generation sequence assembly visualization. Bioinformatics. 26; 401–402. 10.1093/bioinformatics/btp666 PubMed DOI PMC
Broeckx BJ, Hitte C, Coopman F, Verhoeven GE, De Keulenaer S, De Meester E, et al. Improved canine exome designs, featuring ncRNAs and increased coverage of protein coding genes. Sci Rep. 2015; 5. PubMed PMC
Mascher M, Richmond TA, Gerhardt DJ, Himmelbach A, Clissold L, Sampath D, et al. Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. Plant J. 2013; 76(3): 494–505. 10.1111/tpj.12294 PubMed DOI PMC
Valenzano DR, Benayoun BA, Singh PP, Zhang E, Etter PD, Hu CK, et al. The African turquoise killifish genome provides insights into evolution and genetic architecture of lifespan. Cell. 2015; 163(6): 1539–1554. 10.1016/j.cell.2015.11.008 PubMed DOI PMC
Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JAM. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 2007; 35: W71–W74. 10.1093/nar/gkm306 PubMed DOI PMC
Terlizzi F, Li C, Ratti C, Qu W, Credi R. and Meng B. Detection of multiple sequence variants of Grapevine rupestris stem pitting-associated virus using primers targeting the polymerase domain and partial genome sequencing of a novel variant. Ann Appl Biol. 2011; 159: 478–490.
Goszczynski DE, Jooste AEC. Identification of divergent variants of Grapevine virus A. Eur J Plant Pathol. 2003; 109: 397–403.
Minafra A, Hadidi A. Sensitive detection of grapevine virus A, B, or leafroll-associated III from viruliferous mealybugs and infected tissue by cDNA amplification. J Virol Methods. 2004; 47:175–188. PubMed
Glasa M, Predajňa L, Komínek P. Grapevine fleck virus isolates split into two distinct molecular groups. J Phytopathol (1986). 2011; 159: 805–807.
Glasa M, Predajňa L, Šoltys K, Sabanadzovic S, Olmos A. Detection and molecular characterization of Grapevine Syrah virus-1 isolates from Central Europe. Virus Genes. 2015; 51: 112–121. 10.1007/s11262-015-1201-1 PubMed DOI
Ward LI, Burnip GM, Liefting LW, Harper SJ, Clover GRG. First Report of Grapevine yellow speckle viroid 1 and Hop stunt viroid in Grapevine (Vitis vinifera) in New Zealand. Plant Dis. 2011; 95: 617. PubMed
Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016; 33: 1870–1874. 10.1093/molbev/msw054 PubMed DOI PMC
Beber R, Babini AR, Terlizzi F, Poggi Pollini C, Credi R, Ratti C. First report of Grapevine Pinot gris virus (GPGV) in grapevine in Emilia-Romagna and Veneto regions. J Plant Pathol. 2013; 95: 36.
Cho IS, Jung SM, Cho JD, Choi GS, Lim HS. First report of Grapevine Pinot gris virus infecting grapevine in Korea. New Dis Rep. 2013; 27: 10.
Mavrič Pleško I, Marn VK, Seljak G, Zezlina I. First Report of Grapevine Pinot gris virus in grapevine in Slovenia. Plant Dis. 2014; 98: 1014. PubMed
Morelli M, de Moraes Catarino A, Susca L, Saldarelli P, Gualandri V, Martelli GP. First report of Grapevine Pinot gris virus from table grapes in southern Italy. J Plant Pathol. 2014; 96: 439.
Eichmeier A, Peňázová E, Pavelková R, Mynarzová Z, Saldarelli P. Detection of Grapevine Pinot gris virus in certified grapevine stocks in Moravia, Czech Republic. J Plant Pathol. 2016; 98: 155–157.
Szychowski JA, Credi R, Reanwarakorn K, Semancik JS. Population diversity in Grapevine yellow speckle viroid-1 and the relationship to disease expression. Virology. 2007; 248: 432–444. PubMed
Sahana AB, Adkar-Purushothama CR, Chennappa G, Zhang ZX, Sreenivasa MY, Sano T. First Report of Grapevine yellow speckle viroid-1 and Hop stunt viroid Infecting Grapevines (Vitis vinifera) in India. Plant Dis. 2013; 97: 1517. PubMed
Matoušek J, Orctová L, Patzak J, Svoboda P, Ludvíková I. Molecular sampling of hop stunt viroid (HSVd) from grapevines in hop production areas in the Czech Republic and hop protection. Plant Soil Environ. 2003; 49: 168–175.
Gola EM. Dichotomous branching: the plant form and integrity upon the apical meristem bifurcation. Front Plant Sci. 2014; 5: 263 10.3389/fpls.2014.00263 PubMed DOI PMC
Komínek P, Glasa M, Bryxiová M. Analysis of the molecular variability of Grapevine leafroll-associated virus 1 reveals the presence of two distinct virus groups and their mixed occurrence in grapevines. Virus Genes. 2005; 31: 247–255. 10.1007/s11262-005-3236-1 PubMed DOI
Alabi OJ, Martin RR, Naidu RA. Sequence diversity, population genetics and potential recombination events in Grapevine rupestris stem pitting-associated virus in Pacific North-West vineyards. J Gen Virol. 2010; 91: 265–276. 10.1099/vir.0.014423-0 PubMed DOI
Ong SS, Wickneswari R. Characterization of microRNAs expressed during secondary wall biosynthesis in Acacia mangium. PLoS One. 2012; 7: e49662 10.1371/journal.pone.0049662 PubMed DOI PMC
Čepin U, Gutiérrez-Aguirre I, Balažic L, Pompe-Novak M, Gruden K, Ravnikar M. A one-step reverse transcription real-time PCR assay for the detection and quantitation of Grapevine fanleaf virus. J Virol Methods. 2010; 170: 47–56. 10.1016/j.jviromet.2010.08.018 PubMed DOI
Eichmeier A, Kominek P. Detection of Moravian Isolates of GFLV: Comparison of Real-Time RT-PCR and ELISA. Int J Virol. 2014; 10: 263–271.
Multiple Infections with Viruses of the Family Tymoviridae in Czech Grapevines