Genetic changes in grapevine genomes after stress induced by in vitro cultivation, thermotherapy and virus infection, as revealed by AFLP

. 2009 Oct ; 32 (4) : 834-9. [epub] 20091201

Status PubMed-not-MEDLINE Jazyk angličtina Země Brazílie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid21637461

The Amplification Fragment Length Polymorphism (AFLP) technique was employed to study genetic variations which can be induced in vines by the stress occurring during different aspects of viticulture (in vitro cultivation, in vitro thermotherapy and virus infection). Analysis of AFLP banding patterns, generated by using 15 primer combinations, pointed to negligible genetic variation among plants exposed to individual stress. The average of similarity coefficients between differently stressed plants of the cultivars Müller Thurgau and Riesling were 0.984 and 0.991, respectively, as revealed by AFLP analysis. The low incidence of observed polymorphism demonstrates the high level of genome uniformity in plants reproduced by in vitro micropropagation via nodes, those subjected to in vitro thermotherapy and virus-infected plants.

Zobrazit více v PubMed

Bertamini M., Muthuchelian K., Nedunchezhian N. Effect of grapevine leafroll on the photosynthesis of field grown grapevine plants (Vitis vinifera L. c) J Phytopathol. 2004;152:145–152.

Brar D.S., Jain S.M. Somaclonal variation: Mechanism and applications in crop improvement. In: Jain S.M., Brar D.S., Ahloowalia B.S., editors. Somaclonal Variation and Induced Mutations in Crop Improvement. Dordrecht: Kluwer Academic Publishers; 1998. pp. 15–37.

Dami I., Hughes H. Leaf anatomy and water-loss of in-vitro PEG-treated valiant grape. Plant Cell Tiss Org. 1995;42:179–184.

Desperrier J.M., Berger J.L., Bessis R., Fournioux J.C., Labroche C. Création clonale dirigée par embryogenèse somatique. Bull OIV. 2003;871-872:751–765.

Duncan R.R. Tissue culture-induced variation and crop improvement. Adv Agron. 1997;58:201–240.

Espinoza C., Vega A., Medina C., Schlauch K., Cramer G., Arce-Johnson P. Gene expression associated with compatible viral diseases in grapevine cultivars. Funct Integr Genomics. 2007;7:95–110. PubMed

Grenan S. Leaf polymorphism after in vitro culture of Vitis vinifera L. Vitis. 1984;23:159–174.

Gribaudo I., Mannini F., Lisa A., Cuozzo D. Phenotypical modifications of micropropagated grapevines. Acta Hort. 2000;530:231–236.

Harding K., Benson E.E., Roubelakis-Angelakis K.A. Methylated DNA changes associated with the initiation and maintenance of Vitis viniferain vitro shoot and callus cultures: A possible mechanism for age-related changes. Vitis. 1996;35:79–85.

Hazarika B.N. Morpho-physiological disorders in in-vitro culture of plants. Sci Hortic-Amsterdam. 2006;108:105–120.

Jain M.S. Tissue culture-derived variation in crop improvement. Euphytica. 2001;118:153–166.

Kominek P., Holleinova V. Evaluation of sanitary status of grapevines in the Czech Republic. Plant Soil Environ. 2003;49:63–66.

Kuksova V.B., Piven N.M., Gleba Y.Y. Somaclonal variation and in vitro induced mutagenesis in grapevine. Plant Cell Tiss Org. 1997;49:17–27.

Li X., Yu X., Wang N., Feng Q., Dong Z., Liu L., Shen J., Liu B. Genetic and epigenetic instabilities induced by tissue culture in wild barley (Hordeum brevisubulatum (Trin. ) Link) Plant Cell Tiss Org Cult. 2007;90:153–168.

Leal F., Loureiro J., Rodriguez E., Pais M.S., Santos C., Pinto-Carnide O. Nuclear DNA content of Vitis vinifera cultivars and ploidy level analyses of somatic embryo-derived plants obtained from anther culture. Plant Cell Rep. 2006;25:978–985. PubMed

MacKenzie D.J., McLean M.A., Mukerij S., Green M. Improved RNA extraction from woody plants for the detection of viral pathogens by reverse transkriptase - Polymerase chain reaction. Plant Disease. 1997;18:222–226. PubMed

McClelland M., Nelson M., Raschke E. Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res. 1994;22:3640–3659. PubMed PMC

Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco cultures. Physiol Plant. 1962;15:473–497.

Nei M., Li W.H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA. 1979;76:3269–3273. PubMed PMC

Oh T.J., Cullis M.A., Kunert K., Engelborghs I., Swennen R., Cullis C.A. Genomic changes associated with somaclonal variation in banana (Musa spp. ) Physiol Plantarum. 2007;129:766–774.

Popescu C.F., Falk A., Glimelius K. Application of AFLPs to characterize somaclonal variation in anther-derived grapevines. Vitis. 2002;41:177–182.

Saker M.M., Adawy S.S., Mohamed A.A., El-Itriby H.A. Monitoring of cultivar identity in tissue culture-derived date palms using RAPD and AFLP analysis. Biol Plantarum. 2006;50:198–204.

Schellenbaum P., Mohler V., Wenzel G., Walter B. Variation in DNA methylation patterns of grapevine somaclones (Vitis vinifera L. ) BMC Plant Biol. 2008;8:e78. PubMed PMC

Skirvin R.M., McPheeters K.D., Norton M. Sources and frequency of somaclonal variation. HortSci. 1994;29:1232–1246.

Tomazic I., Vrhovsek U., Korosec-Koruza Z. The influence of virus diseases on grape polyphenols of cv. ‘Refosk'. Zb Bioteh Fak Univ Ljublj Kmet. 2003;81:287–295.

Vos P., Hogers R., Bleeker M., Rejans M., Lee T., Hornes M., Frijetrs A., Pot J., Peleman J., Kuiper M., et al. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res. 1995;23:4407–4414. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...