Use of Combined MSAP and NGS Techniques to Identify Differentially Methylated Regions in Somaclones: A Case Study of Two Stable Somatic Wheat Mutants

. 2016 ; 11 (10) : e0165749. [epub] 20161028

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27792769

The appearance of somaclonal variability induced by in vitro cultivation is relatively frequent and can, in some cases, provide a valuable source of new genetic variation for crop improvement. The cause of this phenomenon remains unknown; however, there are a number of reports suggesting that epigenetics, including DNA methylations, are an important factor. In addition to the non-heritable DNA methylation changes caused by transient and reversible stress-responsive gene regulation, recent evidence supports the existence of mitotically and meiotically inherited changes. The induction of phenotypes via stable DNA methylation changes has occasionally great economical value; however, very little is known about the genetic or molecular basis of these phenotypes. We used a novel approach consisting of a standard MSAP analysis followed by deep amplicon sequencing to better understand this phenomenon. Our models included two wheat genotypes, and their somaclones induced using in vitro cultivation with a changed heritable phenotype (shortened stem height and silenced high molecular weight glutenin). Using this novel procedure, we obtained information on the dissimilarity of DNA methylation landscapes between the standard cultivar and its respective somaclones, and we extracted the sequences and genome regions that were differentially methylated between subjects. Transposable elements were identified as the most likely factor for producing changes in somaclone properties. In summary, the novel approach of combining MSAP and NGS is relatively easy and widely applicable, which is a rather unique feature compared with the currently available techniques in the epigenetics field.

Zobrazit více v PubMed

Tsaftaris AS, Polidoros AN, Papazoglou A, Tani E, Kovaèeviæ NM. Epigenetics and Plant Breeding In: Plant Breeding Reviews Volume 30 (ed Janick J.): John Wiley & Sons, Inc., Hoboken, NJ, USA: 2008. 10.1002/9780470380130.ch2 DOI

Roh TY, Ngau WC, Cui K, Landsman D, Zhao K. High-resolution genome-wide mapping of histone modifications. Nat Biotechnol. 2004;22: 1013–1016. 10.1038/nbt990 PubMed DOI

Shi H, Wei SH, Leu YW, Rahmatpanah F, Liu JC, Yan PS, et al. Triple analysis of the cancer epigenome: an integrated microarray system for assessing gene expression, DNA methylation, and histone acetylation. Cancer Res. 2003;63: 2164–2171. PubMed

Vogel N, Schiebel K, Humeny A. Technologies in the whole genome age: MALDI-TOF-based genotyping. Transfus Med Hemother. 2009;36: 253–262. 10.1159/000225089 PubMed DOI PMC

Fraga MF, Esteller M. DNA methylation: a profile of methods and applications. BioTechniques. 2002;33: 632–649. PubMed

Laird PW. Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet. 2010;11: 191–203. 10.1038/nrg2732 PubMed DOI

Fraga MF, Uriol E, Diego LB, Berdasco M, Esteller M, Cañal MJ, et al. High-performance capillary electrophoretic method for the quantification of 5-methyl 20-deoxycytidine in genomic DNA: application to plant, animal and human cancer tissues. Electrophoresis. 2002;23: 1677–1681. 10.1002/1522-2683(200206)23:11<1677::AID-ELPS1677>3.0.CO;2-Z PubMed DOI

Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci 1992;89: 1827–1831. PubMed PMC

Warnecke PM, Stirzaker C, Song J, Grunau C, Melki JR, Clark SJ. Identification and resolution of artifacts in bisulfite sequencing. Methods. 2002;27: 101–107. PubMed

Down TA, Rakyan VK, Turner DJ, Flicek P, Li H, Kulesha E, et al. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nature Biotechnol. 2008;26(7): 779–785. 10.1038/nbt1414 PubMed DOI PMC

Zhang D, Wang Z, Wang N, Gao Y, Liu Y, Wu Y, et al. Tissue culture-induced heritable genomic variation in rice, and their phenotypic implications. PLOS One. 2014; 9(5), e96879 10.1371/journal.pone.0096879 10.1371/journal.pone.0096879 PubMed DOI PMC

Clark TA, Murray IA, Morgan RD, Kislyuk AO, Spittle KE, Boitano M, et al. Characterization of DNA methyltransferase specificities using single-molecule, real-time DNA sequencing. Nucleic Acids Res. 2012;40(4): e29 10.1093/nar/gkr1146 PubMed DOI PMC

Feng Z, Li J, Zhang JR, Zhang X. A statistical model-based tool to reveal intercellular heterogeneity of DNA modification from SMRT sequencing data. Nucleic Acids Res. 2014;42(22): 13488–13499. 10.1093/nar/gku1097 PubMed DOI PMC

Kitimu SR, Taylor J, March TJ, Tairo F, Wilkinson MJ, Rodríguez López CM. Meristem micropropagation of cassava (Manihot esculenta) evokes genome-wide changes in DNA methylation. Frontiers in Plant Science. 2015;6:590 10.3389/fpls.2015.00590 PubMed DOI PMC

Rathore MS, Mastan SG, Agarwal PK. Evaluation of DNA methylation using methylation-sensitive amplification polymorphism in plant tissues grown in vivo and in vitro. Plant Growth Regul. 2015;75: 11–19.

Sáez-Laguna E, Guevara MÁ, Díaz LM, Sánchez-Gómez D, Collada C, Aranda I, et al. Epigenetic variability in the genetically uniform forest tree species Pinus pinea L. PLOS ONE. 2014; 9(8): e103145 10.1371/journal.pone.0103145 PubMed DOI PMC

Bednarek PT, Orłowska R, Koebner RM, Zimny J. (2007). Quantification of the tissue-culture induced variation in barley (Hordeum vulgare L.). BMC Plant Biology. 2007; 7(1): 1. PubMed PMC

Machczyńska J, Orłowska R, Zimny J, Bednarek PT. Extended metAFLP approach in studies of tissue culture induced variation (TCIV) in triticale. Molecular Breeding. 2014; 34(3): 845–854. 10.1007/s11032-014-0079-2 PubMed DOI PMC

Fiuk A, Bednarek PT, Rybczyński JJ (2010). Flow cytometry, HPLC-RP, and metAFLP analyses to assess genetic variability in somatic embryo-derived plantlets of Gentiana pannonica Scop. Plant Molecular Biology Reporter. 2010; 28(3): 413–420.

Baránek M, Čechová J, Raddová J, Holleinová V, Ondrušíková E, Pidra M. Dynamics and reversibility of the DNA methylation landscape of grapevine plants (Vitis vinifera) stressed by in vitro cultivation and thermotherapy. PLOS ONE. 2015; e0126638 10.1371/journal.pone.0126638 PubMed DOI PMC

Jiao J, Jia Y, Lv Z, Sun C, Gao L, Yan X, et al. Analysis of methylated patterns and uqality-related genes in Tobacco (Nicotiana tabacum) cultivars. Biochem genet. 2014;52(7–8): 372–386. 10.1007/s10528-014-9654-9 PubMed DOI

Tang XM, Tao X, Wang Y, Ma DW, Li D, Yang H, et al. Analysis of DNA methylation of perennial ryegrass under drought using the methylation-sensitive amplification polymorphism (MSAP) technique. Molec Genet Genomics. 2014;289(6): 1075–1084. PubMed

Dann AL, Wilson CR. Comparative assessment of genetic and epigenetic variation among regenerants of potato (Solanum tuberosum) derived from long-term nodal tissue-culture and cell selection. Plant Cell Rep. 2011;30(4): 631–639. 10.1007/s00299-010-0983-9 PubMed DOI

Karp A. Somaclonal variation as a tool for crop improvement. Euphytica. 1995;85: 295–302.

Mehta YR, Angra DC. Somaclonal variation for disease resistance in wheat and production of dihaploids through wheat 9 maize hybrids. Genet Mol Biol. 2000;23: 617–622.

Predieri S. Mutation induction and tissue culture in improving fruits. Plant Cell Tiss Org. 2001;64: 185–210.

Unai E, Iselen T, de Garcia E. Comparison of characteristics of bananas (Musa sp.) from the somaclone CIEN BTA-03 and its parental clone Williams. Fruit. 2004; 59: 257–263.

Machczyńska J, Orłowska R, Mańkowski DR, Zimny J, Bednarek PT. DNA methylation changes in triticale due to in vitro culture plant regeneration and consecutive reproduction. Plant Cell Tiss Organ Cult. 2014;119 (2): 289–299.

Damasco OP, Smith MK, Adkins SW, Hetherington SE, Godwin ID. Identification and characterisation of dwarf off-types from micropropagated ‘Cavendish’ bananas. Acta Hortic. 1998;490: 79–84.

Guenzi AC, Mornhinweg DW, Johnson BB. Genetic analysis of a grass dwarf mutation induced by wheat callus culture. Theor Appl Genet. 1992;84(7–8): 952–957. 10.1007/BF00227409 PubMed DOI

McPheeters K, Skirvin RM. Histogenic layer manipulation in chimeral ‘Thornless Evergreen’ trailing blackberry. Euphytica. 1983;32:351–360.

Suprasanna P, Sidha M, Ganapathi TR. Characterization of radiation induced and tissue culture derived dwarf types in banana by using a SCAR marker. Aust J Crop Sci. 2008; 1(1):47–52.

Gale MD, Marshall GA, Rao MV. A classification of the Norin 10 and Tom Thumb dwarfing genes in British, Mexican, Indian and other hexaploid bread wheat varieties. Euphytica. 1981;30: 355–361. 10.1007/BF00033997 DOI

Kou HP, Li Y, Song XX, Ou XF, Xing SC, Ma J, et al. Heritable alteration in DNA methylation induced by nitrogen-deficiency stress accompanies enhanced tolerance by progenies to the stress in rice (Oryza sativa L.). J Plant Physiol. 2011;168 (14): 1685–1693. 10.1016/j.jplph.2011.03.017 PubMed DOI

Latzel V, Janeček Š, Doležal J, Klimešová J, Bossdorf O. Adaptive transgenerational plasticity in the perennial Plantago lanceolata. Oikos. 2014;123(1): 41–46.

Liu H, Wang K, Xiao L, Wang S, Du L, Cao X, et al. Comprehensive identification and bread-making quality evaluation of common wheat somatic variation line AS208 on glutenin composition. PLOS ONE. 2016;11(1). e0146933 10.1371/journal.pone.0146933 PubMed DOI PMC

Xiao LL, Li JL, Wang K, Du LP, Lin ZS, Yan YM, et al. Investigation on the plant height constitution and breeding potential of a dwarfing somatic variation line AS34 in wheat. Journal of Plant Genetic Resources. 2014;15(1): 172–177.

Tang N, Jiang Y, He PR, Hu YG. Effects of dwarfing genes of Rht-B1b, Rht-D1b and Rht8 with different response to GA3 on coleoptile length and plant height of wheat. Sci Agric Sin. 2009;42(11): 3774–3784.

Yang SJ, Zhang XK, He ZH, Xia XC, Zhou Y. Distribution of dwarfing genes Rht-B1b and Rht-D1b in Chinese bread wheats detected by STS marker. Sci Agric Sin. 2006;39(8): 1680–1688.

Wang K, Wang S, Zhou X, Lin Z, Li J, Du L, et al. Development, identification, and genetic analysis of a quantitative dwarfing somatic variation line in wheat. Crop Sci. 2013;53(3), 1032–1041.

Baránek M, Křižan B, Ondrušiková E, Pidra M. DNA-methylation changes in grapevine somaclones following in vitro culture and thermotherapy. Plant Cell Tiss Organ Cult. 2010; 101: 11–22.

Nei M, Li WH. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci. 1979;76: 5269–5273. PubMed PMC

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Amino acid substitution matrices from an information theoretic perspective. J Mol Biol. 1990;215: 403–410. 10.1016/S0022-2836(05)80360-2 PubMed DOI

Camacho C, Colouris G, Avagyan V, Ma N, Papadopoulos L, Bealer K, Madden TL. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10: 421 10.1186/1471-2105-10-421 PubMed DOI PMC

Kuksova VB, Piven NM, Gleba YY. Somaclonal variation and in vitro induced mutagenesis in grapevine. Plant Cell Tiss Org. 1997;49: 17–27.

Kwasniewska J, Nawrocki W, Siwinska D, Maluszynska J. DNA damage in Crepis capillaris cells in response to in vitro conditions. Acta Biol Cracoviensia Ser Bot. 2012;54(2): 93–101. 10.2478/v10182-012-0028-5 DOI

Leal F, Loureiro J, Rodriguez E, Pais MS, Santos C, Pinto-Carnide O. Nuclear DNA content of Vitis vinifera cultivars and ploidy level analyses of somatic embryo-derived plants obtained from anther culture. Plant Cell Rep. 2006;25: 978–985. 10.1007/s00299-006-0162-1 PubMed DOI

Baránek M, Raddová J, Křižan B, Pidra M. Genetic changes in grapevine genome after stress induced by in vitro cultivation, thermotherapy and virus infection, as revealed by AFLP. Genet Mol Biol. 2009;32: 834–839. 10.1590/S1415-47572009005000079 PubMed DOI PMC

Baránek M, Ondrušiková E. Evaluation of the AFLP and MSAP methods as tools for studying of DNA changes in grapevine plants long period after their in vitro thermotherapy. Acta Hortic. 2012;961: 73–80.

Popescu CF, Falk A, Glimelius K. Application of AFLPs to characterize somaclonal variation in anther-derived grapevines. Vitis. 2002;41: 177–182.

Gao X, Yang D, Cao D, Ao M, Sui X, Wang Q, et al. In vitro micropropagation of Freesia hybrida and the assessment of genetic and epigenetic stability in regenerated plantlets. J Plant Growth Regul. 2010;29: 257–267.

Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, Wain J, et al. Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol. 2012;30: 434–439. 10.1038/nbt.2198 PubMed DOI

Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP. Sequencing depth and coverage: key considerations in genomic analyses. Nature Rev. Genet. 2014; 15(2), 121–132. 10.1038/nrg3642 PubMed DOI

Reyna-Lopez GE, Simpson J, Ruiz-Herrera J. Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Mol Gen Genet. 1997; 253(6): 703–710. PubMed

Walder RY, Langtimm CJ, Chatterjee R, Walder JA. Cloning of the MspI modification enzyme. The site of modification and its effects on cleavage by MspI and HpaII. J Biol Chem. 1983;258(2): 1235–1241. PubMed

Mann MB, Smith HO. Specificity of Hpa II and Hae III DNA methylases. Nucleic Acids Res. 1977;4(12): 4211–4221. PubMed PMC

Lei CP, Jiun K., Choo CS, Singh R. Analysis of tissue culture-derived regenerants using methylation sensitive AFLP. Asia-Pac J Mol Biol. 2006;14: 47–55.

Wang Y, Lin X, Dong B, Wang Y, Liu B. DNA methylation polymorphism in a set of elite rice cultivars and its possible contribution to inter-cultivar differential gene expression. Cell Mol Biol Lett. 2004;9(3): 543–556. PubMed

Saintenac C, Jiang D, Akhunov ED. Targeted analysis of nucleotide and copy number variation by exon capture in allotetraploid wheat genome. Genome Biol. 2011;12(9): R88 10.1186/gb-2011-12-9-r88 PubMed DOI PMC

Winfield MO, Wilkinson PA, Allen AM, Barker GL, Coghill JA, Burridge A, et al. Targeted re‐sequencing of the allohexaploid wheat exome. Plant Biotech J. 2012;10(6): 733–742. PubMed

Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLOS ONE.;6:e19379 10.1371/journal.pone.0019379 PubMed DOI PMC

Saintenac C, Jiang D, Wang S, Akhunov ED. Sequence-based mapping of the polyploid wheat genome. G3: Genes| Genomes| Genetics. 2013;3(7): 1105–1114. 10.1534/g3.113.005819 PubMed DOI PMC

Mayer KF, Rogers J, Doležel J, Pozniak C, Eversole K, Feuillet C, et al. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345(6194), 1251788 10.1126/science.1251788 PubMed DOI

Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy P, et al. A physical map of the 1-gigabase bread wheat chromosome 3B. Science. 2008;322(5898): 101–104. 10.1126/science.1161847 PubMed DOI

Kaul S, Koo HL, Jenkins J, Rizzo M, Rooney T, Tallon LJ, et al. (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408(6814), 796–815. 10.1038/35048692 PubMed DOI

Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009; 326(5956): 1112–1115. 10.1126/science.1178534 PubMed DOI

Daron J, Glover N, Pingault L, Theil S, Jamilloux V, Paux E, et al. Organization and evolution of transposable elements along the bread wheat chromosome 3B. Genome Biol. 2014;15(12): 546 10.1186/s13059-014-0546-4 PubMed DOI PMC

Kapitonov VV, Jurka J. A universal classification of eukaryotic transposable elements implemented in Repbase. Nature Rev Genet. 2008;9(5): 411–412. 10.1038/nrg2165-c1 PubMed DOI

Alzohairy AM, Yousef MA, Edris S, Kerti B, Gyulai G, Bahieldin. A Detection of LTR Retrotransposons Reactivation induced by in vitro Environmental Stresses in Barley (Hordeum vulgare) viaRT-qPCR. Life Science Journal—Acta Zhengzhou University Overseas Edition. 2012;9(4): 5019–5026.

Ito H, Gaubert H, Bucher E, Mirouze M, Vaillant I, Paszkowski J. An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature. 2011;472(7341): 115–119. 10.1038/nature09861 PubMed DOI

Matsunaga W, Ohama N, Tanabe N, Masuta Y, Masuda S, Mitani N, et al. A small RNA mediated regulation of a stress-activated retrotransposon and the tissue specific transposition during the reproductive period in Arabidopsis. Front Plant Sci. 2015;6: 48 10.3389/fpls.2015.00048 PubMed DOI PMC

Voronova A, Belevich V, Jansons A, Rungis D. Stress-induced transcriptional activation of retrotransposon-like sequences in the Scots pine (Pinus sylvestris L.) genome. Tree Genet Genomes. 2014;10: 937–951.

Bousios A, Gaut BS. Mechanistic and evolutionary questions about epigenetic conflicts between transposable elements and their plant hosts. Curr Opin Plant Biol. 2016;30: 123–133. 10.1016/j.pbi.2016.02.009 PubMed DOI

Kobayashi S, Goto-Yamamoto N, Hirochika H. Retrotransposon-induced mutations in grape skin color. Science. 2004;304(5673): 982–982. 10.1126/science.1095011 PubMed DOI

Ong-Abdullah M, Ordway JM, Jiang N, Ooi SE, Kok SY, Sarpan N, et al. Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature. 2015;525(7570): 533–537. 10.1038/nature15365 PubMed DOI PMC

Yuo T, Yamashita Y, Kanamori H, Matsumoto T, Lundqvist U, Sato K, et al. A SHORT INTERNODES (SHI) family transcription factor gene regulates awn elongation and pistil morphology in barley. J Exp Bot. 2012;63(14): 5223–5232. 10.1093/jxb/ers182 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Exploring the crop epigenome: a comparison of DNA methylation profiling techniques

. 2023 ; 14 () : 1181039. [epub] 20230530

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...