Phytochemical profile of Paulownia tomentosa (Thunb). Steud
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
32214918
PubMed Central
PMC7089068
DOI
10.1007/s11101-014-9376-y
PII: 9376
Knihovny.cz E-zdroje
- Klíčová slova
- Bignonia tomentosa, Flavonoid, Lignan, Paulownia tomentosa, Paulowniaceae, Phenolic glycosides,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Paulownia tomentosa, a member of the plant family Paulowniaceae and a rich source of biologically active secondary metabolites, is traditionally used in Chinese herbal medicine. Flavonoids, lignans, phenolic glycosides, quinones, terpenoids, glycerides, phenolic acids, and miscellaneous other compounds have been isolated from different parts of P. tomentosa plant. Recent interest in this species has focused on isolating and identifying of prenylated flavonoids, that exhibit potent antioxidant, antibacterial, and antiphlogistic activities and inhibit severe acute respiratory syndrome coronavirus papain-like protease. They show cytotoxic activity against various human cancer cell lines and inhibit the effects of human cholinesterase, butyrylcholinesterase, and bacterial neuraminidases. Most of the compounds considered here have never been isolated from any other species of plant. This review summarizes the information about the isolated compounds that are active, their bioactivities, and the structure-activity relationships that have been worked out for them.
Zobrazit více v PubMed
Adriani C, Bonini C, Iavarone C, et al. Isolation and characterization of paulownioside, a new highly oxygenated iridoid glucoside from Paulownia tomentosa. J Nat Prod. 1981;44:739–744. doi: 10.1021/np50018a024. DOI
Ahmad M, Rizwani GH. Acteoside: a new antihypertensive drug. Phytother Res. 1995;9:525–527. doi: 10.1002/ptr.2650090713. DOI
Akbay P, Calis I, Űndeger Ű, et al. In vitro immunomodulatory activity of verbascoside from Nepeta ucrainica L. Phytother Res. 2002;16:593–595. doi: 10.1002/ptr.990. PubMed DOI
Andersen OM, Markham KR. Flavonoids: chemistry, biochemistry, applications. Boca Raton: CRC Press; 2006.
Aniol M, Swiderska A, Stompor M, et al. Antiproliferative activity and synthesis of 8-prenylnaringenin derivatives by demethylation of 7-O- and 4′-O-substituted isoxanthohumols. Med Chem Res. 2012;21:4230–4238. doi: 10.1007/s00044-011-9967-8. PubMed DOI PMC
Arutyunyan TV, Korystova AF, Kublik LN, et al. Effects of taxifolin on the activity of angiotensin-converting enzyme and reactive oxygen and nitrogen species in the aorta of aging rats and rats treated with nitric oxide synthase inhibitor and dexamethasone. Age. 2012;35:2089–2097. doi: 10.1007/s11357-012-9497-4. PubMed DOI PMC
Asai T, Hara N, Kobayashi S, et al. Geranylated flavanones from the secretion on the surface of the immature fruits of Paulownia tomentosa. Phytochemistry. 2008;69:1234–1241. doi: 10.1016/j.phytochem.2007.11.011. PubMed DOI
Asai T, Hara N, Kobayashi S, et al. Acylglycerols (=glycerides) from the glandular trichome exudate on the leaves of Paulownia tomentosa. Helv Chim Acta. 2009;92:1473–1494. doi: 10.1002/hlca.200800456. DOI
Babula P, Mikelová R, Adam V, et al. Chromatografické stanovení naftochinonů v rostlinách (Chromatographic evaluation of naphtochinones in plants) Chem Listy. 2006;100:271–276.
Bai Y, Tohda C, Zhu S, et al. Active components from Siberian ginseng (Eleutherococcus senticosus) for protection of amyloid β(25-35)-induced neuritic atrophy in cultured rat cortical neurons. J Nat Med. 2011;65:417–423. doi: 10.1007/s11418-011-0509-y. PubMed DOI
Bansal S, Vyas S, Bhattacharya S, et al. Catechin prodrugs and analogs: a new array of chemical entities with improved pharmacological and pharmacokinetic properties. Nat Prod Rep. 2013;30(11):1438–1454. doi: 10.1039/c3np70038k. PubMed DOI
Bero J, Hannaert V, Chataigné G, et al. In vitro antitrypanosomal and antileishmanial activity of plants used in Benin in traditional medicine and bio-guided fractionation of the most active extract. J Ethnopharmacol. 2011;137:998–1002. doi: 10.1016/j.jep.2011.07.022. PubMed DOI
Betts JW, Wareham DW, Haswell SJ, et al. Antifungal synergy of theaflavin and epicatechin combinations against Candida albicans. J Microbiol Biotechnol. 2013;23:1322–1326. doi: 10.4014/jmb.1303.03010. PubMed DOI
Botta B, Vitali A, Menendez P. Prenylated flavonoids: pharmacology and biotechnology. Curr Med Chem. 2005;12:713–739. doi: 10.2174/0929867053202241. PubMed DOI
Bragança de Moraes CM, Melo DA, Santos RC, et al. Antiproliferative effect of catechin in GRX cells. Biochem Cell Biol. 2012;90:575–584. doi: 10.1139/o2012-010. PubMed DOI
Bulzomi P, Bolli A, Galluzzo P, et al. Naringenin and 17β-estradiol coadministration prevents hormone-induced human cancer cell growth. IUBMB Life. 2010;62:51–60. PubMed
Bulzomi P, Bolli A, Galluzzo P, et al. The naringenin-induced proapoptotic effect in breast cancer cell lines holds out against a high bisphenol a background. IUBMB Life. 2012;64:690–696. doi: 10.1002/iub.1049. PubMed DOI
Cai X, Zhang H, Tong D, et al. Corosolic acid triggers mitochondria and caspase-dependent apoptotic cell death in osteosarcoma MG-63 cells. Phytother Res. 2011;25:1354–1361. PubMed
Calderon-Montano JM, Burgos-Moron E, et al. A review on the dietary flavonoid kaempferol. Mini-Rev Med Chem. 2011;11(4):298–344. doi: 10.2174/138955711795305335. PubMed DOI
Carey AN, Fisher DR, Rimando AM, et al. Stilbenes and anthocyanins reduce stress signaling in BV-2 mouse microglia. J Agric Food Chem. 2013;61:5979–5986. doi: 10.1021/jf400342g. PubMed DOI
Chai X-Y, Ren H-Y, Xu Z-R, et al. Investigation of two Flacourtiaceae plants: Bennettiodendron leprosipes and Flacourtia ramontchi. Planta Med. 2009;75:1246–1252. doi: 10.1055/s-0029-1185542. PubMed DOI
Chang CL, Wang GJ, Zhang LJ, et al. Cardiovascular protective flavonolignans and flavonoids from Calamus quiquesetinervius. Phytochemistry. 2010;71:271–279. doi: 10.1016/j.phytochem.2009.09.025. PubMed DOI
Chatrattanakunchai S, Fraser T, Stobart K. Sesamin inhibits lysophosphatidylcholine acyltransferase in Mortierella alpine. Biochem Soc Trans. 2000;28:718–721. doi: 10.1042/bst0280718. PubMed DOI
Chen AY, Chen YC. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem. 2013;138(4):2099–2107. doi: 10.1016/j.foodchem.2012.11.139. PubMed DOI PMC
Chen J-W, Zhu Z-Q, Hu T-X, et al. Structure–activity relationship of natural flavonoids in hydroxyl radical-scavenging effects. Acta Pharmacol Sin. 2002;23(7):667–672. PubMed
Chen CN, Wu CL, Lin JK. Propolin C from propolis induces apoptosis through activating caspases, Bid and cytochrome c release in human melanoma cells. Biochem Pharmacol. 2004;67:53–66. doi: 10.1016/j.bcp.2003.07.020. PubMed DOI
Chen J, Liu Y, Shi YP, et al. Determination of flavonoids in the flowers of Paulownia tomentosa by high-performance liquid chromatography. J Anal Chem. 2009;64:282–288. doi: 10.1134/S1061934809030137. DOI
Chen C-N, Hsiao C-J, Lee S-S, et al. Chemical modification and anticancer effect of prenylated flavanones from Taiwanese propolis. Nat Prod Res. 2012;26(2):116–124. doi: 10.1080/14786419.2010.535146. PubMed DOI
Chen C, Chen Z, Xu F, et al. Radio-protective effect of catalpol in cultured cells and mice. J Radiat Res. 2013;54:76–82. doi: 10.1093/jrr/rrs080. PubMed DOI PMC
Chen X, Mukwaya E, Wong M-S, et al. A systematic review on biological activities of prenylated flavonoids. Pharm Biol (Lond, UK) 2014;52(5):655–660. doi: 10.3109/13880209.2013.853809. PubMed DOI
Cho JK, Ryu YB, Curtis-Long MJ, et al. Cholinesterase inhibitory effects of geranylated flavonoids from Paulownia tomentosa fruits. Bioorg Med Chem. 2012;20:2595–2602. doi: 10.1016/j.bmc.2012.02.044. PubMed DOI
Cho JK, Curtis-Long MJ, Lee KH, et al. Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorg Med Chem. 2013;21:3051–3057. doi: 10.1016/j.bmc.2013.03.027. PubMed DOI PMC
Choi J, Shin KM, Park HJ, et al. Anti-inflammatory and antinociceptive effects of sinapyl alcohol and its glucoside syringin. Planta Med. 2004;70:1027–1032. doi: 10.1055/s-2004-832642. PubMed DOI
Chung BH, Lee JJ, Kim JD, et al. Angiogenic activity of sesamin through the activation of multiple signal pathways. Biochem Biophys Res Commun. 2010;391:254–260. doi: 10.1016/j.bbrc.2009.11.045. PubMed DOI
Cotin S, Calliste CA, Mazeron MC, et al. Eight flavonoids and their potential as inhibitors of human cytomegalovirus replication. Antivir Res. 2012;96:181–186. doi: 10.1016/j.antiviral.2012.09.010. PubMed DOI
Cushnie TP, Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob Agents. 2005;26:343–356. doi: 10.1016/j.ijantimicag.2005.09.002. PubMed DOI PMC
Damtoft S, Jensen SR. Tomentoside and 7-hydroxytomentoside, two new iridoid glucosides from Paulownia tomentosa. Phytochemistry. 1993;34:1636–1638. doi: 10.1016/S0031-9422(00)90861-6. DOI
de Aguiar SC, Zeoula LM, Franco SL, et al. Antimicrobial activity of Brazilian propolis extracts against rumen bacteria in vitro. World J Microbiol Biotechnol. 2013;29:1951–1959. doi: 10.1007/s11274-013-1361-x. PubMed DOI
Deepak M, Handa SS. Antiinflammatory activity and chemical composition of extracts of Verbena officinalis. Phytother Res. 2000;14:463–465. doi: 10.1002/1099-1573(200009)14:6<463::AID-PTR611>3.0.CO;2-G. PubMed DOI
Deliorman D, Calis I, Ergun F, et al. Studies on the vascular effects of the fractions and phenolic compounds isolated from Viscum album ssp. album. J Ethnopharmacol. 2000;72:323–329. doi: 10.1016/S0378-8741(00)00251-8. PubMed DOI
Deurbina AVO, Martini ML, Fernandez B, et al. In vitro antispasmodic activity of peracetylated penstemoniside, aucubin and catalpol. Planta Med. 1994;60:512–515. doi: 10.1055/s-2006-959561. PubMed DOI
Diaz Lanza AM, Abad Martinez MJA, Matellano L, et al. Lignan and phenylpropanoid glycosides from Phillyrea latifolia and their in vitro anti-inflammatory activity. Planta Med. 2001;67:219–223. doi: 10.1055/s-2001-12004. PubMed DOI
Ding Y, Liang C, Yang SY, et al. Phenolic compounds from Artemisia iwayomogi and their effects on osteoblastic MC3T3-E1 cells. Biol Pharm Bull. 2010;33:1448–1453. doi: 10.1248/bpb.33.1448. PubMed DOI
Epifano F, Genovese S, Menghini L, et al. Chemistry and pharmacology of oxyprenylated secondary plant metabolites. Phytochemistry. 2007;68:939–953. doi: 10.1016/j.phytochem.2007.01.019. PubMed DOI
Erbar C, Gűlden C. Ontogeny of the flowers in Paulownia tomentosa—a contribution to the recognition of the resurrected monogeneric family Paulowniaceae. Flora. 2011;206:205–218. doi: 10.1016/j.flora.2010.05.003. DOI
Estrada O, González-Guzmán JM, Salazar-Bookaman M, et al. Pomolic acid of Licania pittieri elicits endothelium-dependent relaxation in rat aortic rings. Phytomedicine. 2011;18:464–469. doi: 10.1016/j.phymed.2010.10.008. PubMed DOI
Fraga CG, Oteiza PI. Dietary flavonoids: role of (−)-epicatechin and related procyanidins in cell signaling. Free Radic Biol Med. 2011;51(4):813–823. doi: 10.1016/j.freeradbiomed.2011.06.002. PubMed DOI
Franzyk H, Jensen SR, Thale Z, et al. Halohydrins of antirrhinoside—the correct structures of muralioside and epimuralioside. J Nat Prod. 1999;62:275–278. doi: 10.1021/np980358x. PubMed DOI
Fu G, Pang H, Wong YH. Naturally occurring phenylethanoid glycosides: potential leads for new therapeutics. Curr Med Chem. 2008;15:2592–2613. doi: 10.2174/092986708785908996. PubMed DOI
Fu Z, Yuskavage J, Liu D. Dietary flavonol epicatechin prevents the onset of type 1 diabetes in nonobese diabetic mice. J Agric Food Chem. 2013;61:4303–4309. doi: 10.1021/jf304915h. PubMed DOI PMC
Funke I, Melzig MF. Effect of different phenolic compounds on α-amylase activity: Screening by microplate-reader based kinetic assay. Pharmazie. 2005;60:796–797. PubMed
Galvez M, Martin-Cordero C, Ayuso MJ. Pharmacological activities of phenylpropanoids glycosides. Stud Nat Prod Chem. 2006;33:675–718. doi: 10.1016/S1572-5995(06)80037-2. DOI
Ghosh A, Sarkar S, Mandal AK, Das N. Neuroprotective role of nanoencapsulated quercetin in combating ischemia-reperfusion induced neuronal damage in young and aged rats. PLoS One. 2013;8(4):1–12. PubMed PMC
Gong X, Zhang L, Jiang R, et al. Hepatoprotective effects of syringin on fulminant hepatic failure induced by D-galactosamine and lipopolysaccharide in mice. J Appl Toxicol. 2014;34:265–271. doi: 10.1002/jat.2876. PubMed DOI
Grael CFF, Vichnewski W, De Souza GEP, et al. A study of the trypanocidal and analgesic properties [of substances] from Lychnophora granmongolense (Duarte) Semir & Leitao Filho. Phytother Res. 2000;14(3):203–206. doi: 10.1002/(SICI)1099-1573(200005)14:3<203::AID-PTR565>3.0.CO;2-R. PubMed DOI
Grecco Sdos S, Reimão JQ, Tempone AG, et al. In vitro antileishmanial and antitrypanosomal activities of flavanones from Baccharis retusa DC. (Asteraceae) Exp Parasitol. 2012;130:141–145. doi: 10.1016/j.exppara.2011.11.002. PubMed DOI
Guan T, Qian Q, Tang X, et al. Maslinic acid, a natural inhibitor of glycogen phosphorylase, reduces cerebral ischemic injury in hyperglycaemic rats by GLT-1 up-regulation. J Neurosci Res. 2011;89:1829–1839. doi: 10.1002/jnr.22671. PubMed DOI
Hac-Wydro K. Studies on β-sitosterol and ceramide-induced alterations in the properties of cholesterol/sphingomyelin/ganglioside monolayers. Biochim Biophys Acta. 2013;1828:2460–2469. doi: 10.1016/j.bbamem.2013.06.030. PubMed DOI
Hakim EH, Fahriyati A, Kau MS, et al. Artoindonesianins A and B, two new prenylated flavones from the root of Artocarpus champeden. J Nat Prod. 1999;62:613–615. doi: 10.1021/np980279l. PubMed DOI
Hakim EH, Asnizar Y, Aimi N, et al. Artoindonesianin P, a new prenylated flavone with cytotoxic activity from Artocarpus lanceifolius. Fitoterapia. 2002;73:668–673. doi: 10.1016/S0367-326X(02)00226-5. PubMed DOI
Hakim EH, Achmad SA, Juliawaty LD, et al. Prenylated flavonoids and related compounds of the Indonesian Artocarpus (Moraceae) J Nat Med. 2006;60:161–184. PubMed
Havsteen BH. The biochemistry and medical significance of the flavonoids. Pharmacol Ther. 2002;96:67–202. doi: 10.1016/S0163-7258(02)00298-X. PubMed DOI
He J, Hu XP, Zeng Y, et al. Advanced research on acteoside for chemistry and bioactivities. J Asian Nat Prod Res. 2011;13:449–464. doi: 10.1080/10286020.2011.568940. PubMed DOI
Hidalgo M, Martin-Santamaria S, Recio I, et al. Potential anti-inflammatory, anti-adhesive, anti/estrogenic, and angiotensin-converting enzyme inhibitory activities of anthocyanins and their gut metabolites. Genes Nutr. 2012;7:295–306. doi: 10.1007/s12263-011-0263-5. PubMed DOI PMC
Hirano T, Higa S, Arimitsu J, et al. Luteolin, a flavonoid, inhibits AP-1 activation by basophils. Biochem Biophys Res Commun. 2006;340(1):1–7. doi: 10.1016/j.bbrc.2005.11.157. PubMed DOI
Holubová P, Šmejkal K. Changes in the level of bioactive compounds in Paulownia tomentosa fruits. J Liq Chromatogr Relat Technol. 2011;34:276–288. doi: 10.1080/10826076.2011.547082. DOI
Hong D, Yang H, Jin C, et al. Scrophulariaceae through Gesneriaceae. Flora China. 1998;18:8–10.
Horland H, Fujiwara Y, Takemura K, et al. Corosolic acid impairs tumor development and lung metastasis by inhibiting the immunosuppressive activity of myeloid-derived suppressor cells. Mol Nutr Food Res. 2013;57(6):1046–1054. doi: 10.1002/mnfr.201200610. PubMed DOI
Hošek J, Závalová V, Šmejkal K, et al. Effect of diplacone on LPS-induced inflammatory gene expression in macrophages. Folia Biol (Praha) 2010;56:124–130. PubMed
Hošek J, Toniolo A, Neuwirth O, et al. Prenylated and geranylated flavonoids increase production of reactive oxygen species in mouse macrophages but inhibit the inflammatory response. J Nat Prod. 2013;76(9):1586–1591. doi: 10.1021/np400242e. PubMed DOI
Huang C, Cui Y, Ji L, et al. Catalpol decreases peroxynitrite formation and consequently exerts cardioprotective effects against ischemia/reperfusion insult. Pharm Biol. 2013;51:463–473. doi: 10.3109/13880209.2012.740052. PubMed DOI
Huang D, Hu Z, Yu Z. Eleutheroside B or E enhances learning and memory in experimentally aged rats. Neural Regen Res. 2013;8:1103–1112. PubMed PMC
Huang YB, Lin MW, Chao Y, et al. Anti-oxidant activity and attenuation of bladder hyperactivity by the flavonoid compound kaempferol. Int J Urol. 2014;21(1):94–98. doi: 10.1111/iju.12179. PubMed DOI
Ibrahim NA, El-Hawary SS, Mohammed MMD, et al. Chemical composition, antimicrobial activity of the essential oil of the flowers of Paulownia tomentosa (Thunb.) Steud. growing in Egypt. J Appl Sci Res. 2013;9(4):3228–3232.
Iizuka T, Nagai M, Moriyama H, et al. Antiplatelet aggregatory effects of the constituents isolated from the flower of Carthamus tinctorius. Nat Med (Tokyo, Jpn) 2005;59:241–244.
Ina H, Ono M, Sashida Y, et al. (+)-Piperitol from Paulownia tomentosa. Planta Med. 1987;53:504. doi: 10.1055/s-2006-962791. PubMed DOI
Jayaraman J, Jesudoss VA, Menon VP, et al. Anti-inflammatory role of naringenin in rats with ethanol induced liver injury. Toxicol Mech Methods. 2012;22:568–576. doi: 10.3109/15376516.2012.707255. PubMed DOI
Jiang TF, Du X, Shi YP, et al. Determination of flavonoids from Paulownia tomentosa (Thunb) Steud. by micellar electrokinetic capillary electrophoresis. Chromatographia. 2004;59:255–258.
Jimenéz C, Riguera R. Phenylethanoid glycosides in plants: structure and biological activity. Nat Prod Rep. 1994;11:591–606. doi: 10.1039/np9941100591. PubMed DOI
Jin L, Xue HY, Jin LJ, et al. Antioxidant and pancreas-protective effect of aucubin on rats with streptozotocin-induced diabetes. Eur J Pharmacol. 2008;582:162–167. doi: 10.1016/j.ejphar.2007.12.011. PubMed DOI
Jordao CO, Vichnewski W, Petto de Souza GE, et al. Trypanocidal activity of chemical constituents from Lychnophora salicifolia Mart. Phytother Res. 2004;18(4):332–334. doi: 10.1002/ptr.1366. PubMed DOI
Jung S, Moon HI, Ohk J, et al. Inhibitory effect and mechanism on antiproliferation of isoatriplicolide tiglate (PCAC) from Paulownia coreana. Molecules. 2012;17:5945–5951. doi: 10.3390/molecules17055945. PubMed DOI PMC
Kadota S, Basnet P, Hase K, et al. Matteuorienate A and B, two new and potent aldose reductase inhibitors from Matteuccia orientalis (Hook.) Trev. Chem Pharm Bull. 1994;42(8):1712–1714. doi: 10.1248/cpb.42.1712. PubMed DOI
Kang KH, Jang SJ, Kim BK, et al. Antibacterial phenylpropanoid glycosides from Paulownia tomentosa Steud. Arch Pharm Res. 1994;17:470–475. doi: 10.1007/BF02979128. PubMed DOI
Kang KH, Huh H, Kim BK, et al. An antiviral furanoquinone from Paulownia tomentosa Steud. Phytother Res. 1999;13:624–626. doi: 10.1002/(SICI)1099-1573(199911)13:7<624::AID-PTR551>3.0.CO;2-A. PubMed DOI
Kang DG, Lee YS, Kim HJ, et al. Angiotensin converting enzyme inhibitory phenylpropanoid glycosides from Clerodendron trichotomum. J Ethnopharmacol. 2003;89:151–154. doi: 10.1016/S0378-8741(03)00274-5. PubMed DOI
Kawamura F, Ohara S, Nishida A. Antifungal activity of constituents from the heartwood of Gmelina arborea: part 1. Sensitive antifungal assay against Basidiomycetes. Holzforschung. 2004;58:189–192. doi: 10.1515/HF.2004.028. DOI
Khachatoorian R, Arumugaswami V, Raychaudhuri S, et al. Divergent antiviral effects of bioflavonoids on the hepatitis C virus life cycle. Virology. 2012;433:346–355. doi: 10.1016/j.virol.2012.08.029. PubMed DOI PMC
Khan MK, Zill-E-Huma DO. A comprehensive review on flavanones, the major citrus polyphenols. J Food Compos Anal. 2014;33(1):85–104. doi: 10.1016/j.jfca.2013.11.004. DOI
Khan MM, Ishrat T, Ahmad A, et al. Sesamin, attenuates behavioural, biochemical and histological alterations induced by reversible middle cerebral artery occlusion in the rats. Chem Biol Interact. 2010;183:255–263. doi: 10.1016/j.cbi.2009.10.003. PubMed DOI
Kim HJ, Woo ER, Shin CG, et al. HIV-1 integrase inhibitory phenylpropanoid glycosides from Clerodendron trichotomum. Arch Pharm Res. 2001;24:286–291. doi: 10.1007/BF02975093. PubMed DOI
Kim SJ, Kwon DY, Kim YS, et al. Peroxyl radical scavenging capacity of extracts and isolated components from selected medicinal plants. Arch Pharm Res. 2010;33:867–873. doi: 10.1007/s12272-010-0609-3. PubMed DOI
Kim SK, Cho SB, Moon HI, et al. Neuroprotective effects of a sesquiterpene lactone and flavanones from Paulownia tomentosa Steud against glutamate-induced neurotoxicity in primary cultured rat cortical cells. Phytother Res. 2010;24:1898–1900. doi: 10.1002/ptr.3277. PubMed DOI
Kim JK, Lee YS, Kim SH, et al. Inhibition of aldose reductase by phenylethanoid glycoside isolated from the seeds of Paulownia coreana. Biol Pharm Bull. 2011;34:160–163. doi: 10.1248/bpb.34.160. PubMed DOI
Kobayashi S, Asai T, Fujimoto Y, et al. Anti-herbivore structures of Paulownia tomentosa: morphology, distribution, chemical constituents and changes during shoot and leaf development. Ann Bot. 2008;101:1035–1047. doi: 10.1093/aob/mcn033. PubMed DOI PMC
Koch CE, Ganjam GK, Steger J, et al. The dietary flavonoids naringenin and quercetin acutely impair glucose metabolism in rodents possibly via inhibition of hypothalamic insulin signalling. Br J Nutr. 2013;109:1040–1051. doi: 10.1017/S0007114512003005. PubMed DOI
Kollár P, Bárta T, Závalová V, et al. Geranylated flavanone tomentodiplacone B inhibits proliferation of human monocytic leukaemia (THP-1) cells. Br J Pharmacol. 2011;162(7):1534–1541. doi: 10.1111/j.1476-5381.2010.01171.x. PubMed DOI PMC
Kong LD, Wolfender JL, Cheng CH, et al. Xanthine oxidase inhibitors from Brandisia hancei. Planta Med. 1999;65:744–746. doi: 10.1055/s-2006-960854. PubMed DOI
Koo KA, Sung SH, Park JH, et al. In vitro neuroprotective activities of phenylethanoid glycosides from Callicarpa dichotoma. Planta Med. 2005;71:778–780. doi: 10.1055/s-2005-871213. PubMed DOI
Krishnaswamy M, Purushothaman KK. Plumbagin: a study of its anticancer, antibacterial and antifungal properties. Indian J Exp Biol. 1980;18:876–877. PubMed
Kumar M, Rawat P, Khan MF, et al. Phenolic glycosides from Dodecadenia grandiflora and their glucose-6-phosphatase inhibitory activity. Fitoterapia. 2010;81:475–479. doi: 10.1016/j.fitote.2010.01.011. PubMed DOI
Kumazawa S, Ueda R, Hamasaka T, et al. Antioxidant prenylated flavonoids from propolis collected in Okinawa, Japan. J Agric Food Chem. 2007;55(19):7722–7725. doi: 10.1021/jf071187h. PubMed DOI
Kurkin VA. Phenylpropanoids from medicinal plants: distribution, classification, structural analysis, and biological activity. Chem Nat Compd. 2003;39:123–153. doi: 10.1023/A:1024876810579. DOI
Kurkin VA, Dubishchev AV, Ezhkov VN, et al. Antidepressant activity of some phytopharmaceuticals and phenylpropanoids. Pharm Chem J. 2006;40:614–619. doi: 10.1007/s11094-006-0205-5. DOI
Kurkina AV, Khusainova AI, Daeva ED, et al. Flavonoids from Tanacetum vulgare flowers. Chem Nat Compd. 2011;47:284–285. doi: 10.1007/s10600-011-9906-4. DOI
Kuzuyama T, Noel JP, Richard SB. Structural basis for the promiscuous biosynthetic prenylation of aromatic natural products. Nature. 2005;435:983–987. doi: 10.1038/nature03668. PubMed DOI PMC
Lee JH, Lee JY, Park JH, et al. Immunoregulatory activity of daucosterol, a beta-sitosterol glycoside, induces protective Th1 immune response against disseminated Candidiasis in mice. Vaccine. 2007;25:3834–3840. doi: 10.1016/j.vaccine.2007.01.108. PubMed DOI
Lee JS, Miyashiro H, Nakamura N, et al. Two new triterpenes from the rhizome of Dryopteris crassirhizoma, and inhibitory activities of its constituents on human immunodeficiency virus-1 protease. Chem Pharm Bull. 2008;56:711–714. doi: 10.1248/cpb.56.711. PubMed DOI
Lee S-H, Jung MJ, Heo S-I, et al. Anti-inflammatory effect and HPLC analysis of extract from edible Cirsium setidens. J Korean Soc Appl Biol Chem. 2009;52:437–442. doi: 10.3839/jksabc.2009.076. DOI
Lee JH, Lee HJ, Choung MG. Anthocyanin compositions and biological activities from the red petals of Korean edible rose (Rosa hybrid cv. Noblered) Food Chem. 2011;129:272–278. doi: 10.1016/j.foodchem.2011.04.040. PubMed DOI
Lee Y, Ryu YB, Youn H-S, et al. Structural basis of sialidase in complex with geranylated flavonoids as potent natural inhibitors. Acta Cryst. 2014;D70:1357–1365. PubMed PMC
Li DQ, Duan YL, Bao YM, et al. Neuroprotection of catalpol in transient global ischemia in gerbils. Neurosci Res. 2004;50:169–177. doi: 10.1016/j.neures.2004.06.009. PubMed DOI
Li R, Cai L, Xie X-f, et al. 7,3′-Dimethoxy hesperetin induces apoptosis of fibroblast-like synoviocytes in rats with adjuvant arthritis through caspase 3 activation. Phytother Res. 2010;24(12):1850–1856. doi: 10.1002/ptr.3209. PubMed DOI
Li Y-L, Wu L, Ouyang D-W, et al. Phenolic Compounds of Abies nephrolepis and their NO production inhibitory activities. Chem Biodivers. 2011;8(12):2299–2309. doi: 10.1002/cbdv.201000373. PubMed DOI
Li R, Cai L, Ren D-y, et al. Therapeutic effect of 7,3′-dimethoxy hesperetin on adjuvant arthritis in rats through inhibiting JAK2-STAT3 signal pathway. Int Immunopharmacol. 2012;14(2):157–163. doi: 10.1016/j.intimp.2012.07.001. PubMed DOI
Li R, Cai L, Xie X-f, et al. 7,3′-dimethoxy hesperetin inhibits inflammation by inducing synovial apoptosis in rats with adjuvant-induced arthritis. Immunopharmacol Immunotoxicol. 2013;35(1):139–146. doi: 10.3109/08923973.2012.723010. PubMed DOI
Lin LC, Wang YH, Hou YC, et al. The inhibitory effect of phenylpropanoid glycosides and iridoid glucosides on free radical production and β2-integrin expression in human leucocytes. J Pharm Pharmacol. 2006;58:129–135. doi: 10.1211/jpp.58.1.0016. PubMed DOI
Lin J-A, Fang S-C, Wu C-H, et al. Anti-inflammatory effect of the 5,7,4′-Trihydroxy-6-geranylflavanone isolated from the fruit of Artocarpus communis in S100B-induced human monocytes. J Agric Food Chem. 2011;59(1):105–111. doi: 10.1021/jf103455g. PubMed DOI
Liu KY, Wu Y-C, Liu I-M, et al. Release of acetylcholine by syringin, an active principle of Eleutherococcus senticosus, to raise insulin secretion in Wistar rats. Neurosci Lett. 2008;434:195–199. doi: 10.1016/j.neulet.2008.01.054. PubMed DOI
Loke WM, Proudfoot JM, Hodgson JM, et al. Specific dietary polyphenols attenuate atherosclerosis in apolipoprotein E-knockout mice by alleviating inflammation and endothelial dysfunction. Arterioscler Thromb Vasc Biol. 2010;30:749–757. doi: 10.1161/ATVBAHA.109.199687. PubMed DOI
Lopez-Lazaro M. Distribution and biological activities of the flavonoid luteolin. Mini Rev Med Chem. 2009;9(1):31–59. doi: 10.2174/138955709787001712. PubMed DOI
Lopez-Lazaro M, Martin-Cordero C, Cortes F, et al. Cytotoxic activity of flavonoids and extracts from Retama sphaerocarpa Boissier. Z Naturforsch C (J Biosci) 2000;55(1/2):40–43. PubMed
Losi G, Puia G, Garzon G, et al. Apigenin modulates GABAergic and glutamatergic transmission in cultured cortical neurons. Eur J Pharmacol. 2004;502:41–46. doi: 10.1016/j.ejphar.2004.08.043. PubMed DOI
Lu XY, Li YH, Xiao XW, Li XB. Inhibitory effects of luteolin on human gastric carcinoma xenografts in nude mice and its mechanism. Zhonghua Yi Xue Za Zhi. 2013;93:142–146. PubMed
Mankovskaia A, Lévesque CM, Prakki A. Catechin-incorporated dental copolymers inhibit growth of Streptococcus mutans. J Appl Oral Sci. 2013;21:203–207. doi: 10.1590/1678-7757201302430. PubMed DOI PMC
Martini ND, Katerere DRP, Eloff JN. Biological activity of five antibacterial flavonoids from Combretum erythrophyllum (Combretaceae) J Ethnopharmacol. 2004;93(2–3):207–212. doi: 10.1016/j.jep.2004.02.030. PubMed DOI
Marzocchella L, Fantini M, et al. Dietary flavonoids: molecular mechanisms of action as anti-inflammatory agents. Recent Pat Inflamm Allergy Drug Discov. 2011;5(3):200–220. doi: 10.2174/187221311797264937. PubMed DOI
Mastuda H, Morikawa T, Ueda K, et al. Structural requirements of flavonoids for inhibition of antigen-induced degranulation, TNF-α and IL-4 production from RBL-2H3 cells. Bioorg Med Chem. 2002;10(10):3123–3128. doi: 10.1016/S0968-0896(02)00227-4. PubMed DOI
Matsubara Y, Yusa T, Sawab A, et al. Studies on physiologically active substances in citrus fruit peel. Part XX. Structure and physiological activity of phenyl propanoid glycosides in lemon (Citrus limon Burm. f.) peel. Agric Biol Chem. 1991;55(3):647–650. doi: 10.1271/bbb1961.55.647. DOI
Matsuda H, Morikawa T, Ando S, et al. Structural requirements of flavonoids for nitric oxide production inhibitory activity and mechanism of action. Bioorg Med Chem. 2003;11(9):1995–2000. doi: 10.1016/S0968-0896(03)00067-1. PubMed DOI
Milligan SR, Kalita JC, Pocock V, et al. The endocrine activities of 8-prenylnaringenin and related hop (Humulus lupulus L.) flavonoids. J Clin Endocrinol Metab. 2000;85(12):4912–4915. doi: 10.1210/jcem.85.12.7168. PubMed DOI
Min YS, Yim SH, Bail KL, et al. The effects of apigenin-7-O-β-D-glucuronopyranoside on reflux oesophagitis and gastritis in rats. Auton Autacoid Pharmacol. 2005;25:85–91. doi: 10.1111/j.1474-8673.2005.00332.x. PubMed DOI
Mishra N, Rizvi SI. Quercetin modulates Na+/K+ ATPase and sodium hydrogen exchanger in type 2 diabetic erythrocytes. Cell Mol Biol. 2012;58(1):148–152. PubMed
Miyazawa M, Okuno Y, Nakamura S-I, et al. Antimutagenic activity of flavonoids from Pogostemon cablin. J Agric Food Chem. 2000;48(3):642–647. doi: 10.1021/jf990160y. PubMed DOI
Moneriz G, Mestres J, Bautista JM, et al. Multi-targeted activity of maslinic acid as an antimalarial natural compound. FEBS J. 2011;278:2951–2961. doi: 10.1111/j.1742-4658.2011.08220.x. PubMed DOI
Moon HI, Zee OP. Anticancer compound of Paulownia tomentosa. Nat Prod Sci. 2001;7:21–22.
Murphy BT, Cao S, Norris A, et al. Cytotoxic flavanones of Schizolaena hystrix from the Madagascar rainforest. J Nat Prod. 2005;68:417–419. doi: 10.1021/np049639x. PubMed DOI
Murphy BT, Cao S, Norris A, et al. Cytotoxic compounds of Schizolaena hystrix from the Madagascar rainforest. Planta Med. 2006;72(13):1235–1238. doi: 10.1055/s-2006-947192. PubMed DOI
Nakano D, Kwak CJ, Fujii K, et al. Sesamin metabolites induce an endothelial nitric oxide-dependent vasorelaxation through their antioxidative property-independent mechanisms: possible involvement of the metabolites in the antihypertensive effect of sesamin. J Pharmacol Exp Ther. 2006;318:328–335. doi: 10.1124/jpet.105.100149. PubMed DOI
Nascimento IR, Murata AT, Bortoli SA, et al. Insecticidal activity of chemical constituents from Aristolochia pubescens against Anticarsia gemmatalis larvae. Pest Manag Sci. 2004;60:413–416. doi: 10.1002/ps.805. PubMed DOI
Navrátilová A, Schneiderová K, Veselá D, et al. Minor C-geranylated flavanones from Paulownia tomentosa fruits with MRSA antibacterial activity. Phytochemistry. 2013;89:104–113. doi: 10.1016/j.phytochem.2013.01.002. PubMed DOI
Niu H-S, Hsu F-L, Liu I-M, et al. Increase of β-endorphin secretion by syringin, an active principle of Eleutherococcus senticosus, to produce antihyperglycemic action in type 1-like diabetic rats. Hormone Metab Res. 2007;39:894–898. doi: 10.1055/s-2007-993154. PubMed DOI
Niu H-S, Hsu F-L, Liu I-M. Role of sympathetic tone in the loss of syringin-induced plasma glucose lowering action in conscious Wistar rats. Neurosci Lett. 2008;445:113–116. doi: 10.1016/j.neulet.2008.08.066. PubMed DOI
Niu H-S, Liu I-M, Cheng J-T, et al. Hypoglycemic effect of syringin from Eleutherococcus senticosus in streptozotocin-induced diabetic rats. Planta Med. 2008;74:109–113. doi: 10.1055/s-2008-1034275. PubMed DOI
Ogungbe IV, Erwin WR, Setzer WN. Antileishmanial phytochemical phenolics: molecular docking to potential protein targets. J Mol Graph Model. 2014;48:105–117. doi: 10.1016/j.jmgm.2013.12.010. PubMed DOI
Omosa L, Amugune B, Ndunda B, et al. Antimicrobial flavonoids and diterpenoids from Dodonaea angustifolia. S Afr J Bot. 2014;91:58–62. doi: 10.1016/j.sajb.2013.11.012. DOI
Oprea E, Radulescu V, Chiliment S. The analysis of the volatile and semi-volatile compounds of the Paulownia tomentosa flowers by gas chromatography coupled with mass spectrometry. Revista de chimi. 2004;55:410–412.
Ota M, Azuma T, Onodera S, et al. The chemistry of color changes in kiri wood (Paulownia tomentosa Steud.) III. A new caffeic acid sugar ester from Kiri wood. Mozukai Gakkaishi. 1993;39:479–485.
Pan J, Yuan C, Lin C, et al. Pharmacological activities and mechanisms of natural phenylpropanoid glycosides. Pharmazie. 2003;58:767–775. PubMed
Pan J-Y, Chen S-L, Yang M-H, et al. An update on lignans: natural products and synthesis. Nat Prod Rep. 2009;26(10):1251–1292. doi: 10.1039/b910940d. PubMed DOI
Pan Y, Morikawa T, Ninomiya K, et al. Bioactive constituents from Chinese natural medicines. XXXVI. Four new acylated phenylethanoid oligoglycosides, Kankanosides J1, J2, K1, and K2, from stems of Cistanche tubulosa. Chem Pharm Bull. 2010;58:575–578. doi: 10.1248/cpb.58.575. PubMed DOI
Pan SY, Zhou SF, Gao SH et al (2013) New perspectives on how to discover drugs from herbal medicines: CAM’s outstanding contribution to modern therapeutics. Evid Based Complement Altern Med 2013:1–25, doi:10.1155/2013/627375 PubMed PMC
Paneerselvam M, Kawaraguchi Y, Horikawa YT et al (2010) Effect of epicatechin and naloxone on cardioprotective phenotype. FASEB J 24 (Meeting Abstract Supplement) 1029.8
Panossian A, Wagner H. Stimulating effect of adaptogens: an overview with particular reference to their efficacy following single dose administration. Phytother Res. 2005;19:819–838. doi: 10.1002/ptr.1751. PubMed DOI
Panossian A, Kocharian A, Matinian K, et al. Pharmacological activity of phenylpropanoids of the mistletoe, Viscum album, host. Pyrus caucasica. Phytomedicine. 1998;5:11–17. doi: 10.1016/S0944-7113(98)80053-6. PubMed DOI
Papoutsi Z, Kassi E, Mitakou S, et al. Acteoside and martynoside exhibit estrogenic/antiestrogenic properties. J Steroid Biochem Mol Biol. 2006;98:63–71. doi: 10.1016/j.jsbmb.2005.07.005. PubMed DOI
Park KS. Aucubin, a naturally occurring iridoid glycoside inhibits TNF-α-induced inflammatory responses through suppression of NF-κB activation in 3T3-L1 adipocytes. Cytokine. 2013;62:407–412. doi: 10.1016/j.cyto.2013.04.005. PubMed DOI
Park Y, Kong JY, Cho H. A Furanquinone from Paulownia tomentosa stem for a new cathepsin K inhibitor. Phytother Res. 2009;23:1485–1488. doi: 10.1002/ptr.2716. PubMed DOI
Patel D, Shukla S, et al. Apigenin and cancer chemoprevention: progress, potential and promise (review) Int J Oncol. 2007;30(1):233–245. PubMed
Peluso MR, Miranda CL, Hobbs DJ, et al. Xanthohumol and related prenylated flavonoids inhibit inflammatory cytokine production in LPS-activated THP-1 monocytes: structure-activity relationships and in Silico binding to myeloid differentiation protein-2 (MD-2) Planta Med. 2010;76(14):1536–1543. doi: 10.1055/s-0029-1241013. PubMed DOI
Pelzer LE, Guardia T, Juarez AO, et al. Acute and chronic antiinflammatory effects of plant flavonoids. Farmaco. 1998;53(6):421–424. doi: 10.1016/S0014-827X(98)00046-9. PubMed DOI
Persson IA, Persson K, Andersson RG. Effect of Vaccinium myrtillus and its polyphenols on angiotensin-converting enzyme activity in human endothelial cells. J Agric Food Chem. 2009;57:4626–4629. doi: 10.1021/jf900128s. PubMed DOI
Phommart S, Sutthivaiyakit P, Chimnoi N, et al. Constituents of the leaves of Macaranga tanarius. J Nat Prod. 2005;68:927–930. doi: 10.1021/np0500272. PubMed DOI
Pile JE, Navalta JW, Davis CD, et al. Interventional effects of plumbagin on experimental ulcerative colitis in mice. J Nat Prod. 2013;76:1001–1006. doi: 10.1021/np3008792. PubMed DOI PMC
Plaza M, Pozzo T, Liu J, et al. Substituent effects on in vitro antioxidizing properties, stability, and solubility in flavonoids. J Agric Food Chem. 2014;62(15):3321–3333. doi: 10.1021/jf405570u. PubMed DOI
Plouvier V (1971) The heterosides of Catalpa bignonioides Walt. (Bignoniaceae). Comp Rend Acad Sci 272(D):1443–1446 PubMed
Prince Vijeya Singh J, Selvendiran K, Mumtaz Banu S, et al. Protective role of apigenin on the status of lipid peroxidation and antioxidant defense against hepatocarcinogenesis in Wistar albino rats. Phytomedicine. 2004;11:309–314. doi: 10.1078/0944711041495254. PubMed DOI
Psotová J, Chlopcíková S, Miketová P, et al. Chemoprotective effect of plant phenolics against anthracycline-induced toxicity on rat cardiomyocytes. Part III. Apigenin, baicalelin, kaempferol, luteolin and quercetin. Phytother Res. 2004;18:516–521. doi: 10.1002/ptr.1462. PubMed DOI
Raghukumar R, Vali L, Watson D, et al. Antimethicillin-resistant Staphylococcus aureus (MRSA) activity of “pacific propolis” and isolated prenylflavanones. Phytother Res. 2010;24:1181–1187. PubMed
Rao YK, Lee MJ, Chen K et al (2011) Insulin-mimetic action of rhoifolin and cosmosiin isolated from Citrus grandis (L.) osbeck leaves: enhanced adiponectin secretion and insulin receptor phosphorylation in 3T3-L1 cells. Evid Based Complement Altern Med 2011:1–9, doi:10.1093/ecam/nep204 PubMed PMC
Remya C, Dileep KV, Tintu I, et al. Design of potent inhibitors of acetylcholinesterase using morin as the starting compound. Front Life Sci. 2012;6(3–4):107–117. doi: 10.1080/21553769.2013.815137. DOI
Reyes-Zurita FJ, Pachón-Peña G, Lizárraga D, et al. The natural triterpene maslinic acid induces apoptosis in HT29 colon cancer cells by a JNK-p53-dependent mechanism. BMC Cancer. 2011;11:154. doi: 10.1186/1471-2407-11-154. PubMed DOI PMC
Rodriguez J, Yanez J, Vicente V, et al. Effects of several flavonoids on the growth of B16F10 and SK-MEL-1 melanoma cell lines: relationship between structure and activity. Melanoma Res. 2002;12(2):99–107. doi: 10.1097/00008390-200204000-00001. PubMed DOI
Romano B, Pagano E, et al. Novel insights into the pharmacology of flavonoids. Phytother Res. 2013;27(11):1588–1596. doi: 10.1002/ptr.5023. PubMed DOI
Ross JA, Kasum CM. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr. 2002;22:19–34. doi: 10.1146/annurev.nutr.22.111401.144957. PubMed DOI
Rosselli S, Bruno M, Maggio A, et al. Cytotoxic geranylflavonoids from Bonannia graeca. Phytochemistry. 2011;72:942–945. doi: 10.1016/j.phytochem.2011.03.005. PubMed DOI PMC
Russo M, Spagnuolo C, et al. The flavonoid quercetin in disease prevention and therapy: facts and fancies. Biochem Pharmacol. 2012;83(1):6–15. doi: 10.1016/j.bcp.2011.08.010. PubMed DOI
Salem MM, Capers J, Rito S, et al. Antiparasitic activity of C-geranyl flavonoids from Mimulus bigelovii. Phytother Res. 2011;25(8):1246–1249. doi: 10.1002/ptr.3404. PubMed DOI
Sánchez-Tena S, Alcarraz-Vizán G, Marín S, et al. Epicatechin gallate impairs colon cancer cell metabolic productivity. J Agric Food Chem. 2013;61:4310–4317. doi: 10.1021/jf3052785. PubMed DOI
Santhakumari G, Rathinam K, Seshadri C. Angicoagulant activity of plumbagin. Indian J Exp Biol. 1978;16:485–487. PubMed
Sato M, Murakami K, Uno M, et al. Site-specific inhibitory mechanism for amyloid β42 aggregation by catechol-type flavonoids targeting the Lys residues. J Biol Chem. 2013;288(32):23212–23224. doi: 10.1074/jbc.M113.464222. PubMed DOI PMC
Scambia G, Ranelletti FO, Panici P, et al. Quercetin potentiates the effect of Adriamycin in a multidrug-resistant MCF-7 human breast-cancer cell line: P-glycoprotein as a possible target. Cancer Chemother Pharmacol. 1994;34(6):459–464. doi: 10.1007/BF00685655. PubMed DOI
Schilling G, Hügel M, Mayer W (1982) Verbascoside and isoverbascoside from Paulownia tomentosa Steud. Zeit Naturforsch 37(B):1633–1635
Schinella G, Aquila S, Dade M, et al. Anti-inflammatory and apoptotic activities of pomolic acid isolated from Cecropia pachystachya. Planta Med. 2008;74:215–220. doi: 10.1055/s-2008-1034301. PubMed DOI
Schneiderová K, Šlapetová T, Hrabal R, et al. Tomentomimulol and mimulone B: two new C-geranylated flavonoids from Paulownia tomentosa fruits. Nat Prod Res. 2013;27:613–618. doi: 10.1080/14786419.2012.683002. PubMed DOI
Scogin R. Anthocyanins of the Bignoniaceae. Biochem Syst Ecol. 1980;8:273–276. doi: 10.1016/0305-1978(80)90058-7. DOI
Shan JZ, Xuan YY, Ruan SQ, et al. Proliferation-inhibiting and apoptosis-inducing effects of ursolic acid and oleanolic acid on multi-drug resistance cancer cells in vitro. Chin J Integr Med. 2011;17:607–611. doi: 10.1007/s11655-011-0815-y. PubMed DOI
Sharma U, Bala M, Kumar N, et al. Immunomodulatory active compounds from Tinospora cordifolia. J Ethnopharmacol. 2012;141:918–926. doi: 10.1016/j.jep.2012.03.027. PubMed DOI
She G-M, Zhang Y-J, Yang C-R. A new phenolic constituent and a cyanogenic glycoside from Balanophora involucrata (Balanophoraceae) Chem Biodivers. 2013;10:1081–1087. doi: 10.1002/cbdv.201200103. PubMed DOI
Shi Z-H, Li N-G, Tang Y-P, et al. Metabolism-based synthesis, biologic evaluation and SARs analysis of O-methylated analogs of quercetin as thrombin inhibitors. Eur J Med Chem. 2012;54:210–222. doi: 10.1016/j.ejmech.2012.04.044. PubMed DOI
Shieh JP, Cheng KC, Chung HH, et al. Plasma glucose lowering mechanisms of catalpol, an active principle from roots of Rehmannia glutinosa, in streptozotocin-induced diabetic rats. J Agric Food Chem. 2011;59:3747–3753. doi: 10.1021/jf200069t. PubMed DOI
Shukla S, Gupta S (2009) Role of apigenin in human health and disease. In: Preedy VR (ed) Beer in health and disease prevention, Academic Press, San Diego, pp e202–e216
Si C, Deng X, Liu Z (2008a) Structure and activity relationship of antioxidant flavonoids from leaves of Paulownia tomentosa var. tomentosa. In: 2nd international papermaking and environment conference, Tianjin University of Science and Technology, Tianjin, pp 263–266
Si CL, Deng XJ, Liu Z, et al. Studies on the phenylethanoid glycosides with anti-complement activity from Paulownia tomentosa var. tomentosa wood. J Asian Nat Prod Res. 2008;10:1003–1008. doi: 10.1080/10286020802242364. PubMed DOI
Si C, Deng X, Xu Q et al (2008c) Characterization of phenolic acids and antioxidant activities of Paulownia tomentosa var. tomentosa leaves. In: Proceedings of the international conference on pulping, papermaking and biotechnology, pp 31–33
Si CL, Liu Z, Kim JK, et al. Structure elucidation of phenylethanoid glycosides from Paulownia tomentosa Steud. var. tomentosa wood. Holzforschung. 2008;62:197–200.
Si CL, Wu L, Zhu ZY, et al. Apigenin derivates from Paulownia tomentosa Steud. var. tomentosa stem barks. Holzforschung. 2009;63:440–442. doi: 10.1515/HF.2009.063. DOI
Si CL, Lu YY, Hu HY, et al. Evaluation of total phenolics, flavonoids and anti-inflammatory property of ethanolic extracts of Paulownia tomentosa var. tomentosa bark. Planta Med. 2011;77:SL53.
Si CL, Lu YY, Qin PP, et al. Phenolic extractives with chemotaxonomic significance from the bark of Paulownia tomentosa var. tomentosa. BioResources. 2011;6:5086–5098.
Si CL, Shen T, Jiang YY, et al. Antioxidant properties and neuroprotective effects of isocampneoside II on hydrogen peroxide-induced oxidative injury in PC12 cells. Food Chem Toxicol. 2013;59:145–152. doi: 10.1016/j.fct.2013.05.051. PubMed DOI
Sivakumar G, Vail DR, Nair V, et al. Plant-based corosolic acid: future anti-diabetic drug? Biotechnol J. 2009;4:1704–1711. doi: 10.1002/biot.200900207. PubMed DOI
Šmejkal K. Cytotoxic potential of C-prenylated flavonoids. Phytochem Rev. 2014;13:245–275. doi: 10.1007/s11101-013-9308-2. DOI
Šmejkal K, Grycová L, Marek R, et al. C-geranyl compounds from Paulownia tomentosa Fruits. J Nat Prod. 2007;70:1244–1248. doi: 10.1021/np070063w. PubMed DOI
Šmejkal K, Holubová P, Zima A, et al. Antiradical activity of Paulownia tomentosa (Scrophulariaceae) extracts. Molecules. 2007;12:1210–1219. doi: 10.3390/12061210. PubMed DOI PMC
Šmejkal K, Babula P, Šlapetová T, et al. Cytotoxic activity of C-geranyl compounds from Paulownia tomentosa fruits. Planta Med. 2008;74:1488–1491. doi: 10.1055/s-2008-1081339. PubMed DOI
Šmejkal K, Chudík S, Klouček P, et al. Antibacterial C-geranylflavonoids from Paulownia tomentosa (Scrophulariaceae) fruits. J Nat Prod. 2008;71:706–709. doi: 10.1021/np070446u. PubMed DOI
Šmejkal K, Svačinová J, Šlapetová T, et al. Cytotoxic activities of several geranyl-substituted flavanones. J Nat Prod. 2010;73:568–572. doi: 10.1021/np900681y. PubMed DOI
Sticher O, Lahloub MF. Phenolic glycosides of Paulownia tomentosa bark. Planta Med. 1982;46:145–148. doi: 10.1055/s-2007-970039. PubMed DOI
Sudsai T, Wattanapiromsakul C, Tewtrakul S. Inhibition of nitric oxide production by compounds from Boesenbergia longiflora using lipopolysaccharide-stimulated RAW264.7 macrophage cells. Songklanakarin J Sci Technol. 2013;35(3):317–323.
Sumsakul W, Plenqsuriyakarn T, Chaijaroenkul W, et al. Antimalarial activity of plumbagin in vitro and in animal models. BMC Complement Altern Med. 2014;14:15. doi: 10.1186/1472-6882-14-15. PubMed DOI PMC
Sun Y, Zang Z, Zhong L, et al. Identification of adiponectin receptor agonist utilizing a fluorescence polarization based high throughput assay. PLos One. 2013;8(5):e63354. doi: 10.1371/journal.pone.0063354. PubMed DOI PMC
Suolinna EM, Buchsbaum RN, Racker E. Effect of flavonoids on aerobic glycolysis and growth of tumor cells. Cancer Res. 1975;35(7):1865–1872. PubMed
Takahashi K, Nakagawa T. Studies on constituents of medicinal plants. VII. The stereochemistry of paulownin and isopaulownin. Chem Pharm Bull. 1966;14:641–647. doi: 10.1248/cpb.14.641. PubMed DOI
Takamatsu S, Galal AM, Ross SA, et al. Antioxidant effect of flavonoids on DCF production in HL-60 cells. Phytother Res. 2003;17(8):963–966. doi: 10.1002/ptr.1289. PubMed DOI
Tanaka J, Kadekaru T, Ogawa K, et al. Maqui berry (Aristotelia chilensis) and the constituent delphinidin glycoside inhibit photoreceptor cell death induced by visible light. Food Chem. 2013;139:129–137. doi: 10.1016/j.foodchem.2013.01.036. PubMed DOI
Tang R, Chen K, Cosentino M, et al. Apigenin-7-O-β-D-glucopyranoside, an anti-HIV principle from Kummerowia striata. Bioorg Med Chem Lett. 1994;4:455–458. doi: 10.1016/0960-894X(94)80015-4. DOI
Taub PR, Ramirez-Sanchez I, Ciaraldi TP, et al. Alterations in skeletal muscle indicators of mitochondrial structure and biogenesis in patients with type 2 diabetes and heart failure: effects of epicatechin rich cocoa. Clin Transl Sci. 2012;5(1):43–47. doi: 10.1111/j.1752-8062.2011.00357.x. PubMed DOI PMC
Teixeira MD, Souza CM, Menezes AP, et al. Catechin attenuates behavioral neurotoxicity induced by 6-OHDA in rats. Pharmacol Biochem Behav. 2013;110:1–7. doi: 10.1016/j.pbb.2013.05.012. PubMed DOI
Tian L-W, Pei Y, Zhang Y-J, et al. 7-O-methylkaempferol and -quercetin glycosides from the whole plant of Nervilia fordii. J Nat Prod. 2009;72(6):1057–1060. doi: 10.1021/np800760p. PubMed DOI
Tohda C, Ichimura M, Bai Y, et al. Inhibitory effects of Eleutherococcus senticosus extracts on amyloid β(25–35)-induced neuritic atrophy and synaptic loss. J Pharmacol Sci. 2008;107:329–339. doi: 10.1254/jphs.08046FP. PubMed DOI
Tozuka H, Ota M, Kofujita H, et al. Synthesis of dihydroxyphenacyl glycosides for biological and medicinal study: β-oxoacteoside from Paulownia tomentosa. J Wood Sci. 2005;51:48–59. doi: 10.1007/s10086-003-0609-8. DOI
Trusheva B, Popova M, Koendhori EB, et al. Indonesian propolis: chemical composition, biological activity and botanical origin. Nat Prod Res. 2011;25:606–613. doi: 10.1080/14786419.2010.488235. PubMed DOI
Ullevig SL, Zhao Q, Zamora D, et al. Ursolic acid protects diabetic mice against monocyte dysfunction and accelerated atherosclerosis. Atherosclerosis. 2011;219:409–416. doi: 10.1016/j.atherosclerosis.2011.06.013. PubMed DOI PMC
Vareed SK, Reddy MK, Schutzki RE. Anthocyanins in Cornus alternifolia, Cornus controversa, Cornus kousa and Cornus florida fruits with healt benefits. Life Sci. 2006;78:777–784. doi: 10.1016/j.lfs.2005.05.094. PubMed DOI
Vasconcelos FC, Gattass CR, Rumjanek VM, et al. Pomolic acid-induced apoptosis in cells from patients with chronic myeloid leukemia exhibiting different drug resistance profile. Invest New Drugs. 2007;25:525–533. doi: 10.1007/s10637-007-9064-5. PubMed DOI
Wang J, Yang Z, Lin L, et al. Protective effect of naringenin against lead-inuced oxidative stress in rats. Biol Trace Elem Res. 2012;146:354–359. doi: 10.1007/s12011-011-9268-6. PubMed DOI
Wang Y-M, Xu M, Wang D, et al. Anti-inflammatory compounds of “Qin-Jiao”, the roots of Gentiana dahurica (Gentianaceae) J Ethnopharmacol. 2013;147(2):341–348. doi: 10.1016/j.jep.2013.03.016. PubMed DOI
Wei YJ, Tsai KS, Lin LC, et al. Catechin stimulates osteogenesis by enhancing PP2A activity in human mesenchymal stem cells. Osteoporos Int. 2011;22(5):1469–1479. doi: 10.1007/s00198-010-1352-9. PubMed DOI
Weidmann AE. Dihydroquercetin: more than just an impurity? Eur J Pharmacol. 2012;684(1–3):19–26. doi: 10.1016/j.ejphar.2012.03.035. PubMed DOI
Wilkinson K, Boyd JD, Glicksman M, et al. A high-content drug screen identifies ursolic acid as an inhibitor of amyloid-β interactions with its receptor CD36. J Biol Chem. 2011;286:34914–34922. doi: 10.1074/jbc.M111.232116. PubMed DOI PMC
Wollenweber E, Wehde R, Christ M, et al. Surface flavonoids in Catalpa ovata, Greyia sutherlandii and Paulownia tomentosa. Nat Prod Commun. 2008;3:1285–1287.
Wong KC, Haq Ali DM, Boey PL. Chemical constituents and antibacterial activity of Melastoma malabathricum L. Nat Prod Res. 2012;26:609–618. doi: 10.1080/14786419.2010.538395. PubMed DOI
Wu A, Lin C, Zhao X, et al. Spectroscopic study on interaction between cistanoside F and bovine serum albumin. Zhongguo Zhong Yao Za Zhi. 2012;37:1392–1398. PubMed
Xiong Q, Kadota S, Tani T, et al. Antioxidative effects of phenylethanoids from Cistanche deserticola. Biol Pharm Bull. 1996;19:1580–1585. doi: 10.1248/bpb.19.1580. PubMed DOI
Xiong QB, Hase K, Tezuka Y, et al. Hepatoprotective activity of phenylethanoids from Cistanche deserticola. Planta Med. 1998;64:120–125. doi: 10.1055/s-2006-957387. PubMed DOI
Xue HY, Lu YN, Fang XM, et al. Neuroprotective properties of aucubin in diabetic rats and diabetic encephalopathy rats. Mol Biol Rep. 2012;39:9311–9318. doi: 10.1007/s11033-012-1730-9. PubMed DOI
Yang Y-L, Hsu H-T, Wang K-H, et al. Hesperetin-7,3′-O-dimethylether selectively inhibits phosphodiesterase 4 and effectively suppresses ovalbumin-induced airway hyperresponsiveness with a high therapeutic ratio. J Biomed Sci (Lond, UK) 2011;18:84. doi: 10.1186/1423-0127-18-84. PubMed DOI PMC
Yang X, Yuan J, Wan J. Cytotoxic phenolic glycosides from Boschniakia himalaica. Chem Nat Comp. 2012;48(4):555–558. doi: 10.1007/s10600-012-0308-z. DOI
Yasuda K, Sakaki T. How is sesamin metabolised in the human liver to show its biological effects? Expert Opin Drug Metab Toxicol. 2012;8:93–102. doi: 10.1517/17425255.2012.637917. PubMed DOI
Yazaki K, Sasaki K, Tsurumaru Y. Prenylation of aromatic compounds, a key diversification of plant secondary metabolites. Phytochemistry. 2009;70:1739–1745. doi: 10.1016/j.phytochem.2009.08.023. PubMed DOI
Yoder BJ, Cao S, Norris A, et al. Antiproliferative prenylated stilbenes and flavonoids from Macaranga alnifolia from the Madagascar rainforest. J Nat Prod. 2007;70:342–346. doi: 10.1021/np060484y. PubMed DOI PMC
Yoo DY, Choi JH, Kim W, Nam SM, Jung HY, Kim JH, Won M-H, Yoon YS, Hwang IK (2013) Effects of luteolin on spatial memory, cell proliferation, and neuroblast differentiation in the hippocampal dentate gyrus in a scopolamine-induced amnesia model. Neurol Res 35:813–820 PubMed
Yoon JS, Chae MK, Jang SY, Lee SY, Lee EJ (2012) Antifibrotic effects of quercetin in primary orbital fibroblasts and orbital fat tissue cultures of graves' orbitopathy. Invest Ophth Vis Sci 53:5921–5929 PubMed
Yoshikawa M, Matsuda H, Morikawa T, et al. Phenylethanoid oligoglycosides and acylated oligosugars with vasorelaxant activity from Cistanche tubulosa. Bioorg Med Chem. 2006;14:7468–7475. doi: 10.1016/j.bmc.2006.07.018. PubMed DOI
Yuan ZL, Luo L, Zang AM, et al. Isolation and bioassay of herbicidal active ingredient from Paulownia tomentosa. Chin J Pestic Sci. 2009;2:239–243.
Yun B-S, Lee I-K, Kim J-P, et al. Lipid peroxidation inhibitory activity of some constituents isolated from the stem bark of Eucalyptus globulus. Arch Pharm Res. 2000;23(2):147–150. doi: 10.1007/BF02975503. PubMed DOI
Yun J, Bae H, Choi SE, et al. Taxifolin glycoside blocks human ether–a–go–go related gene K(+) channels. Korean J Physiol Pharmacol. 2013;17(1):37–42. doi: 10.4196/kjpp.2013.17.1.37. PubMed DOI PMC
Zhang SM, Coultas KA. Identification of plumbagin and sanquinarine as effective chemotherapeutic agents for treatment of schistosomiasis. Int J Parasitol Drugs Drug Resist. 2013;3:28–34. doi: 10.1016/j.ijpddr.2012.12.001. PubMed DOI PMC
Zhang DL, Li XQ. Studies on the chemical constituents from the leave of Paulownia tomentosa. Zhong Yao Cai. 2011;34:232–234. PubMed
Zhang W, Zhang W-D, Zhang C, et al. Antitumor activities of extracts and compounds from the roots of Daphne tangutica Maxim. Phytother Res. 2007;21(11):1113–1115. doi: 10.1002/ptr.2227. PubMed DOI
Zhang J, Chen J, Liang Z, et al. New lignans and their biological activities. Chem Biodivers. 2014;11(1):1–54. doi: 10.1002/cbdv.201100433. PubMed DOI
Zhao J, Zhou X-W, Chen X-B, et al. α-Glucosidase inhibitory constituents from Toona sinensis. Chem Nat Compd. 2009;45:244–246. doi: 10.1007/s10600-009-9289-y. DOI
Zhao J, Ding HX, Wang CM. Isolation, modification and cytotoxic evaluation of flavonoids from Rhododendron hainanense. J Pharm Pharmacol. 2012;64:1785–1792. doi: 10.1111/j.2042-7158.2012.01560.x. PubMed DOI
Zheng J, Liu D, Zhao SQ, et al. Enzymatic extraction and antibacterial activity from Eucommia ulmoides leaves. Zhong Yao Cai. 2012;35:304–306. PubMed
Zhu ZH, Chao CJ, Lu XY et al (1986) Paulownia in China: cultivation and utilization. Asian Network for Biological Science and International Development Research Centre, Chinese Academy of Forestry, Beijing. http://idl-bnc.idrc.ca/dspace/bitstream/10625/8226/1/71235.pdf. (Cited 13 Mar 2013)
Zima A, Hošek J, Treml J, et al. Antiradical and cytoprotective activities of several C-geranyl-substituted flavanones from Paulownia tomentosa Fruit. Molecules. 2010;15:6035–6049. doi: 10.3390/molecules15096035. PubMed DOI PMC