Phytochemical profile of Paulownia tomentosa (Thunb). Steud

. 2015 ; 14 (5) : 799-833. [epub] 20140829

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32214918

Paulownia tomentosa, a member of the plant family Paulowniaceae and a rich source of biologically active secondary metabolites, is traditionally used in Chinese herbal medicine. Flavonoids, lignans, phenolic glycosides, quinones, terpenoids, glycerides, phenolic acids, and miscellaneous other compounds have been isolated from different parts of P. tomentosa plant. Recent interest in this species has focused on isolating and identifying of prenylated flavonoids, that exhibit potent antioxidant, antibacterial, and antiphlogistic activities and inhibit severe acute respiratory syndrome coronavirus papain-like protease. They show cytotoxic activity against various human cancer cell lines and inhibit the effects of human cholinesterase, butyrylcholinesterase, and bacterial neuraminidases. Most of the compounds considered here have never been isolated from any other species of plant. This review summarizes the information about the isolated compounds that are active, their bioactivities, and the structure-activity relationships that have been worked out for them.

Zobrazit více v PubMed

Adriani C, Bonini C, Iavarone C, et al. Isolation and characterization of paulownioside, a new highly oxygenated iridoid glucoside from Paulownia tomentosa. J Nat Prod. 1981;44:739–744. doi: 10.1021/np50018a024. DOI

Ahmad M, Rizwani GH. Acteoside: a new antihypertensive drug. Phytother Res. 1995;9:525–527. doi: 10.1002/ptr.2650090713. DOI

Akbay P, Calis I, Űndeger Ű, et al. In vitro immunomodulatory activity of verbascoside from Nepeta ucrainica L. Phytother Res. 2002;16:593–595. doi: 10.1002/ptr.990. PubMed DOI

Andersen OM, Markham KR. Flavonoids: chemistry, biochemistry, applications. Boca Raton: CRC Press; 2006.

Aniol M, Swiderska A, Stompor M, et al. Antiproliferative activity and synthesis of 8-prenylnaringenin derivatives by demethylation of 7-O- and 4′-O-substituted isoxanthohumols. Med Chem Res. 2012;21:4230–4238. doi: 10.1007/s00044-011-9967-8. PubMed DOI PMC

Arutyunyan TV, Korystova AF, Kublik LN, et al. Effects of taxifolin on the activity of angiotensin-converting enzyme and reactive oxygen and nitrogen species in the aorta of aging rats and rats treated with nitric oxide synthase inhibitor and dexamethasone. Age. 2012;35:2089–2097. doi: 10.1007/s11357-012-9497-4. PubMed DOI PMC

Asai T, Hara N, Kobayashi S, et al. Geranylated flavanones from the secretion on the surface of the immature fruits of Paulownia tomentosa. Phytochemistry. 2008;69:1234–1241. doi: 10.1016/j.phytochem.2007.11.011. PubMed DOI

Asai T, Hara N, Kobayashi S, et al. Acylglycerols (=glycerides) from the glandular trichome exudate on the leaves of Paulownia tomentosa. Helv Chim Acta. 2009;92:1473–1494. doi: 10.1002/hlca.200800456. DOI

Babula P, Mikelová R, Adam V, et al. Chromatografické stanovení naftochinonů v rostlinách (Chromatographic evaluation of naphtochinones in plants) Chem Listy. 2006;100:271–276.

Bai Y, Tohda C, Zhu S, et al. Active components from Siberian ginseng (Eleutherococcus senticosus) for protection of amyloid β(25-35)-induced neuritic atrophy in cultured rat cortical neurons. J Nat Med. 2011;65:417–423. doi: 10.1007/s11418-011-0509-y. PubMed DOI

Bansal S, Vyas S, Bhattacharya S, et al. Catechin prodrugs and analogs: a new array of chemical entities with improved pharmacological and pharmacokinetic properties. Nat Prod Rep. 2013;30(11):1438–1454. doi: 10.1039/c3np70038k. PubMed DOI

Bero J, Hannaert V, Chataigné G, et al. In vitro antitrypanosomal and antileishmanial activity of plants used in Benin in traditional medicine and bio-guided fractionation of the most active extract. J Ethnopharmacol. 2011;137:998–1002. doi: 10.1016/j.jep.2011.07.022. PubMed DOI

Betts JW, Wareham DW, Haswell SJ, et al. Antifungal synergy of theaflavin and epicatechin combinations against Candida albicans. J Microbiol Biotechnol. 2013;23:1322–1326. doi: 10.4014/jmb.1303.03010. PubMed DOI

Botta B, Vitali A, Menendez P. Prenylated flavonoids: pharmacology and biotechnology. Curr Med Chem. 2005;12:713–739. doi: 10.2174/0929867053202241. PubMed DOI

Bragança de Moraes CM, Melo DA, Santos RC, et al. Antiproliferative effect of catechin in GRX cells. Biochem Cell Biol. 2012;90:575–584. doi: 10.1139/o2012-010. PubMed DOI

Bulzomi P, Bolli A, Galluzzo P, et al. Naringenin and 17β-estradiol coadministration prevents hormone-induced human cancer cell growth. IUBMB Life. 2010;62:51–60. PubMed

Bulzomi P, Bolli A, Galluzzo P, et al. The naringenin-induced proapoptotic effect in breast cancer cell lines holds out against a high bisphenol a background. IUBMB Life. 2012;64:690–696. doi: 10.1002/iub.1049. PubMed DOI

Cai X, Zhang H, Tong D, et al. Corosolic acid triggers mitochondria and caspase-dependent apoptotic cell death in osteosarcoma MG-63 cells. Phytother Res. 2011;25:1354–1361. PubMed

Calderon-Montano JM, Burgos-Moron E, et al. A review on the dietary flavonoid kaempferol. Mini-Rev Med Chem. 2011;11(4):298–344. doi: 10.2174/138955711795305335. PubMed DOI

Carey AN, Fisher DR, Rimando AM, et al. Stilbenes and anthocyanins reduce stress signaling in BV-2 mouse microglia. J Agric Food Chem. 2013;61:5979–5986. doi: 10.1021/jf400342g. PubMed DOI

Chai X-Y, Ren H-Y, Xu Z-R, et al. Investigation of two Flacourtiaceae plants: Bennettiodendron leprosipes and Flacourtia ramontchi. Planta Med. 2009;75:1246–1252. doi: 10.1055/s-0029-1185542. PubMed DOI

Chang CL, Wang GJ, Zhang LJ, et al. Cardiovascular protective flavonolignans and flavonoids from Calamus quiquesetinervius. Phytochemistry. 2010;71:271–279. doi: 10.1016/j.phytochem.2009.09.025. PubMed DOI

Chatrattanakunchai S, Fraser T, Stobart K. Sesamin inhibits lysophosphatidylcholine acyltransferase in Mortierella alpine. Biochem Soc Trans. 2000;28:718–721. doi: 10.1042/bst0280718. PubMed DOI

Chen AY, Chen YC. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem. 2013;138(4):2099–2107. doi: 10.1016/j.foodchem.2012.11.139. PubMed DOI PMC

Chen J-W, Zhu Z-Q, Hu T-X, et al. Structure–activity relationship of natural flavonoids in hydroxyl radical-scavenging effects. Acta Pharmacol Sin. 2002;23(7):667–672. PubMed

Chen CN, Wu CL, Lin JK. Propolin C from propolis induces apoptosis through activating caspases, Bid and cytochrome c release in human melanoma cells. Biochem Pharmacol. 2004;67:53–66. doi: 10.1016/j.bcp.2003.07.020. PubMed DOI

Chen J, Liu Y, Shi YP, et al. Determination of flavonoids in the flowers of Paulownia tomentosa by high-performance liquid chromatography. J Anal Chem. 2009;64:282–288. doi: 10.1134/S1061934809030137. DOI

Chen C-N, Hsiao C-J, Lee S-S, et al. Chemical modification and anticancer effect of prenylated flavanones from Taiwanese propolis. Nat Prod Res. 2012;26(2):116–124. doi: 10.1080/14786419.2010.535146. PubMed DOI

Chen C, Chen Z, Xu F, et al. Radio-protective effect of catalpol in cultured cells and mice. J Radiat Res. 2013;54:76–82. doi: 10.1093/jrr/rrs080. PubMed DOI PMC

Chen X, Mukwaya E, Wong M-S, et al. A systematic review on biological activities of prenylated flavonoids. Pharm Biol (Lond, UK) 2014;52(5):655–660. doi: 10.3109/13880209.2013.853809. PubMed DOI

Cho JK, Ryu YB, Curtis-Long MJ, et al. Cholinesterase inhibitory effects of geranylated flavonoids from Paulownia tomentosa fruits. Bioorg Med Chem. 2012;20:2595–2602. doi: 10.1016/j.bmc.2012.02.044. PubMed DOI

Cho JK, Curtis-Long MJ, Lee KH, et al. Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorg Med Chem. 2013;21:3051–3057. doi: 10.1016/j.bmc.2013.03.027. PubMed DOI PMC

Choi J, Shin KM, Park HJ, et al. Anti-inflammatory and antinociceptive effects of sinapyl alcohol and its glucoside syringin. Planta Med. 2004;70:1027–1032. doi: 10.1055/s-2004-832642. PubMed DOI

Chung BH, Lee JJ, Kim JD, et al. Angiogenic activity of sesamin through the activation of multiple signal pathways. Biochem Biophys Res Commun. 2010;391:254–260. doi: 10.1016/j.bbrc.2009.11.045. PubMed DOI

Cotin S, Calliste CA, Mazeron MC, et al. Eight flavonoids and their potential as inhibitors of human cytomegalovirus replication. Antivir Res. 2012;96:181–186. doi: 10.1016/j.antiviral.2012.09.010. PubMed DOI

Cushnie TP, Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob Agents. 2005;26:343–356. doi: 10.1016/j.ijantimicag.2005.09.002. PubMed DOI PMC

Damtoft S, Jensen SR. Tomentoside and 7-hydroxytomentoside, two new iridoid glucosides from Paulownia tomentosa. Phytochemistry. 1993;34:1636–1638. doi: 10.1016/S0031-9422(00)90861-6. DOI

de Aguiar SC, Zeoula LM, Franco SL, et al. Antimicrobial activity of Brazilian propolis extracts against rumen bacteria in vitro. World J Microbiol Biotechnol. 2013;29:1951–1959. doi: 10.1007/s11274-013-1361-x. PubMed DOI

Deepak M, Handa SS. Antiinflammatory activity and chemical composition of extracts of Verbena officinalis. Phytother Res. 2000;14:463–465. doi: 10.1002/1099-1573(200009)14:6<463::AID-PTR611>3.0.CO;2-G. PubMed DOI

Deliorman D, Calis I, Ergun F, et al. Studies on the vascular effects of the fractions and phenolic compounds isolated from Viscum album ssp. album. J Ethnopharmacol. 2000;72:323–329. doi: 10.1016/S0378-8741(00)00251-8. PubMed DOI

Deurbina AVO, Martini ML, Fernandez B, et al. In vitro antispasmodic activity of peracetylated penstemoniside, aucubin and catalpol. Planta Med. 1994;60:512–515. doi: 10.1055/s-2006-959561. PubMed DOI

Diaz Lanza AM, Abad Martinez MJA, Matellano L, et al. Lignan and phenylpropanoid glycosides from Phillyrea latifolia and their in vitro anti-inflammatory activity. Planta Med. 2001;67:219–223. doi: 10.1055/s-2001-12004. PubMed DOI

Ding Y, Liang C, Yang SY, et al. Phenolic compounds from Artemisia iwayomogi and their effects on osteoblastic MC3T3-E1 cells. Biol Pharm Bull. 2010;33:1448–1453. doi: 10.1248/bpb.33.1448. PubMed DOI

Epifano F, Genovese S, Menghini L, et al. Chemistry and pharmacology of oxyprenylated secondary plant metabolites. Phytochemistry. 2007;68:939–953. doi: 10.1016/j.phytochem.2007.01.019. PubMed DOI

Erbar C, Gűlden C. Ontogeny of the flowers in Paulownia tomentosa—a contribution to the recognition of the resurrected monogeneric family Paulowniaceae. Flora. 2011;206:205–218. doi: 10.1016/j.flora.2010.05.003. DOI

Estrada O, González-Guzmán JM, Salazar-Bookaman M, et al. Pomolic acid of Licania pittieri elicits endothelium-dependent relaxation in rat aortic rings. Phytomedicine. 2011;18:464–469. doi: 10.1016/j.phymed.2010.10.008. PubMed DOI

Fraga CG, Oteiza PI. Dietary flavonoids: role of (−)-epicatechin and related procyanidins in cell signaling. Free Radic Biol Med. 2011;51(4):813–823. doi: 10.1016/j.freeradbiomed.2011.06.002. PubMed DOI

Franzyk H, Jensen SR, Thale Z, et al. Halohydrins of antirrhinoside—the correct structures of muralioside and epimuralioside. J Nat Prod. 1999;62:275–278. doi: 10.1021/np980358x. PubMed DOI

Fu G, Pang H, Wong YH. Naturally occurring phenylethanoid glycosides: potential leads for new therapeutics. Curr Med Chem. 2008;15:2592–2613. doi: 10.2174/092986708785908996. PubMed DOI

Fu Z, Yuskavage J, Liu D. Dietary flavonol epicatechin prevents the onset of type 1 diabetes in nonobese diabetic mice. J Agric Food Chem. 2013;61:4303–4309. doi: 10.1021/jf304915h. PubMed DOI PMC

Funke I, Melzig MF. Effect of different phenolic compounds on α-amylase activity: Screening by microplate-reader based kinetic assay. Pharmazie. 2005;60:796–797. PubMed

Galvez M, Martin-Cordero C, Ayuso MJ. Pharmacological activities of phenylpropanoids glycosides. Stud Nat Prod Chem. 2006;33:675–718. doi: 10.1016/S1572-5995(06)80037-2. DOI

Ghosh A, Sarkar S, Mandal AK, Das N. Neuroprotective role of nanoencapsulated quercetin in combating ischemia-reperfusion induced neuronal damage in young and aged rats. PLoS One. 2013;8(4):1–12. PubMed PMC

Gong X, Zhang L, Jiang R, et al. Hepatoprotective effects of syringin on fulminant hepatic failure induced by D-galactosamine and lipopolysaccharide in mice. J Appl Toxicol. 2014;34:265–271. doi: 10.1002/jat.2876. PubMed DOI

Grael CFF, Vichnewski W, De Souza GEP, et al. A study of the trypanocidal and analgesic properties [of substances] from Lychnophora granmongolense (Duarte) Semir & Leitao Filho. Phytother Res. 2000;14(3):203–206. doi: 10.1002/(SICI)1099-1573(200005)14:3<203::AID-PTR565>3.0.CO;2-R. PubMed DOI

Grecco Sdos S, Reimão JQ, Tempone AG, et al. In vitro antileishmanial and antitrypanosomal activities of flavanones from Baccharis retusa DC. (Asteraceae) Exp Parasitol. 2012;130:141–145. doi: 10.1016/j.exppara.2011.11.002. PubMed DOI

Guan T, Qian Q, Tang X, et al. Maslinic acid, a natural inhibitor of glycogen phosphorylase, reduces cerebral ischemic injury in hyperglycaemic rats by GLT-1 up-regulation. J Neurosci Res. 2011;89:1829–1839. doi: 10.1002/jnr.22671. PubMed DOI

Hac-Wydro K. Studies on β-sitosterol and ceramide-induced alterations in the properties of cholesterol/sphingomyelin/ganglioside monolayers. Biochim Biophys Acta. 2013;1828:2460–2469. doi: 10.1016/j.bbamem.2013.06.030. PubMed DOI

Hakim EH, Fahriyati A, Kau MS, et al. Artoindonesianins A and B, two new prenylated flavones from the root of Artocarpus champeden. J Nat Prod. 1999;62:613–615. doi: 10.1021/np980279l. PubMed DOI

Hakim EH, Asnizar Y, Aimi N, et al. Artoindonesianin P, a new prenylated flavone with cytotoxic activity from Artocarpus lanceifolius. Fitoterapia. 2002;73:668–673. doi: 10.1016/S0367-326X(02)00226-5. PubMed DOI

Hakim EH, Achmad SA, Juliawaty LD, et al. Prenylated flavonoids and related compounds of the Indonesian Artocarpus (Moraceae) J Nat Med. 2006;60:161–184. PubMed

Havsteen BH. The biochemistry and medical significance of the flavonoids. Pharmacol Ther. 2002;96:67–202. doi: 10.1016/S0163-7258(02)00298-X. PubMed DOI

He J, Hu XP, Zeng Y, et al. Advanced research on acteoside for chemistry and bioactivities. J Asian Nat Prod Res. 2011;13:449–464. doi: 10.1080/10286020.2011.568940. PubMed DOI

Hidalgo M, Martin-Santamaria S, Recio I, et al. Potential anti-inflammatory, anti-adhesive, anti/estrogenic, and angiotensin-converting enzyme inhibitory activities of anthocyanins and their gut metabolites. Genes Nutr. 2012;7:295–306. doi: 10.1007/s12263-011-0263-5. PubMed DOI PMC

Hirano T, Higa S, Arimitsu J, et al. Luteolin, a flavonoid, inhibits AP-1 activation by basophils. Biochem Biophys Res Commun. 2006;340(1):1–7. doi: 10.1016/j.bbrc.2005.11.157. PubMed DOI

Holubová P, Šmejkal K. Changes in the level of bioactive compounds in Paulownia tomentosa fruits. J Liq Chromatogr Relat Technol. 2011;34:276–288. doi: 10.1080/10826076.2011.547082. DOI

Hong D, Yang H, Jin C, et al. Scrophulariaceae through Gesneriaceae. Flora China. 1998;18:8–10.

Horland H, Fujiwara Y, Takemura K, et al. Corosolic acid impairs tumor development and lung metastasis by inhibiting the immunosuppressive activity of myeloid-derived suppressor cells. Mol Nutr Food Res. 2013;57(6):1046–1054. doi: 10.1002/mnfr.201200610. PubMed DOI

Hošek J, Závalová V, Šmejkal K, et al. Effect of diplacone on LPS-induced inflammatory gene expression in macrophages. Folia Biol (Praha) 2010;56:124–130. PubMed

Hošek J, Toniolo A, Neuwirth O, et al. Prenylated and geranylated flavonoids increase production of reactive oxygen species in mouse macrophages but inhibit the inflammatory response. J Nat Prod. 2013;76(9):1586–1591. doi: 10.1021/np400242e. PubMed DOI

Huang C, Cui Y, Ji L, et al. Catalpol decreases peroxynitrite formation and consequently exerts cardioprotective effects against ischemia/reperfusion insult. Pharm Biol. 2013;51:463–473. doi: 10.3109/13880209.2012.740052. PubMed DOI

Huang D, Hu Z, Yu Z. Eleutheroside B or E enhances learning and memory in experimentally aged rats. Neural Regen Res. 2013;8:1103–1112. PubMed PMC

Huang YB, Lin MW, Chao Y, et al. Anti-oxidant activity and attenuation of bladder hyperactivity by the flavonoid compound kaempferol. Int J Urol. 2014;21(1):94–98. doi: 10.1111/iju.12179. PubMed DOI

Ibrahim NA, El-Hawary SS, Mohammed MMD, et al. Chemical composition, antimicrobial activity of the essential oil of the flowers of Paulownia tomentosa (Thunb.) Steud. growing in Egypt. J Appl Sci Res. 2013;9(4):3228–3232.

Iizuka T, Nagai M, Moriyama H, et al. Antiplatelet aggregatory effects of the constituents isolated from the flower of Carthamus tinctorius. Nat Med (Tokyo, Jpn) 2005;59:241–244.

Ina H, Ono M, Sashida Y, et al. (+)-Piperitol from Paulownia tomentosa. Planta Med. 1987;53:504. doi: 10.1055/s-2006-962791. PubMed DOI

Jayaraman J, Jesudoss VA, Menon VP, et al. Anti-inflammatory role of naringenin in rats with ethanol induced liver injury. Toxicol Mech Methods. 2012;22:568–576. doi: 10.3109/15376516.2012.707255. PubMed DOI

Jiang TF, Du X, Shi YP, et al. Determination of flavonoids from Paulownia tomentosa (Thunb) Steud. by micellar electrokinetic capillary electrophoresis. Chromatographia. 2004;59:255–258.

Jimenéz C, Riguera R. Phenylethanoid glycosides in plants: structure and biological activity. Nat Prod Rep. 1994;11:591–606. doi: 10.1039/np9941100591. PubMed DOI

Jin L, Xue HY, Jin LJ, et al. Antioxidant and pancreas-protective effect of aucubin on rats with streptozotocin-induced diabetes. Eur J Pharmacol. 2008;582:162–167. doi: 10.1016/j.ejphar.2007.12.011. PubMed DOI

Jordao CO, Vichnewski W, Petto de Souza GE, et al. Trypanocidal activity of chemical constituents from Lychnophora salicifolia Mart. Phytother Res. 2004;18(4):332–334. doi: 10.1002/ptr.1366. PubMed DOI

Jung S, Moon HI, Ohk J, et al. Inhibitory effect and mechanism on antiproliferation of isoatriplicolide tiglate (PCAC) from Paulownia coreana. Molecules. 2012;17:5945–5951. doi: 10.3390/molecules17055945. PubMed DOI PMC

Kadota S, Basnet P, Hase K, et al. Matteuorienate A and B, two new and potent aldose reductase inhibitors from Matteuccia orientalis (Hook.) Trev. Chem Pharm Bull. 1994;42(8):1712–1714. doi: 10.1248/cpb.42.1712. PubMed DOI

Kang KH, Jang SJ, Kim BK, et al. Antibacterial phenylpropanoid glycosides from Paulownia tomentosa Steud. Arch Pharm Res. 1994;17:470–475. doi: 10.1007/BF02979128. PubMed DOI

Kang KH, Huh H, Kim BK, et al. An antiviral furanoquinone from Paulownia tomentosa Steud. Phytother Res. 1999;13:624–626. doi: 10.1002/(SICI)1099-1573(199911)13:7<624::AID-PTR551>3.0.CO;2-A. PubMed DOI

Kang DG, Lee YS, Kim HJ, et al. Angiotensin converting enzyme inhibitory phenylpropanoid glycosides from Clerodendron trichotomum. J Ethnopharmacol. 2003;89:151–154. doi: 10.1016/S0378-8741(03)00274-5. PubMed DOI

Kawamura F, Ohara S, Nishida A. Antifungal activity of constituents from the heartwood of Gmelina arborea: part 1. Sensitive antifungal assay against Basidiomycetes. Holzforschung. 2004;58:189–192. doi: 10.1515/HF.2004.028. DOI

Khachatoorian R, Arumugaswami V, Raychaudhuri S, et al. Divergent antiviral effects of bioflavonoids on the hepatitis C virus life cycle. Virology. 2012;433:346–355. doi: 10.1016/j.virol.2012.08.029. PubMed DOI PMC

Khan MK, Zill-E-Huma DO. A comprehensive review on flavanones, the major citrus polyphenols. J Food Compos Anal. 2014;33(1):85–104. doi: 10.1016/j.jfca.2013.11.004. DOI

Khan MM, Ishrat T, Ahmad A, et al. Sesamin, attenuates behavioural, biochemical and histological alterations induced by reversible middle cerebral artery occlusion in the rats. Chem Biol Interact. 2010;183:255–263. doi: 10.1016/j.cbi.2009.10.003. PubMed DOI

Kim HJ, Woo ER, Shin CG, et al. HIV-1 integrase inhibitory phenylpropanoid glycosides from Clerodendron trichotomum. Arch Pharm Res. 2001;24:286–291. doi: 10.1007/BF02975093. PubMed DOI

Kim SJ, Kwon DY, Kim YS, et al. Peroxyl radical scavenging capacity of extracts and isolated components from selected medicinal plants. Arch Pharm Res. 2010;33:867–873. doi: 10.1007/s12272-010-0609-3. PubMed DOI

Kim SK, Cho SB, Moon HI, et al. Neuroprotective effects of a sesquiterpene lactone and flavanones from Paulownia tomentosa Steud against glutamate-induced neurotoxicity in primary cultured rat cortical cells. Phytother Res. 2010;24:1898–1900. doi: 10.1002/ptr.3277. PubMed DOI

Kim JK, Lee YS, Kim SH, et al. Inhibition of aldose reductase by phenylethanoid glycoside isolated from the seeds of Paulownia coreana. Biol Pharm Bull. 2011;34:160–163. doi: 10.1248/bpb.34.160. PubMed DOI

Kobayashi S, Asai T, Fujimoto Y, et al. Anti-herbivore structures of Paulownia tomentosa: morphology, distribution, chemical constituents and changes during shoot and leaf development. Ann Bot. 2008;101:1035–1047. doi: 10.1093/aob/mcn033. PubMed DOI PMC

Koch CE, Ganjam GK, Steger J, et al. The dietary flavonoids naringenin and quercetin acutely impair glucose metabolism in rodents possibly via inhibition of hypothalamic insulin signalling. Br J Nutr. 2013;109:1040–1051. doi: 10.1017/S0007114512003005. PubMed DOI

Kollár P, Bárta T, Závalová V, et al. Geranylated flavanone tomentodiplacone B inhibits proliferation of human monocytic leukaemia (THP-1) cells. Br J Pharmacol. 2011;162(7):1534–1541. doi: 10.1111/j.1476-5381.2010.01171.x. PubMed DOI PMC

Kong LD, Wolfender JL, Cheng CH, et al. Xanthine oxidase inhibitors from Brandisia hancei. Planta Med. 1999;65:744–746. doi: 10.1055/s-2006-960854. PubMed DOI

Koo KA, Sung SH, Park JH, et al. In vitro neuroprotective activities of phenylethanoid glycosides from Callicarpa dichotoma. Planta Med. 2005;71:778–780. doi: 10.1055/s-2005-871213. PubMed DOI

Krishnaswamy M, Purushothaman KK. Plumbagin: a study of its anticancer, antibacterial and antifungal properties. Indian J Exp Biol. 1980;18:876–877. PubMed

Kumar M, Rawat P, Khan MF, et al. Phenolic glycosides from Dodecadenia grandiflora and their glucose-6-phosphatase inhibitory activity. Fitoterapia. 2010;81:475–479. doi: 10.1016/j.fitote.2010.01.011. PubMed DOI

Kumazawa S, Ueda R, Hamasaka T, et al. Antioxidant prenylated flavonoids from propolis collected in Okinawa, Japan. J Agric Food Chem. 2007;55(19):7722–7725. doi: 10.1021/jf071187h. PubMed DOI

Kurkin VA. Phenylpropanoids from medicinal plants: distribution, classification, structural analysis, and biological activity. Chem Nat Compd. 2003;39:123–153. doi: 10.1023/A:1024876810579. DOI

Kurkin VA, Dubishchev AV, Ezhkov VN, et al. Antidepressant activity of some phytopharmaceuticals and phenylpropanoids. Pharm Chem J. 2006;40:614–619. doi: 10.1007/s11094-006-0205-5. DOI

Kurkina AV, Khusainova AI, Daeva ED, et al. Flavonoids from Tanacetum vulgare flowers. Chem Nat Compd. 2011;47:284–285. doi: 10.1007/s10600-011-9906-4. DOI

Kuzuyama T, Noel JP, Richard SB. Structural basis for the promiscuous biosynthetic prenylation of aromatic natural products. Nature. 2005;435:983–987. doi: 10.1038/nature03668. PubMed DOI PMC

Lee JH, Lee JY, Park JH, et al. Immunoregulatory activity of daucosterol, a beta-sitosterol glycoside, induces protective Th1 immune response against disseminated Candidiasis in mice. Vaccine. 2007;25:3834–3840. doi: 10.1016/j.vaccine.2007.01.108. PubMed DOI

Lee JS, Miyashiro H, Nakamura N, et al. Two new triterpenes from the rhizome of Dryopteris crassirhizoma, and inhibitory activities of its constituents on human immunodeficiency virus-1 protease. Chem Pharm Bull. 2008;56:711–714. doi: 10.1248/cpb.56.711. PubMed DOI

Lee S-H, Jung MJ, Heo S-I, et al. Anti-inflammatory effect and HPLC analysis of extract from edible Cirsium setidens. J Korean Soc Appl Biol Chem. 2009;52:437–442. doi: 10.3839/jksabc.2009.076. DOI

Lee JH, Lee HJ, Choung MG. Anthocyanin compositions and biological activities from the red petals of Korean edible rose (Rosa hybrid cv. Noblered) Food Chem. 2011;129:272–278. doi: 10.1016/j.foodchem.2011.04.040. PubMed DOI

Lee Y, Ryu YB, Youn H-S, et al. Structural basis of sialidase in complex with geranylated flavonoids as potent natural inhibitors. Acta Cryst. 2014;D70:1357–1365. PubMed PMC

Li DQ, Duan YL, Bao YM, et al. Neuroprotection of catalpol in transient global ischemia in gerbils. Neurosci Res. 2004;50:169–177. doi: 10.1016/j.neures.2004.06.009. PubMed DOI

Li R, Cai L, Xie X-f, et al. 7,3′-Dimethoxy hesperetin induces apoptosis of fibroblast-like synoviocytes in rats with adjuvant arthritis through caspase 3 activation. Phytother Res. 2010;24(12):1850–1856. doi: 10.1002/ptr.3209. PubMed DOI

Li Y-L, Wu L, Ouyang D-W, et al. Phenolic Compounds of Abies nephrolepis and their NO production inhibitory activities. Chem Biodivers. 2011;8(12):2299–2309. doi: 10.1002/cbdv.201000373. PubMed DOI

Li R, Cai L, Ren D-y, et al. Therapeutic effect of 7,3′-dimethoxy hesperetin on adjuvant arthritis in rats through inhibiting JAK2-STAT3 signal pathway. Int Immunopharmacol. 2012;14(2):157–163. doi: 10.1016/j.intimp.2012.07.001. PubMed DOI

Li R, Cai L, Xie X-f, et al. 7,3′-dimethoxy hesperetin inhibits inflammation by inducing synovial apoptosis in rats with adjuvant-induced arthritis. Immunopharmacol Immunotoxicol. 2013;35(1):139–146. doi: 10.3109/08923973.2012.723010. PubMed DOI

Lin LC, Wang YH, Hou YC, et al. The inhibitory effect of phenylpropanoid glycosides and iridoid glucosides on free radical production and β2-integrin expression in human leucocytes. J Pharm Pharmacol. 2006;58:129–135. doi: 10.1211/jpp.58.1.0016. PubMed DOI

Lin J-A, Fang S-C, Wu C-H, et al. Anti-inflammatory effect of the 5,7,4′-Trihydroxy-6-geranylflavanone isolated from the fruit of Artocarpus communis in S100B-induced human monocytes. J Agric Food Chem. 2011;59(1):105–111. doi: 10.1021/jf103455g. PubMed DOI

Liu KY, Wu Y-C, Liu I-M, et al. Release of acetylcholine by syringin, an active principle of Eleutherococcus senticosus, to raise insulin secretion in Wistar rats. Neurosci Lett. 2008;434:195–199. doi: 10.1016/j.neulet.2008.01.054. PubMed DOI

Loke WM, Proudfoot JM, Hodgson JM, et al. Specific dietary polyphenols attenuate atherosclerosis in apolipoprotein E-knockout mice by alleviating inflammation and endothelial dysfunction. Arterioscler Thromb Vasc Biol. 2010;30:749–757. doi: 10.1161/ATVBAHA.109.199687. PubMed DOI

Lopez-Lazaro M. Distribution and biological activities of the flavonoid luteolin. Mini Rev Med Chem. 2009;9(1):31–59. doi: 10.2174/138955709787001712. PubMed DOI

Lopez-Lazaro M, Martin-Cordero C, Cortes F, et al. Cytotoxic activity of flavonoids and extracts from Retama sphaerocarpa Boissier. Z Naturforsch C (J Biosci) 2000;55(1/2):40–43. PubMed

Losi G, Puia G, Garzon G, et al. Apigenin modulates GABAergic and glutamatergic transmission in cultured cortical neurons. Eur J Pharmacol. 2004;502:41–46. doi: 10.1016/j.ejphar.2004.08.043. PubMed DOI

Lu XY, Li YH, Xiao XW, Li XB. Inhibitory effects of luteolin on human gastric carcinoma xenografts in nude mice and its mechanism. Zhonghua Yi Xue Za Zhi. 2013;93:142–146. PubMed

Mankovskaia A, Lévesque CM, Prakki A. Catechin-incorporated dental copolymers inhibit growth of Streptococcus mutans. J Appl Oral Sci. 2013;21:203–207. doi: 10.1590/1678-7757201302430. PubMed DOI PMC

Martini ND, Katerere DRP, Eloff JN. Biological activity of five antibacterial flavonoids from Combretum erythrophyllum (Combretaceae) J Ethnopharmacol. 2004;93(2–3):207–212. doi: 10.1016/j.jep.2004.02.030. PubMed DOI

Marzocchella L, Fantini M, et al. Dietary flavonoids: molecular mechanisms of action as anti-inflammatory agents. Recent Pat Inflamm Allergy Drug Discov. 2011;5(3):200–220. doi: 10.2174/187221311797264937. PubMed DOI

Mastuda H, Morikawa T, Ueda K, et al. Structural requirements of flavonoids for inhibition of antigen-induced degranulation, TNF-α and IL-4 production from RBL-2H3 cells. Bioorg Med Chem. 2002;10(10):3123–3128. doi: 10.1016/S0968-0896(02)00227-4. PubMed DOI

Matsubara Y, Yusa T, Sawab A, et al. Studies on physiologically active substances in citrus fruit peel. Part XX. Structure and physiological activity of phenyl propanoid glycosides in lemon (Citrus limon Burm. f.) peel. Agric Biol Chem. 1991;55(3):647–650. doi: 10.1271/bbb1961.55.647. DOI

Matsuda H, Morikawa T, Ando S, et al. Structural requirements of flavonoids for nitric oxide production inhibitory activity and mechanism of action. Bioorg Med Chem. 2003;11(9):1995–2000. doi: 10.1016/S0968-0896(03)00067-1. PubMed DOI

Milligan SR, Kalita JC, Pocock V, et al. The endocrine activities of 8-prenylnaringenin and related hop (Humulus lupulus L.) flavonoids. J Clin Endocrinol Metab. 2000;85(12):4912–4915. doi: 10.1210/jcem.85.12.7168. PubMed DOI

Min YS, Yim SH, Bail KL, et al. The effects of apigenin-7-O-β-D-glucuronopyranoside on reflux oesophagitis and gastritis in rats. Auton Autacoid Pharmacol. 2005;25:85–91. doi: 10.1111/j.1474-8673.2005.00332.x. PubMed DOI

Mishra N, Rizvi SI. Quercetin modulates Na+/K+ ATPase and sodium hydrogen exchanger in type 2 diabetic erythrocytes. Cell Mol Biol. 2012;58(1):148–152. PubMed

Miyazawa M, Okuno Y, Nakamura S-I, et al. Antimutagenic activity of flavonoids from Pogostemon cablin. J Agric Food Chem. 2000;48(3):642–647. doi: 10.1021/jf990160y. PubMed DOI

Moneriz G, Mestres J, Bautista JM, et al. Multi-targeted activity of maslinic acid as an antimalarial natural compound. FEBS J. 2011;278:2951–2961. doi: 10.1111/j.1742-4658.2011.08220.x. PubMed DOI

Moon HI, Zee OP. Anticancer compound of Paulownia tomentosa. Nat Prod Sci. 2001;7:21–22.

Murphy BT, Cao S, Norris A, et al. Cytotoxic flavanones of Schizolaena hystrix from the Madagascar rainforest. J Nat Prod. 2005;68:417–419. doi: 10.1021/np049639x. PubMed DOI

Murphy BT, Cao S, Norris A, et al. Cytotoxic compounds of Schizolaena hystrix from the Madagascar rainforest. Planta Med. 2006;72(13):1235–1238. doi: 10.1055/s-2006-947192. PubMed DOI

Nakano D, Kwak CJ, Fujii K, et al. Sesamin metabolites induce an endothelial nitric oxide-dependent vasorelaxation through their antioxidative property-independent mechanisms: possible involvement of the metabolites in the antihypertensive effect of sesamin. J Pharmacol Exp Ther. 2006;318:328–335. doi: 10.1124/jpet.105.100149. PubMed DOI

Nascimento IR, Murata AT, Bortoli SA, et al. Insecticidal activity of chemical constituents from Aristolochia pubescens against Anticarsia gemmatalis larvae. Pest Manag Sci. 2004;60:413–416. doi: 10.1002/ps.805. PubMed DOI

Navrátilová A, Schneiderová K, Veselá D, et al. Minor C-geranylated flavanones from Paulownia tomentosa fruits with MRSA antibacterial activity. Phytochemistry. 2013;89:104–113. doi: 10.1016/j.phytochem.2013.01.002. PubMed DOI

Niu H-S, Hsu F-L, Liu I-M, et al. Increase of β-endorphin secretion by syringin, an active principle of Eleutherococcus senticosus, to produce antihyperglycemic action in type 1-like diabetic rats. Hormone Metab Res. 2007;39:894–898. doi: 10.1055/s-2007-993154. PubMed DOI

Niu H-S, Hsu F-L, Liu I-M. Role of sympathetic tone in the loss of syringin-induced plasma glucose lowering action in conscious Wistar rats. Neurosci Lett. 2008;445:113–116. doi: 10.1016/j.neulet.2008.08.066. PubMed DOI

Niu H-S, Liu I-M, Cheng J-T, et al. Hypoglycemic effect of syringin from Eleutherococcus senticosus in streptozotocin-induced diabetic rats. Planta Med. 2008;74:109–113. doi: 10.1055/s-2008-1034275. PubMed DOI

Ogungbe IV, Erwin WR, Setzer WN. Antileishmanial phytochemical phenolics: molecular docking to potential protein targets. J Mol Graph Model. 2014;48:105–117. doi: 10.1016/j.jmgm.2013.12.010. PubMed DOI

Omosa L, Amugune B, Ndunda B, et al. Antimicrobial flavonoids and diterpenoids from Dodonaea angustifolia. S Afr J Bot. 2014;91:58–62. doi: 10.1016/j.sajb.2013.11.012. DOI

Oprea E, Radulescu V, Chiliment S. The analysis of the volatile and semi-volatile compounds of the Paulownia tomentosa flowers by gas chromatography coupled with mass spectrometry. Revista de chimi. 2004;55:410–412.

Ota M, Azuma T, Onodera S, et al. The chemistry of color changes in kiri wood (Paulownia tomentosa Steud.) III. A new caffeic acid sugar ester from Kiri wood. Mozukai Gakkaishi. 1993;39:479–485.

Pan J, Yuan C, Lin C, et al. Pharmacological activities and mechanisms of natural phenylpropanoid glycosides. Pharmazie. 2003;58:767–775. PubMed

Pan J-Y, Chen S-L, Yang M-H, et al. An update on lignans: natural products and synthesis. Nat Prod Rep. 2009;26(10):1251–1292. doi: 10.1039/b910940d. PubMed DOI

Pan Y, Morikawa T, Ninomiya K, et al. Bioactive constituents from Chinese natural medicines. XXXVI. Four new acylated phenylethanoid oligoglycosides, Kankanosides J1, J2, K1, and K2, from stems of Cistanche tubulosa. Chem Pharm Bull. 2010;58:575–578. doi: 10.1248/cpb.58.575. PubMed DOI

Pan SY, Zhou SF, Gao SH et al (2013) New perspectives on how to discover drugs from herbal medicines: CAM’s outstanding contribution to modern therapeutics. Evid Based Complement Altern Med 2013:1–25, doi:10.1155/2013/627375 PubMed PMC

Paneerselvam M, Kawaraguchi Y, Horikawa YT et al (2010) Effect of epicatechin and naloxone on cardioprotective phenotype. FASEB J 24 (Meeting Abstract Supplement) 1029.8

Panossian A, Wagner H. Stimulating effect of adaptogens: an overview with particular reference to their efficacy following single dose administration. Phytother Res. 2005;19:819–838. doi: 10.1002/ptr.1751. PubMed DOI

Panossian A, Kocharian A, Matinian K, et al. Pharmacological activity of phenylpropanoids of the mistletoe, Viscum album, host. Pyrus caucasica. Phytomedicine. 1998;5:11–17. doi: 10.1016/S0944-7113(98)80053-6. PubMed DOI

Papoutsi Z, Kassi E, Mitakou S, et al. Acteoside and martynoside exhibit estrogenic/antiestrogenic properties. J Steroid Biochem Mol Biol. 2006;98:63–71. doi: 10.1016/j.jsbmb.2005.07.005. PubMed DOI

Park KS. Aucubin, a naturally occurring iridoid glycoside inhibits TNF-α-induced inflammatory responses through suppression of NF-κB activation in 3T3-L1 adipocytes. Cytokine. 2013;62:407–412. doi: 10.1016/j.cyto.2013.04.005. PubMed DOI

Park Y, Kong JY, Cho H. A Furanquinone from Paulownia tomentosa stem for a new cathepsin K inhibitor. Phytother Res. 2009;23:1485–1488. doi: 10.1002/ptr.2716. PubMed DOI

Patel D, Shukla S, et al. Apigenin and cancer chemoprevention: progress, potential and promise (review) Int J Oncol. 2007;30(1):233–245. PubMed

Peluso MR, Miranda CL, Hobbs DJ, et al. Xanthohumol and related prenylated flavonoids inhibit inflammatory cytokine production in LPS-activated THP-1 monocytes: structure-activity relationships and in Silico binding to myeloid differentiation protein-2 (MD-2) Planta Med. 2010;76(14):1536–1543. doi: 10.1055/s-0029-1241013. PubMed DOI

Pelzer LE, Guardia T, Juarez AO, et al. Acute and chronic antiinflammatory effects of plant flavonoids. Farmaco. 1998;53(6):421–424. doi: 10.1016/S0014-827X(98)00046-9. PubMed DOI

Persson IA, Persson K, Andersson RG. Effect of Vaccinium myrtillus and its polyphenols on angiotensin-converting enzyme activity in human endothelial cells. J Agric Food Chem. 2009;57:4626–4629. doi: 10.1021/jf900128s. PubMed DOI

Phommart S, Sutthivaiyakit P, Chimnoi N, et al. Constituents of the leaves of Macaranga tanarius. J Nat Prod. 2005;68:927–930. doi: 10.1021/np0500272. PubMed DOI

Pile JE, Navalta JW, Davis CD, et al. Interventional effects of plumbagin on experimental ulcerative colitis in mice. J Nat Prod. 2013;76:1001–1006. doi: 10.1021/np3008792. PubMed DOI PMC

Plaza M, Pozzo T, Liu J, et al. Substituent effects on in vitro antioxidizing properties, stability, and solubility in flavonoids. J Agric Food Chem. 2014;62(15):3321–3333. doi: 10.1021/jf405570u. PubMed DOI

Plouvier V (1971) The heterosides of Catalpa bignonioides Walt. (Bignoniaceae). Comp Rend Acad Sci 272(D):1443–1446 PubMed

Prince Vijeya Singh J, Selvendiran K, Mumtaz Banu S, et al. Protective role of apigenin on the status of lipid peroxidation and antioxidant defense against hepatocarcinogenesis in Wistar albino rats. Phytomedicine. 2004;11:309–314. doi: 10.1078/0944711041495254. PubMed DOI

Psotová J, Chlopcíková S, Miketová P, et al. Chemoprotective effect of plant phenolics against anthracycline-induced toxicity on rat cardiomyocytes. Part III. Apigenin, baicalelin, kaempferol, luteolin and quercetin. Phytother Res. 2004;18:516–521. doi: 10.1002/ptr.1462. PubMed DOI

Raghukumar R, Vali L, Watson D, et al. Antimethicillin-resistant Staphylococcus aureus (MRSA) activity of “pacific propolis” and isolated prenylflavanones. Phytother Res. 2010;24:1181–1187. PubMed

Rao YK, Lee MJ, Chen K et al (2011) Insulin-mimetic action of rhoifolin and cosmosiin isolated from Citrus grandis (L.) osbeck leaves: enhanced adiponectin secretion and insulin receptor phosphorylation in 3T3-L1 cells. Evid Based Complement Altern Med 2011:1–9, doi:10.1093/ecam/nep204 PubMed PMC

Remya C, Dileep KV, Tintu I, et al. Design of potent inhibitors of acetylcholinesterase using morin as the starting compound. Front Life Sci. 2012;6(3–4):107–117. doi: 10.1080/21553769.2013.815137. DOI

Reyes-Zurita FJ, Pachón-Peña G, Lizárraga D, et al. The natural triterpene maslinic acid induces apoptosis in HT29 colon cancer cells by a JNK-p53-dependent mechanism. BMC Cancer. 2011;11:154. doi: 10.1186/1471-2407-11-154. PubMed DOI PMC

Rodriguez J, Yanez J, Vicente V, et al. Effects of several flavonoids on the growth of B16F10 and SK-MEL-1 melanoma cell lines: relationship between structure and activity. Melanoma Res. 2002;12(2):99–107. doi: 10.1097/00008390-200204000-00001. PubMed DOI

Romano B, Pagano E, et al. Novel insights into the pharmacology of flavonoids. Phytother Res. 2013;27(11):1588–1596. doi: 10.1002/ptr.5023. PubMed DOI

Ross JA, Kasum CM. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr. 2002;22:19–34. doi: 10.1146/annurev.nutr.22.111401.144957. PubMed DOI

Rosselli S, Bruno M, Maggio A, et al. Cytotoxic geranylflavonoids from Bonannia graeca. Phytochemistry. 2011;72:942–945. doi: 10.1016/j.phytochem.2011.03.005. PubMed DOI PMC

Russo M, Spagnuolo C, et al. The flavonoid quercetin in disease prevention and therapy: facts and fancies. Biochem Pharmacol. 2012;83(1):6–15. doi: 10.1016/j.bcp.2011.08.010. PubMed DOI

Salem MM, Capers J, Rito S, et al. Antiparasitic activity of C-geranyl flavonoids from Mimulus bigelovii. Phytother Res. 2011;25(8):1246–1249. doi: 10.1002/ptr.3404. PubMed DOI

Sánchez-Tena S, Alcarraz-Vizán G, Marín S, et al. Epicatechin gallate impairs colon cancer cell metabolic productivity. J Agric Food Chem. 2013;61:4310–4317. doi: 10.1021/jf3052785. PubMed DOI

Santhakumari G, Rathinam K, Seshadri C. Angicoagulant activity of plumbagin. Indian J Exp Biol. 1978;16:485–487. PubMed

Sato M, Murakami K, Uno M, et al. Site-specific inhibitory mechanism for amyloid β42 aggregation by catechol-type flavonoids targeting the Lys residues. J Biol Chem. 2013;288(32):23212–23224. doi: 10.1074/jbc.M113.464222. PubMed DOI PMC

Scambia G, Ranelletti FO, Panici P, et al. Quercetin potentiates the effect of Adriamycin in a multidrug-resistant MCF-7 human breast-cancer cell line: P-glycoprotein as a possible target. Cancer Chemother Pharmacol. 1994;34(6):459–464. doi: 10.1007/BF00685655. PubMed DOI

Schilling G, Hügel M, Mayer W (1982) Verbascoside and isoverbascoside from Paulownia tomentosa Steud. Zeit Naturforsch 37(B):1633–1635

Schinella G, Aquila S, Dade M, et al. Anti-inflammatory and apoptotic activities of pomolic acid isolated from Cecropia pachystachya. Planta Med. 2008;74:215–220. doi: 10.1055/s-2008-1034301. PubMed DOI

Schneiderová K, Šlapetová T, Hrabal R, et al. Tomentomimulol and mimulone B: two new C-geranylated flavonoids from Paulownia tomentosa fruits. Nat Prod Res. 2013;27:613–618. doi: 10.1080/14786419.2012.683002. PubMed DOI

Scogin R. Anthocyanins of the Bignoniaceae. Biochem Syst Ecol. 1980;8:273–276. doi: 10.1016/0305-1978(80)90058-7. DOI

Shan JZ, Xuan YY, Ruan SQ, et al. Proliferation-inhibiting and apoptosis-inducing effects of ursolic acid and oleanolic acid on multi-drug resistance cancer cells in vitro. Chin J Integr Med. 2011;17:607–611. doi: 10.1007/s11655-011-0815-y. PubMed DOI

Sharma U, Bala M, Kumar N, et al. Immunomodulatory active compounds from Tinospora cordifolia. J Ethnopharmacol. 2012;141:918–926. doi: 10.1016/j.jep.2012.03.027. PubMed DOI

She G-M, Zhang Y-J, Yang C-R. A new phenolic constituent and a cyanogenic glycoside from Balanophora involucrata (Balanophoraceae) Chem Biodivers. 2013;10:1081–1087. doi: 10.1002/cbdv.201200103. PubMed DOI

Shi Z-H, Li N-G, Tang Y-P, et al. Metabolism-based synthesis, biologic evaluation and SARs analysis of O-methylated analogs of quercetin as thrombin inhibitors. Eur J Med Chem. 2012;54:210–222. doi: 10.1016/j.ejmech.2012.04.044. PubMed DOI

Shieh JP, Cheng KC, Chung HH, et al. Plasma glucose lowering mechanisms of catalpol, an active principle from roots of Rehmannia glutinosa, in streptozotocin-induced diabetic rats. J Agric Food Chem. 2011;59:3747–3753. doi: 10.1021/jf200069t. PubMed DOI

Shukla S, Gupta S (2009) Role of apigenin in human health and disease. In: Preedy VR (ed) Beer in health and disease prevention, Academic Press, San Diego, pp e202–e216

Si C, Deng X, Liu Z (2008a) Structure and activity relationship of antioxidant flavonoids from leaves of Paulownia tomentosa var. tomentosa. In: 2nd international papermaking and environment conference, Tianjin University of Science and Technology, Tianjin, pp 263–266

Si CL, Deng XJ, Liu Z, et al. Studies on the phenylethanoid glycosides with anti-complement activity from Paulownia tomentosa var. tomentosa wood. J Asian Nat Prod Res. 2008;10:1003–1008. doi: 10.1080/10286020802242364. PubMed DOI

Si C, Deng X, Xu Q et al (2008c) Characterization of phenolic acids and antioxidant activities of Paulownia tomentosa var. tomentosa leaves. In: Proceedings of the international conference on pulping, papermaking and biotechnology, pp 31–33

Si CL, Liu Z, Kim JK, et al. Structure elucidation of phenylethanoid glycosides from Paulownia tomentosa Steud. var. tomentosa wood. Holzforschung. 2008;62:197–200.

Si CL, Wu L, Zhu ZY, et al. Apigenin derivates from Paulownia tomentosa Steud. var. tomentosa stem barks. Holzforschung. 2009;63:440–442. doi: 10.1515/HF.2009.063. DOI

Si CL, Lu YY, Hu HY, et al. Evaluation of total phenolics, flavonoids and anti-inflammatory property of ethanolic extracts of Paulownia tomentosa var. tomentosa bark. Planta Med. 2011;77:SL53.

Si CL, Lu YY, Qin PP, et al. Phenolic extractives with chemotaxonomic significance from the bark of Paulownia tomentosa var. tomentosa. BioResources. 2011;6:5086–5098.

Si CL, Shen T, Jiang YY, et al. Antioxidant properties and neuroprotective effects of isocampneoside II on hydrogen peroxide-induced oxidative injury in PC12 cells. Food Chem Toxicol. 2013;59:145–152. doi: 10.1016/j.fct.2013.05.051. PubMed DOI

Sivakumar G, Vail DR, Nair V, et al. Plant-based corosolic acid: future anti-diabetic drug? Biotechnol J. 2009;4:1704–1711. doi: 10.1002/biot.200900207. PubMed DOI

Šmejkal K. Cytotoxic potential of C-prenylated flavonoids. Phytochem Rev. 2014;13:245–275. doi: 10.1007/s11101-013-9308-2. DOI

Šmejkal K, Grycová L, Marek R, et al. C-geranyl compounds from Paulownia tomentosa Fruits. J Nat Prod. 2007;70:1244–1248. doi: 10.1021/np070063w. PubMed DOI

Šmejkal K, Holubová P, Zima A, et al. Antiradical activity of Paulownia tomentosa (Scrophulariaceae) extracts. Molecules. 2007;12:1210–1219. doi: 10.3390/12061210. PubMed DOI PMC

Šmejkal K, Babula P, Šlapetová T, et al. Cytotoxic activity of C-geranyl compounds from Paulownia tomentosa fruits. Planta Med. 2008;74:1488–1491. doi: 10.1055/s-2008-1081339. PubMed DOI

Šmejkal K, Chudík S, Klouček P, et al. Antibacterial C-geranylflavonoids from Paulownia tomentosa (Scrophulariaceae) fruits. J Nat Prod. 2008;71:706–709. doi: 10.1021/np070446u. PubMed DOI

Šmejkal K, Svačinová J, Šlapetová T, et al. Cytotoxic activities of several geranyl-substituted flavanones. J Nat Prod. 2010;73:568–572. doi: 10.1021/np900681y. PubMed DOI

Sticher O, Lahloub MF. Phenolic glycosides of Paulownia tomentosa bark. Planta Med. 1982;46:145–148. doi: 10.1055/s-2007-970039. PubMed DOI

Sudsai T, Wattanapiromsakul C, Tewtrakul S. Inhibition of nitric oxide production by compounds from Boesenbergia longiflora using lipopolysaccharide-stimulated RAW264.7 macrophage cells. Songklanakarin J Sci Technol. 2013;35(3):317–323.

Sumsakul W, Plenqsuriyakarn T, Chaijaroenkul W, et al. Antimalarial activity of plumbagin in vitro and in animal models. BMC Complement Altern Med. 2014;14:15. doi: 10.1186/1472-6882-14-15. PubMed DOI PMC

Sun Y, Zang Z, Zhong L, et al. Identification of adiponectin receptor agonist utilizing a fluorescence polarization based high throughput assay. PLos One. 2013;8(5):e63354. doi: 10.1371/journal.pone.0063354. PubMed DOI PMC

Suolinna EM, Buchsbaum RN, Racker E. Effect of flavonoids on aerobic glycolysis and growth of tumor cells. Cancer Res. 1975;35(7):1865–1872. PubMed

Takahashi K, Nakagawa T. Studies on constituents of medicinal plants. VII. The stereochemistry of paulownin and isopaulownin. Chem Pharm Bull. 1966;14:641–647. doi: 10.1248/cpb.14.641. PubMed DOI

Takamatsu S, Galal AM, Ross SA, et al. Antioxidant effect of flavonoids on DCF production in HL-60 cells. Phytother Res. 2003;17(8):963–966. doi: 10.1002/ptr.1289. PubMed DOI

Tanaka J, Kadekaru T, Ogawa K, et al. Maqui berry (Aristotelia chilensis) and the constituent delphinidin glycoside inhibit photoreceptor cell death induced by visible light. Food Chem. 2013;139:129–137. doi: 10.1016/j.foodchem.2013.01.036. PubMed DOI

Tang R, Chen K, Cosentino M, et al. Apigenin-7-O-β-D-glucopyranoside, an anti-HIV principle from Kummerowia striata. Bioorg Med Chem Lett. 1994;4:455–458. doi: 10.1016/0960-894X(94)80015-4. DOI

Taub PR, Ramirez-Sanchez I, Ciaraldi TP, et al. Alterations in skeletal muscle indicators of mitochondrial structure and biogenesis in patients with type 2 diabetes and heart failure: effects of epicatechin rich cocoa. Clin Transl Sci. 2012;5(1):43–47. doi: 10.1111/j.1752-8062.2011.00357.x. PubMed DOI PMC

Teixeira MD, Souza CM, Menezes AP, et al. Catechin attenuates behavioral neurotoxicity induced by 6-OHDA in rats. Pharmacol Biochem Behav. 2013;110:1–7. doi: 10.1016/j.pbb.2013.05.012. PubMed DOI

Tian L-W, Pei Y, Zhang Y-J, et al. 7-O-methylkaempferol and -quercetin glycosides from the whole plant of Nervilia fordii. J Nat Prod. 2009;72(6):1057–1060. doi: 10.1021/np800760p. PubMed DOI

Tohda C, Ichimura M, Bai Y, et al. Inhibitory effects of Eleutherococcus senticosus extracts on amyloid β(25–35)-induced neuritic atrophy and synaptic loss. J Pharmacol Sci. 2008;107:329–339. doi: 10.1254/jphs.08046FP. PubMed DOI

Tozuka H, Ota M, Kofujita H, et al. Synthesis of dihydroxyphenacyl glycosides for biological and medicinal study: β-oxoacteoside from Paulownia tomentosa. J Wood Sci. 2005;51:48–59. doi: 10.1007/s10086-003-0609-8. DOI

Trusheva B, Popova M, Koendhori EB, et al. Indonesian propolis: chemical composition, biological activity and botanical origin. Nat Prod Res. 2011;25:606–613. doi: 10.1080/14786419.2010.488235. PubMed DOI

Ullevig SL, Zhao Q, Zamora D, et al. Ursolic acid protects diabetic mice against monocyte dysfunction and accelerated atherosclerosis. Atherosclerosis. 2011;219:409–416. doi: 10.1016/j.atherosclerosis.2011.06.013. PubMed DOI PMC

Vareed SK, Reddy MK, Schutzki RE. Anthocyanins in Cornus alternifolia, Cornus controversa, Cornus kousa and Cornus florida fruits with healt benefits. Life Sci. 2006;78:777–784. doi: 10.1016/j.lfs.2005.05.094. PubMed DOI

Vasconcelos FC, Gattass CR, Rumjanek VM, et al. Pomolic acid-induced apoptosis in cells from patients with chronic myeloid leukemia exhibiting different drug resistance profile. Invest New Drugs. 2007;25:525–533. doi: 10.1007/s10637-007-9064-5. PubMed DOI

Wang J, Yang Z, Lin L, et al. Protective effect of naringenin against lead-inuced oxidative stress in rats. Biol Trace Elem Res. 2012;146:354–359. doi: 10.1007/s12011-011-9268-6. PubMed DOI

Wang Y-M, Xu M, Wang D, et al. Anti-inflammatory compounds of “Qin-Jiao”, the roots of Gentiana dahurica (Gentianaceae) J Ethnopharmacol. 2013;147(2):341–348. doi: 10.1016/j.jep.2013.03.016. PubMed DOI

Wei YJ, Tsai KS, Lin LC, et al. Catechin stimulates osteogenesis by enhancing PP2A activity in human mesenchymal stem cells. Osteoporos Int. 2011;22(5):1469–1479. doi: 10.1007/s00198-010-1352-9. PubMed DOI

Weidmann AE. Dihydroquercetin: more than just an impurity? Eur J Pharmacol. 2012;684(1–3):19–26. doi: 10.1016/j.ejphar.2012.03.035. PubMed DOI

Wilkinson K, Boyd JD, Glicksman M, et al. A high-content drug screen identifies ursolic acid as an inhibitor of amyloid-β interactions with its receptor CD36. J Biol Chem. 2011;286:34914–34922. doi: 10.1074/jbc.M111.232116. PubMed DOI PMC

Wollenweber E, Wehde R, Christ M, et al. Surface flavonoids in Catalpa ovata, Greyia sutherlandii and Paulownia tomentosa. Nat Prod Commun. 2008;3:1285–1287.

Wong KC, Haq Ali DM, Boey PL. Chemical constituents and antibacterial activity of Melastoma malabathricum L. Nat Prod Res. 2012;26:609–618. doi: 10.1080/14786419.2010.538395. PubMed DOI

Wu A, Lin C, Zhao X, et al. Spectroscopic study on interaction between cistanoside F and bovine serum albumin. Zhongguo Zhong Yao Za Zhi. 2012;37:1392–1398. PubMed

Xiong Q, Kadota S, Tani T, et al. Antioxidative effects of phenylethanoids from Cistanche deserticola. Biol Pharm Bull. 1996;19:1580–1585. doi: 10.1248/bpb.19.1580. PubMed DOI

Xiong QB, Hase K, Tezuka Y, et al. Hepatoprotective activity of phenylethanoids from Cistanche deserticola. Planta Med. 1998;64:120–125. doi: 10.1055/s-2006-957387. PubMed DOI

Xue HY, Lu YN, Fang XM, et al. Neuroprotective properties of aucubin in diabetic rats and diabetic encephalopathy rats. Mol Biol Rep. 2012;39:9311–9318. doi: 10.1007/s11033-012-1730-9. PubMed DOI

Yang Y-L, Hsu H-T, Wang K-H, et al. Hesperetin-7,3′-O-dimethylether selectively inhibits phosphodiesterase 4 and effectively suppresses ovalbumin-induced airway hyperresponsiveness with a high therapeutic ratio. J Biomed Sci (Lond, UK) 2011;18:84. doi: 10.1186/1423-0127-18-84. PubMed DOI PMC

Yang X, Yuan J, Wan J. Cytotoxic phenolic glycosides from Boschniakia himalaica. Chem Nat Comp. 2012;48(4):555–558. doi: 10.1007/s10600-012-0308-z. DOI

Yasuda K, Sakaki T. How is sesamin metabolised in the human liver to show its biological effects? Expert Opin Drug Metab Toxicol. 2012;8:93–102. doi: 10.1517/17425255.2012.637917. PubMed DOI

Yazaki K, Sasaki K, Tsurumaru Y. Prenylation of aromatic compounds, a key diversification of plant secondary metabolites. Phytochemistry. 2009;70:1739–1745. doi: 10.1016/j.phytochem.2009.08.023. PubMed DOI

Yoder BJ, Cao S, Norris A, et al. Antiproliferative prenylated stilbenes and flavonoids from Macaranga alnifolia from the Madagascar rainforest. J Nat Prod. 2007;70:342–346. doi: 10.1021/np060484y. PubMed DOI PMC

Yoo DY, Choi JH, Kim W, Nam SM, Jung HY, Kim JH, Won M-H, Yoon YS, Hwang IK (2013) Effects of luteolin on spatial memory, cell proliferation, and neuroblast differentiation in the hippocampal dentate gyrus in a scopolamine-induced amnesia model. Neurol Res 35:813–820 PubMed

Yoon JS, Chae MK, Jang SY, Lee SY, Lee EJ (2012) Antifibrotic effects of quercetin in primary orbital fibroblasts and orbital fat tissue cultures of graves' orbitopathy. Invest Ophth Vis Sci 53:5921–5929 PubMed

Yoshikawa M, Matsuda H, Morikawa T, et al. Phenylethanoid oligoglycosides and acylated oligosugars with vasorelaxant activity from Cistanche tubulosa. Bioorg Med Chem. 2006;14:7468–7475. doi: 10.1016/j.bmc.2006.07.018. PubMed DOI

Yuan ZL, Luo L, Zang AM, et al. Isolation and bioassay of herbicidal active ingredient from Paulownia tomentosa. Chin J Pestic Sci. 2009;2:239–243.

Yun B-S, Lee I-K, Kim J-P, et al. Lipid peroxidation inhibitory activity of some constituents isolated from the stem bark of Eucalyptus globulus. Arch Pharm Res. 2000;23(2):147–150. doi: 10.1007/BF02975503. PubMed DOI

Yun J, Bae H, Choi SE, et al. Taxifolin glycoside blocks human ether–a–go–go related gene K(+) channels. Korean J Physiol Pharmacol. 2013;17(1):37–42. doi: 10.4196/kjpp.2013.17.1.37. PubMed DOI PMC

Zhang SM, Coultas KA. Identification of plumbagin and sanquinarine as effective chemotherapeutic agents for treatment of schistosomiasis. Int J Parasitol Drugs Drug Resist. 2013;3:28–34. doi: 10.1016/j.ijpddr.2012.12.001. PubMed DOI PMC

Zhang DL, Li XQ. Studies on the chemical constituents from the leave of Paulownia tomentosa. Zhong Yao Cai. 2011;34:232–234. PubMed

Zhang W, Zhang W-D, Zhang C, et al. Antitumor activities of extracts and compounds from the roots of Daphne tangutica Maxim. Phytother Res. 2007;21(11):1113–1115. doi: 10.1002/ptr.2227. PubMed DOI

Zhang J, Chen J, Liang Z, et al. New lignans and their biological activities. Chem Biodivers. 2014;11(1):1–54. doi: 10.1002/cbdv.201100433. PubMed DOI

Zhao J, Zhou X-W, Chen X-B, et al. α-Glucosidase inhibitory constituents from Toona sinensis. Chem Nat Compd. 2009;45:244–246. doi: 10.1007/s10600-009-9289-y. DOI

Zhao J, Ding HX, Wang CM. Isolation, modification and cytotoxic evaluation of flavonoids from Rhododendron hainanense. J Pharm Pharmacol. 2012;64:1785–1792. doi: 10.1111/j.2042-7158.2012.01560.x. PubMed DOI

Zheng J, Liu D, Zhao SQ, et al. Enzymatic extraction and antibacterial activity from Eucommia ulmoides leaves. Zhong Yao Cai. 2012;35:304–306. PubMed

Zhu ZH, Chao CJ, Lu XY et al (1986) Paulownia in China: cultivation and utilization. Asian Network for Biological Science and International Development Research Centre, Chinese Academy of Forestry, Beijing. http://idl-bnc.idrc.ca/dspace/bitstream/10625/8226/1/71235.pdf. (Cited 13 Mar 2013)

Zima A, Hošek J, Treml J, et al. Antiradical and cytoprotective activities of several C-geranyl-substituted flavanones from Paulownia tomentosa Fruit. Molecules. 2010;15:6035–6049. doi: 10.3390/molecules15096035. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Screening of Natural Compounds as P-Glycoprotein Inhibitors against Multidrug Resistance

. 2021 Mar 30 ; 9 (4) : . [epub] 20210330

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...