Targeted Isolation of Prenylated Flavonoids from Paulownia tomentosa Fruit Extracts via AI-Guided Workflow Integrating LC-UV-HRMS/MS
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
23-04655S
Czech Science Foundation
PubMed
41003000
PubMed Central
PMC12471768
DOI
10.3390/metabo15090616
PII: metabo15090616
Knihovny.cz E-zdroje
- Klíčová slova
- bioactive compounds, geranylated flavonoids, prenylated polyphenols, specialized metabolites, untargeted metabolomics,
- Publikační typ
- časopisecké články MeSH
OBJECTIVES: This study presents a versatile, AI-guided workflow for the targeted isolation and characterization of prenylated flavonoids from Paulownia tomentosa (Thunb.) Steud. (Paulowniaceae). METHODS: The approach integrates established extraction and chromatography-based fractionation protocols with LC-UV-HRMS/MS analysis and supervised machine-learning (ML) custom-trained classification models, which predict prenylated flavonoids from LC-HRMS/MS spectra based on the recently developed Python package AnnoMe (v1.0). RESULTS: The workflow effectively reduced the chemical complexity of plant extracts and enabled efficient prioritization of fractions and compounds for targeted isolation. From the pre-fractionated plant extracts, 2687 features were detected, 42 were identified using reference standards, and 214 were annotated via spectra library matching (public and in-house). Furthermore, ML-trained classifiers predicted 1805 MS/MS spectra as derived from prenylated flavonoids. LC-UV-HRMS/MS data of the most abundant presumed prenyl-flavonoid candidates were manually inspected for coelution and annotated to provide dereplication. Based on this, one putative prenylated (C5) dihydroflavonol (1) and four geranylated (C10) flavanones (2-5) were selected and successfully isolated. Structural elucidation employed UV spectroscopy, HRMS, and 1D as well as 2D NMR spectroscopy. Compounds 1 and 5 were isolated from a natural source for the first time and were named 6-prenyl-4'-O-methyltaxifolin and 3',4'-O-dimethylpaulodiplacone A, respectively. CONCLUSIONS: This study highlights the combination of machine learning with analytical techniques to streamline natural product discovery via MS/MS and AI-guided pre-selection, efficient prioritization, and characterization of prenylated flavonoids, paving the way for a broader application in metabolomics and further exploration of prenylated constituents across diverse plant species.
Zobrazit více v PubMed
Harborne J.B., Williams C.A. Advances in flavonoid research since 1992. Phytochemistry. 2000;55:481–504. doi: 10.1016/S0031-9422(00)00235-1. PubMed DOI
Hošek J., Bartos M., Chudík S., Dall’Acqua S., Innocenti G., Kartal M., Kokoška L., Kollár P., Kutil Z., Landa P., et al. Natural Compound Cudraflavone B Shows Promising Anti-inflammatory Properties in Vitro. J. Nat. Prod. 2011;74:614–619. doi: 10.1021/np100638h. PubMed DOI
Sweet R., Kroon P.A., Webber M.A. Activity of antibacterial phytochemicals and their potential use as natural food preservatives. Crit. Rev. Food Sci. Nutr. 2024;64:2076–2087. doi: 10.1080/10408398.2022.2121255. PubMed DOI
Venturelli S., Burkard M., Biendl M., Lauer U.M., Frank J., Busch C. Prenylated chalcones and flavonoids for the prevention and treatment of cancer. Nutrition. 2016;32:1171–1178. doi: 10.1016/j.nut.2016.03.020. PubMed DOI
dos Santos C.N., Menezes R., Carregosa D., Valentova K., Foito A., McDougall G., Stewart D. Dietary Polyphenols. John Wiley & Sons; Hoboken, NJ, USA: 2020. Flavonols and Flavones; pp. 163–198.
Kim A.Y., Lee C.G., Lee D.Y., Li H., Jeon R., Ryu J.-H., Kim S.G. Enhanced antioxidant effect of prenylated polyphenols as Fyn inhibitor. Free Radic. Biol. Med. 2012;53:1198–1208. doi: 10.1016/j.freeradbiomed.2012.06.039. PubMed DOI
Sun H., Li Y., Zhang X., Lei Y., Ding W., Zhao X., Wang H., Song X., Yao Q., Zhang Y., et al. Synthesis, α-glucosidase inhibitory and molecular docking studies of prenylated and geranylated flavones, isoflavones and chalcones. Bioorg. Med. Chem. Lett. 2015;25:4567–4571. doi: 10.1016/j.bmcl.2015.08.059. PubMed DOI
Ming L.G., Lv X., Ma X.N., Ge B.F., Zhen P., Song P., Zhou J., Ma H.P., Xian C.J., Chen K.M. The prenyl group contributes to activities of phytoestrogen 8-prenynaringenin in enhancing bone formation and inhibiting bone resorption in vitro. Endocrinology. 2013;154:1202–1214. doi: 10.1210/en.2012-2086. PubMed DOI
Mukai R., Horikawa H., Fujikura Y., Kawamura T., Nemoto H., Nikawa T., Terao J. Prevention of disuse muscle atrophy by dietary ingestion of 8-prenylnaringenin in denervated mice. PLoS ONE. 2012;7:e45048. doi: 10.1371/journal.pone.0045048. PubMed DOI PMC
Hanáková Z., Hošek J., Babula P., Dall’Acqua S., Václavík J., Šmejkal K. C-Geranylated Flavanones from Paulownia tomentosa Fruits as Potential Anti-inflammatory Compounds Acting via Inhibition of TNF-α Production. J. Nat. Prod. 2015;78:850–863. doi: 10.1021/acs.jnatprod.5b00005. PubMed DOI
Shi S., Li J., Zhao X., Liu Q., Song S.-J. A comprehensive review: Biological activity, modification and synthetic methodologies of prenylated flavonoids. Phytochemistry. 2021;191:112895. doi: 10.1016/j.phytochem.2021.112895. PubMed DOI
de Bruijn W.J.C., Levisson M., Beekwilder J., van Berkel W.J.H., Vincken J.-P. Plant Aromatic Prenyltransferases: Tools for Microbial Cell Factories. Trends Biotechnol. 2020;38:917–934. doi: 10.1016/j.tibtech.2020.02.006. PubMed DOI
Kamanna K., Kamath A. Prenylation of Natural Products: An Overview. IntechOpen; London, UK: 2022.
Bauer A., Brönstrup M. Industrial natural product chemistry for drug discovery and development. Nat. Prod. Rep. 2014;31:35–60. doi: 10.1039/C3NP70058E. PubMed DOI
Newman D.J., Cragg G.M. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. 2016;79:629–661. doi: 10.1021/acs.jnatprod.5b01055. PubMed DOI
Gaudêncio S.P., Bayram E., Lukić Bilela L., Cueto M., Díaz-Marrero A.R., Haznedaroglu B.Z., Jimenez C., Mandalakis M., Pereira F., Reyes F., et al. Advanced Methods for Natural Products Discovery: Bioactivity Screening, Dereplication, Metabolomics Profiling, Genomic Sequencing, Databases and Informatic Tools, and Structure Elucidation. Mar. Drugs. 2023;21:308. doi: 10.3390/md21050308. PubMed DOI PMC
Pérez-Victoria I. Progress in the Chemistry of Organic Natural Products. Volume 124. Springer; Berlin/Heidelberg, Germany: 2024. Natural Products Dereplication: Databases and Analytical Methods; pp. 1–56. PubMed DOI
Sorokina M., Steinbeck C. Review on natural products databases: Where to find data in 2020. J. Cheminform. 2020;12:20. doi: 10.1186/s13321-020-00424-9. PubMed DOI PMC
Atanasov A.G., Zotchev S.B., Dirsch V.M., Orhan I.E., Banach M., Rollinger J.M., Barreca D., Weckwerth W., Bauer R., Bayer E.A., et al. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021;20:200–216. doi: 10.1038/s41573-020-00114-z. PubMed DOI PMC
Goldman S., Bradshaw J., Xin J., Coley C.W. Prefix-tree decoding for predicting mass spectra from molecules; Proceedings of the 37th International Conference on Neural Information Processing Systems; New Orleans, LA, USA. 10–16 December 2023; Red Hook, NY, USA: Curran Associates Inc.; 2023. p. 2108.
Goldman S., Li J., Coley C.W. Generating Molecular Fragmentation Graphs with Autoregressive Neural Networks. Anal. Chem. 2024;96:3419–3428. doi: 10.1021/acs.analchem.3c04654. PubMed DOI
Murphy M., Jegelka S., Fraenkel E., Kind T., Healey D., Butler T. Efficiently predicting high resolution mass spectra with graph neural networks; Proceedings of the 40th International Conference on Machine Learning; Honolulu, HI, USA. 23–29 July 2023; Norfolk, MA, USA: JMLR; 2023. p. 1061.
Ruttkies C., Schymanski E.L., Wolf S., Hollender J., Neumann S. MetFrag relaunched: Incorporating strategies beyond in silico fragmentation. J. Cheminform. 2016;8:3. doi: 10.1186/s13321-016-0115-9. PubMed DOI PMC
Wang F., Liigand J., Tian S., Arndt D., Greiner R., Wishart D.S. CFM-ID 4.0: More Accurate ESI-MS/MS Spectral Prediction and Compound Identification. Anal. Chem. 2021;93:11692–11700. doi: 10.1021/acs.analchem.1c01465. PubMed DOI PMC
Dührkop K., Fleischauer M., Ludwig M., Aksenov A.A., Melnik A.V., Meusel M., Dorrestein P.C., Rousu J., Böcker S. SIRIUS 4: A rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods. 2019;16:299–302. doi: 10.1038/s41592-019-0344-8. PubMed DOI
Xing S., Shen S., Xu B., Li X., Huan T. BUDDY: Molecular formula discovery via bottom-up MS/MS interrogation. Nat. Methods. 2023;20:881–890. doi: 10.1038/s41592-023-01850-x. PubMed DOI
Stravs M.A., Dührkop K., Böcker S., Zamboni N. MSNovelist: De novo structure generation from mass spectra. Nat. Methods. 2022;19:865–870. doi: 10.1038/s41592-022-01486-3. PubMed DOI PMC
Butler T., Frandsen A., Lightheart R., Bargh B., Kerby T., West K., Davison J., Taylor J., Krettler C., Bollerman T.J., et al. MS2Mol: A transformer model for illuminating dark chemical space from mass spectra. ChemRxiv. 2023:preprint. doi: 10.26434/chemrxiv-2023-vsmpx-v4. DOI
Shrivastava A.D., Swainston N., Samanta S., Roberts I., Wright Muelas M., Kell D.B. MassGenie: A Transformer-Based Deep Learning Method for Identifying Small Molecules from Their Mass Spectra. Biomolecules. 2021;11:1793. doi: 10.3390/biom11121793. PubMed DOI PMC
Goldman S., Wohlwend J., Stražar M., Haroush G., Xavier R.J., Coley C.W. Annotating metabolite mass spectra with domain-inspired chemical formula transformers. Nat. Mach. Intell. 2023;5:965–979. doi: 10.1038/s42256-023-00708-3. DOI
Huber F., Ridder L., Verhoeven S., Spaaks J.H., Diblen F., Rogers S., van der Hooft J.J.J. Spec2Vec: Improved mass spectral similarity scoring through learning of structural relationships. PLOS Comput. Biol. 2021;17:e1008724. doi: 10.1371/journal.pcbi.1008724. PubMed DOI PMC
Huber F., van der Burg S., van der Hooft J.J.J., Ridder L. MS2DeepScore: A novel deep learning similarity measure to compare tandem mass spectra. J. Cheminform. 2021;13:84. doi: 10.1186/s13321-021-00558-4. PubMed DOI PMC
Guo H., Xue K., Sun H., Jiang W., Pu S. Contrastive Learning-Based Embedder for the Representation of Tandem Mass Spectra. Anal. Chem. 2023;95:7888–7896. doi: 10.1021/acs.analchem.3c00260. PubMed DOI
Bushuiev R., Bushuiev A., Samusevich R., Brungs C., Sivic J., Pluskal T. Self-supervised learning of molecular representations from millions of tandem mass spectra using DreaMS. Nat. Biotechnol. 2025 doi: 10.1038/s41587-025-02663-3. in press . PubMed DOI
Brittin N.J., Anderson J.M., Braun D.R., Rajski S.R., Currie C.R., Bugni T.S. Machine Learning-Based Bioactivity Classification of Natural Products Using LC-MS/MS Metabolomics. J. Nat. Prod. 2025;88:361–372. doi: 10.1021/acs.jnatprod.4c01123. PubMed DOI
Xing S., Jiao Y., Salehzadeh M., Soma K.K., Huan T. SteroidXtract: Deep Learning-Based Pattern Recognition Enables Comprehensive and Rapid Extraction of Steroid-Like Metabolic Features for Automated Biology-Driven Metabolomics. Anal. Chem. 2021;93:5735–5743. doi: 10.1021/acs.analchem.0c04834. PubMed DOI
Brown K.S., Jamieson P., Wu W., Vaswani A., Alcazar Magana A., Choi J., Mattio L.M., Cheong P.H., Nelson D., Reardon P.N., et al. Computation-Assisted Identification of Bioactive Compounds in Botanical Extracts: A Case Study of Anti-Inflammatory Natural Products from Hops. Antioxidants. 2022;11:1400. doi: 10.3390/antiox11071400. PubMed DOI PMC
Russo F.F., Nowatzky Y., Jaeger C., Parr M.K., Benner P., Muth T., Lisec J. Machine learning methods for compound annotation in non-targeted mass spectrometry—A brief overview of fingerprinting, in silico fragmentation and de novo methods. Rapid Commun. Mass Spectrom. 2024;38:e9876. doi: 10.1002/rcm.9876. PubMed DOI
Bittremieux W., Wang M., Dorrestein P.C. The critical role that spectral libraries play in capturing the metabolomics community knowledge. Metabolomics. 2022;18:94. doi: 10.1007/s11306-022-01947-y. PubMed DOI PMC
Akimoto N., Ara T., Nakajima D., Suda K., Ikeda C., Takahashi S., Muneto R., Yamada M., Suzuki H., Shibata D., et al. FlavonoidSearch: A system for comprehensive flavonoid annotation by mass spectrometry. Sci. Rep. 2017;7:1243. doi: 10.1038/s41598-017-01390-3. PubMed DOI PMC
Hartler J., Triebl A., Ziegl A., Trötzmüller M., Rechberger G.N., Zeleznik O.A., Zierler K.A., Torta F., Cazenave-Gassiot A., Wenk M.R., et al. Deciphering lipid structures based on platform-independent decision rules. Nat. Methods. 2017;14:1171–1174. doi: 10.1038/nmeth.4470. PubMed DOI PMC
Shang Z., Tian Y., Xiong M., Yi Y., Qiao X., Yang Y., Ye M. Characterization of prenylated phenolics in Glycyrrhiza uralensis by offline two-dimensional liquid chromatography/mass spectrometry coupled with mass defect filter. J. Pharm. Biomed. Anal. 2022;220:115009. doi: 10.1016/j.jpba.2022.115009. PubMed DOI
Ollivier S., Jéhan P., Olivier-Jimenez D., Lambert F., Boustie J., Lohézic-Le Dévéhat F., Le Yondre N. New insights into the Van Krevelen diagram: Automated molecular formula determination from HRMS for a large chemical profiling of lichen extracts. Phytochem. Anal. 2022;33:1111–1120. doi: 10.1002/pca.3163. PubMed DOI PMC
Gadara D., Coufalikova K., Bosak J., Smajs D., Spacil Z. Systematic Feature Filtering in Exploratory Metabolomics: Application toward Biomarker Discovery. Anal. Chem. 2021;93:9103–9110. doi: 10.1021/acs.analchem.1c00816. PubMed DOI
Ye J.-B., Ren G., Li W.-Y., Zhong G.-Y., Zhang M., Yuan J.-B., Lu T. Characterization and Identification of Prenylated Flavonoids from Artocarpus heterophyllus Lam. Roots by Quadrupole Time-Of-Flight and Linear Trap Quadrupole Orbitrap Mass Spectrometry. Molecules. 2019;24:4591. doi: 10.3390/molecules24244591. PubMed DOI PMC
van Dinteren S., Araya-Cloutier C., de Bruijn W.J.C., Vincken J.-P. A targeted prenylation analysis by a combination of IT-MS and HR-MS: Identification of prenyl number, configuration, and position in different subclasses of (iso)flavonoids. Anal. Chim. Acta. 2021;1180:338874. doi: 10.1016/j.aca.2021.338874. PubMed DOI
Simons R., Vincken J.-P., Bakx E.J., Verbruggen M.A., Gruppen H. A rapid screening method for prenylated flavonoids with ultra-high-performance liquid chromatography/electrospray ionisation mass spectrometry in licorice root extracts. Rapid Commun. Mass Spectrom. 2009;23:3083–3093. doi: 10.1002/rcm.4215. PubMed DOI
Bueschl C., Rypar T., Molcanova L., Markus J., Seidl B., Doppler M., Ruso D., Maisl C., Smejkal K., Schuhmacher R. AnnoMe: A python package for MS/MS spectra classification. ChemRxiv. 2025 doi: 10.26434/chemrxiv-2025-k5v51. DOI
Molčanová L., Kauerová T., Dall’Acqua S., Maršík P., Kollár P., Šmejkal K. Antiproliferative and cytotoxic activities of C-Geranylated flavonoids from Paulownia tomentosa Steud. Fruit. Bioorg. Chem. 2021;111:104797. doi: 10.1016/j.bioorg.2021.104797. PubMed DOI
Molčanová L., Treml J., Brezáni V., Maršík P., Kurhan S., Trávníček Z., Uhrin P., Šmejkal K. C-geranylated flavonoids from Paulownia tomentosa Steud. fruit as potential anti-inflammatory agents. J. Ethnopharmacol. 2022;296:115509. doi: 10.1016/j.jep.2022.115509. PubMed DOI
Holubová P., Šmejkal K. Changes in the Level of Bioactive Compounds in Paulownia tomentosa Fruits. J. Liq. Chromatogr. Relat. Technol. 2011;34:276–288. doi: 10.1080/10826076.2011.547082. DOI
Stravs M.A., Schymanski E.L., Singer H.P., Hollender J. Automatic recalibration and processing of tandem mass spectra using formula annotation. J. Mass Spectrom. 2013;48:89–99. doi: 10.1002/jms.3131. PubMed DOI
Chambers M.C., Maclean B., Burke R., Amodei D., Ruderman D.L., Neumann S., Gatto L., Fischer B., Pratt B., Egertson J. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 2012;30:918–920. doi: 10.1038/nbt.2377. PubMed DOI PMC
Schmid R., Heuckeroth S., Korf A., Smirnov A., Myers O., Dyrlund T.S., Bushuiev R., Murray K.J., Hoffmann N., Lu M., et al. Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nat. Biotechnol. 2023;41:447–449. doi: 10.1038/s41587-023-01690-2. PubMed DOI PMC
Olivon F., Elie N., Grelier G., Roussi F., Litaudon M., Touboul D. MetGem Software for the Generation of Molecular Networks Based on the t-SNE Algorithm. Anal. Chem. 2018;90:13900–13908. doi: 10.1021/acs.analchem.8b03099. PubMed DOI
Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC
Blaženović I., Kind T., Ji J., Fiehn O. Software Tools and Approaches for Compound Identification of LC-MS/MS Data in Metabolomics. Metabolites. 2018;8:31. doi: 10.3390/metabo8020031. PubMed DOI PMC
Dührkop K., Nothias L.-F., Fleischauer M., Reher R., Ludwig M., Hoffmann M.A., Petras D., Gerwick W.H., Rousu J., Dorrestein P.C., et al. Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat. Biotechnol. 2021;39:462–471. doi: 10.1038/s41587-020-0740-8. PubMed DOI
Jiang C., Gates P.J. Systematic Characterisation of the Fragmentation of Flavonoids Using High-Resolution Accurate Mass Electrospray Tandem Mass Spectrometry. Molecules. 2024;29:5246. doi: 10.3390/molecules29225246. PubMed DOI PMC
Cuyckens F., Claeys M. Mass spectrometry in the structural analysis of flavonoids. J. Mass Spectrom. 2004;39:1–15. doi: 10.1002/jms.585. PubMed DOI
Fabre N., Rustan I., de Hoffmann E., Quetin-Leclercq J. Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J. Am. Soc. Mass Spectrom. 2001;12:707–715. doi: 10.1016/S1044-0305(01)00226-4. PubMed DOI
Šmejkal K., Chudík S., Klouček P., Marek R., Cvačka J., Urbanová M., Julínek O., Kokoška L., Šlapetová T., Holubová P., et al. Antibacterial C-Geranylflavonoids from Paulownia tomentosa Fruits. J. Nat. Prod. 2008;71:706–709. doi: 10.1021/np070446u. PubMed DOI
Šmejkal K., Grycová L., Marek R., Lemière F., Jankovská D., Forejtníková H., Vančo J., Suchý V. C-Geranyl Compounds from Paulownia tomentosa Fruits. J. Nat. Prod. 2007;70:1244–1248. doi: 10.1021/np070063w. PubMed DOI
Asai T., Hara N., Kobayashi S., Kohshima S., Fujimoto Y. Geranylated flavanones from the secretion on the surface of the immature fruits of Paulownia tomentosa. Phytochemistry. 2008;69:1234–1241. doi: 10.1016/j.phytochem.2007.11.011. PubMed DOI
He T., Vaidya B.N., Perry Z.D., Parajuli P., Joshee N. Paulownia as a Medicinal Tree: Traditional Uses and Current Advances. Eur. J. Med. Plants. 2016;14:1–15. doi: 10.9734/EJMP/2016/25170. DOI
Hubert J., Nuzillard J.-M., Renault J.-H. Dereplication strategies in natural product research: How many tools and methodologies behind the same concept? Phytochem. Rev. 2017;16:55–95. doi: 10.1007/s11101-015-9448-7. DOI
Yang B., Liu H., Yang J., Gupta V.K., Jiang Y. New insights on bioactivities and biosynthesis of flavonoid glycosides. Trends Food Sci. Technol. 2018;79:116–124. doi: 10.1016/j.tifs.2018.07.006. DOI
Ji W., Zhao L., Yun C., Liu J., Ma J., Zhu L., Duan J., Zhang S. Efficient glycosylation and in vitro neuroprotective evaluation of abundant prenylflavonoid in hops. Process Biochem. 2024;144:179–186. doi: 10.1016/j.procbio.2024.05.022. DOI
Wolfender J.-L., Waridel P., Ndjoko K., Hobby K.R., Major H.J., Hostettmann K. Evaluation of Q-TOF-MS/MS and multiple stage IT-MSn for the dereplication of flavonoids and related compounds in crude plant extracts. Analusis. 2000;28:895–906. doi: 10.1051/analusis:2000280895. DOI
Phillips W.R., Baj N.J., Gunatilaka A.A.L., Kingston D.G.I. C-Geranyl Compounds from Mimulus clevelandii. J. Nat. Prod. 1996;59:495–497. doi: 10.1021/np960240l. PubMed DOI
Schneiderová K., Šmejkal K. Phytochemical profile of Paulownia tomentosa (Thunb). Steud. Phytochem. Rev. 2015;14:799–833. doi: 10.1007/s11101-014-9376-y. PubMed DOI PMC
Choo M.Z.Y., Chua J.A.T., Lee S.X.Y., Ang Y., Wong W.S.F., Chai C.L.L. Privileged natural product compound classes for anti-inflammatory drug development. Nat. Prod. Rep. 2025;42:856–875. doi: 10.1039/D4NP00066H. PubMed DOI