Identification of Plant Phenolics from Paulownia tomentosa and Morus alba as Novel PPARγ Partial Agonists and Hypoglycemic Agents
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40392982
PubMed Central
PMC12147210
DOI
10.1021/acs.jafc.4c11398
Knihovny.cz E-zdroje
- Klíčová slova
- PPARγ, diabetes mellitus, hypoglycemic, natural products, plant phenolics,
- MeSH
- fenoly * chemie farmakologie izolace a purifikace MeSH
- hypoglykemika * chemie farmakologie izolace a purifikace MeSH
- kuřecí embryo MeSH
- lidé MeSH
- Morus * chemie MeSH
- myši MeSH
- PPAR gama * agonisté metabolismus genetika chemie MeSH
- přenašeč glukosy typ 4 metabolismus genetika MeSH
- rostlinné extrakty * chemie farmakologie izolace a purifikace MeSH
- simulace molekulového dockingu MeSH
- zvířata MeSH
- Check Tag
- kuřecí embryo MeSH
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fenoly * MeSH
- hypoglykemika * MeSH
- PPAR gama * MeSH
- přenašeč glukosy typ 4 MeSH
- rostlinné extrakty * MeSH
The aim of our study was to determine the PPARγ agonism and hypoglycemic activity of natural phenolics isolated from Paulownia tomentosa and Morus alba. We started with a molecular docking preselection, followed by in vitro cell culture assays, such as PPARγ luciferase reporter gene assay and PPARγ protein expression by Western blot analysis. The ability of the selected compounds to induce GLUT4 translocation in cell culture and lower blood glucose levels in chicken embryos was also determined. Among the thirty-six plant phenolic compounds, moracin M showed the highest hypoglycemic effect in an in ovo experiment (7.33 ± 2.37%), followed by mulberrofuran Y (3.84 ± 1.34%) and diplacone (3.69 ± 1.37%). Neither moracin M nor mulberrofuran Y showed a clear effect on the enhancement of GLUT4 translocation or agonism on PPARγ, while diplacone succeeded in both (3.62 ± 0.16% and 2.4-fold ± 0.2, respectively). Thus, we believe that the compounds moracin M, mulberrofuran Y, and diplacone are suitable for further experiments to elucidate their mechanisms of action.
Department of Molecular Pharmacy Masaryk University 612 00 Brno Czech Republic
Department of Natural Drugs Masaryk University 612 00 Brno Czech Republic
Department of Pharmaceutical Sciences University of Vienna A 1090 Vienna Austria
Zobrazit více v PubMed
IDF . Facts & Figures, International Diabetes Federation. https://idf.org/about-diabetes/diabetes-facts-figures/ (accessed Jan 20, 2024).
Stolar M.. Glycemic Control and Complications in Type 2 Diabetes Mellitus. Am. J. Med. 2010;123(S3):S3–S11. doi: 10.1016/j.amjmed.2009.12.004. PubMed DOI
Davies M. J., Aroda V. R., Collins B. S., Gabbay R. A., Green J., Maruthur N. M., Rosas S. E., Del Prato S., Mathieu C., Mingrone G., Rossing P., Tankova T., Tsapas A., Buse J. B.. Management of Hyperglycemia in Type 2 Diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) Diabetes Care. 2022;45(11):2753–2786. doi: 10.2337/dci22-0034. PubMed DOI PMC
Wang L., Waltenberger B., Pferschy-Wenzig E.-M., Blunder M., Liu X., Malainer C., Blazevic T., Schwaiger S., Rollinger J. M., Heiss E. H., Schuster D., Kopp B., Bauer R., Stuppner H., Dirsch V. M., Atanasov A. G.. Natural Product Agonists of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ): A Review. Biochem. Pharmacol. 2014;92(1):73–89. doi: 10.1016/j.bcp.2014.07.018. PubMed DOI PMC
Ahmadian M., Suh J. M., Hah N., Liddle C., Atkins A. R., Downes M., Evans R. M.. PPARγ Signaling and Metabolism: The Good, the Bad and the Future. Nat. Med. 2013;19(5):557–566. doi: 10.1038/nm.3159. PubMed DOI PMC
Soccio R. E., Chen E. R., Lazar M. A.. Thazolidinediones and the Promise of Insulin Sensitization in Type 2 Diabetes. Cell Metab. 2014;20(4):573–591. doi: 10.1016/j.cmet.2014.08.005. PubMed DOI PMC
Kaur, S. ; Wong, H. K. ; Southall, M. D. ; Mahmood, K. ; Kaur, S. ; Wong, H. K. ; Southall, M. D. ; Mahmood, K. . Paulownia Tomentosa (Princess Tree) Extract Reduces DNA Damage and Induces DNA Repair Processes in Skin Cells. In Advances in DNA Repair; IntechOpen, 2015. 10.5772/60005. DOI
Molčanová L., Treml J., Brezáni V., Maršík P., Kurhan S., Trávníček Z., Uhrin P., Šmejkal K.. C-Geranylated Flavonoids from Paulownia Tomentosa Steud. Fruit as Potential Anti-Inflammatory Agents. J. Ethnopharmacol. 2022;296:115509. doi: 10.1016/j.jep.2022.115509. PubMed DOI
Donath M. Y., Shoelson S. E.. Type 2 Diabetes as an Inflammatory Disease. Nat. Rev. Immunol. 2011;11(2):98–107. doi: 10.1038/nri2925. PubMed DOI
Zhu, Z.-H. ; Chao, C.-J. ; Lu, X.-Y. ; Xiong, Y. G. . Paulownia in China: Cultivation and Utilization; Asian Network for Biological Science and International Development Research Centre, 1986.
Wei, H. Morus Alba L. (Sang, White Mulberry). In Dietary Chinese Herbs: Chemistry, Pharmacology and Clinical Evidence; Liu, Y. , Wang, Z. , Zhang, J. , Eds.; Springer: Vienna, 2015; pp 721–730 10.1007/978-3-211-99448-1_81. DOI
Liu C.-H., Liu F., Xiong L.. Medicinal Parts of Mulberry (Leaf, Twig, Root Bark, and Fruit) and Compounds Thereof Are Excellent Traditional Chinese Medicines and Foods for Diabetes Mellitus. J. Funct. Foods. 2023;106:105619. doi: 10.1016/j.jff.2023.105619. DOI
Yuan Q., Zhao L.. The Mulberry (Morus Alba L.) FruitA Review of Characteristic Components and Health Benefits. J. Agric. Food Chem. 2017;65(48):10383–10394. doi: 10.1021/acs.jafc.7b03614. PubMed DOI
Polumackanycz M., Sledzinski T., Goyke E., Wesolowski M., Viapiana A.. A Comparative Study on the Phenolic Composition and Biological Activities of Morus Alba L. Commercial Samples. Molecules. 2019;24(17):3082. doi: 10.3390/molecules24173082. PubMed DOI PMC
Schneiderová K., Šmejkal K.. Phytochemical Profile of Paulownia Tomentosa (Thunb). Steud. Phytochem Rev. 2015;14(5):799–833. doi: 10.1007/s11101-014-9376-y. PubMed DOI PMC
de Paulo Farias D., de Araújo F. F., Neri-Numa I. A., Pastore G. M.. Antidiabetic Potential of Dietary Polyphenols: A Mechanistic Review. Food Res. Int. 2021;145:110383. doi: 10.1016/j.foodres.2021.110383. PubMed DOI
Sarkar D., Christopher A., Shetty K.. Phenolic Bioactives From Plant-Based Foods for Glycemic Control. Front. Endocrinol. 2022;12:727503. doi: 10.3389/fendo.2021.727503. PubMed DOI PMC
Babu P. V. A., Liu D., Gilbert E. R.. Recent Advances in Understanding the Anti-Diabetic Actions of Dietary Flavonoids. J. Nutr. Biochem. 2013;24(11):1777–1789. doi: 10.1016/j.jnutbio.2013.06.003. PubMed DOI PMC
Šmejkal K., Grycová L., Marek R., Lemière F., Jankovská D., Forejtníková H., Vančo J., Suchý V.. C-Geranyl Compounds from Paulownia Tomentosa Fruits. J. Nat. Prod. 2007;70(8):1244–1248. doi: 10.1021/np070063w. PubMed DOI
Hanáková Z., Hošek J., Babula P., Dall’Acqua S., Václavík J., Šmejkal K.. C-Geranylated Flavanones from Paulownia Tomentosa Fruits as Potential Anti-Inflammatory Compounds Acting via Inhibition of TNF-α Production. J. Nat. Prod. 2015;78(4):850–863. doi: 10.1021/acs.jnatprod.5b00005. PubMed DOI
Šmejkal K., Chudík S., Klouček P., Marek R., Cvačka J., Urbanová M., Julínek O., Kokoška L., Šlapetová T., Holubová P., Zima A., Dvorská M.. Antibacterial C-Geranylflavonoids from Paulownia Tomentosa Fruits. J. Nat. Prod. 2008;71(4):706–709. doi: 10.1021/np070446u. PubMed DOI
Molčanová L., Kauerová T., Dall’Acqua S., Maršík P., Kollár P., Šmejkal K.. Antiproliferative and Cytotoxic Activities of C-Geranylated Flavonoids from Paulownia Tomentosa Steud. Fruit. Bioorg. Chem. 2021;111:104797. doi: 10.1016/j.bioorg.2021.104797. PubMed DOI
Navrátilová A., Schneiderová K., Veselá D., Hanáková Z., Fontana A., Dall’Acqua S., Cvačka J., Innocenti G., Novotná J., Urbanová M., Pelletier J., Čížek A., Žemličková H., Šmejkal K.. Minor C-Geranylated Flavanones from Paulownia Tomentosa Fruits with MRSA Antibacterial Activity. Phytochemistry. 2013;89:104–113. doi: 10.1016/j.phytochem.2013.01.002. PubMed DOI
Hanáková Z., Hošek J., Kutil Z., Temml V., Landa P., Vaněk T., Schuster D., Dall’Acqua S., Cvačka J., Polanský O., Šmejkal K.. Anti-Inflammatory Activity of Natural Geranylated Flavonoids: Cyclooxygenase and Lipoxygenase Inhibitory Properties and Proteomic Analysis. J. Nat. Prod. 2017;80(4):999–1006. doi: 10.1021/acs.jnatprod.6b01011. PubMed DOI
Smejkal K., Holubova P., Zima A., Muselik J., Dvorska M.. Antiradical Activity of Paulownia Tomentosa (Scrophulariaceae) Extracts. Molecules. 2007;12(6):1210–1219. doi: 10.3390/12061210. PubMed DOI PMC
Šmejkal K., Babula P., Šlapetová T., Brognara E., Dall’Acqua S., Žemlička M., Innocenti G., Cvačka J.. Cytotoxic Activity of C-Geranyl Compounds from Paulownia Tomentosa Fruits. Planta Med. 2008;74(12):1488–1491. doi: 10.1055/s-2008-1081339. PubMed DOI
Šmejkal K., Svačinová J., Šlapetová T., Schneiderová K., Dall’Acqua S., Innocenti G., Závalová V., Kollár P., Chudík S., Marek R., Julínek O., Urbanová M., Kartal M., Csöllei M., Doležal K.. Cytotoxic Activities of Several Geranyl-Substituted Flavanones. J. Nat. Prod. 2010;73(4):568–572. doi: 10.1021/np900681y. PubMed DOI
Zelová H., Hanáková Z., Čermáková Z., Šmejkal K., Dalĺ Acqua S., Babula P., Cvačka J., Hošek J.. Evaluation of Anti-Inflammatory Activity of Prenylated Substances Isolated from Morus Alba and Morus Nigra . J. Nat. Prod. 2014;77(6):1297–1303. doi: 10.1021/np401025f. PubMed DOI
Vochyánová Z., Pokorná M., Rotrekl D., Smékal V., Fictum P., Suchý P., Gajdziok J., Šmejkal K., Hošek J.. Prenylated Flavonoid Morusin Protects against TNBS-Induced Colitis in Rats. PLoS One. 2017;12(8):e0182464. doi: 10.1371/journal.pone.0182464. PubMed DOI PMC
Čulenová M., Sychrová A., Hassan S. T. S., Berchová-Bímová K., Svobodová P., Helclová A., Michnová H., Hošek J., Vasilev H., Suchý P., Kuzminová G., Švajdlenka E., Gajdziok J., Čížek A., Suchý V., Šmejkal K.. Multiple In Vitro Biological Effects of Phenolic Compounds from Morus Alba Root Bark. J. Ethnopharmacol. 2020;248:112296. doi: 10.1016/j.jep.2019.112296. PubMed DOI
Khazneh E., Hřibová P., Hošek J., Suchý P., Kollár P., Pražanová G., Muselík J., Hanaková Z., Václavík J., Miłek M., Legáth J., Šmejkal K.. The Chemical Composition of Achillea Wilhelmsii C. Koch and Its Desirable Effects on Hyperglycemia, Inflammatory Mediators and Hypercholesterolemia as Risk Factors for Cardiometabolic Disease. Molecules. 2016;21(4):404. doi: 10.3390/molecules21040404. PubMed DOI PMC
PDB . RCSB PDB: Homepage Protein Data Bank, https://www.rcsb.org/ (accessed Jan 27, 2024).
Kliewer S. A., Umesono K., Noonan D. J., Heyman R. A., Evans R. M.. Convergence of 9-Cis Retinoic Acid and Peroxisome Proliferator Signalling Pathways through Heterodimer Formation of Their Receptors. Nature. 1992;358(6389):771–774. doi: 10.1038/358771a0. PubMed DOI PMC
Peyrin-Biroulet L., Beisner J., Wang G., Nuding S., Oommen S. T., Kelly D., Parmentier-Decrucq E., Dessein R., Merour E., Chavatte P., Grandjean T., Bressenot A., Desreumaux P., Colombel J.-F., Desvergne B., Stange E. F., Wehkamp J., Chamaillard M.. Peroxisome Proliferator-Activated Receptor Gamma Activation Is Required for Maintenance of Innate Antimicrobial Immunity in the Colon. Proc. Natl. Acad. Sci. U.S.A. 2010;107(19):8772–8777. doi: 10.1073/pnas.0905745107. PubMed DOI PMC
Atanasov A. G., Wang J. N., Gu S. P., Bu J., Kramer M. P., Baumgartner L., Fakhrudin N., Ladurner A., Malainer C., Vuorinen A., Noha S. M., Schwaiger S., Rollinger J. M., Schuster D., Stuppner H., Dirsch V. M., Heiss E. H.. Honokiol: A Non-Adipogenic PPARγ Agonist from Nature. Biochim. Biophys. Acta, Gen. Subj. 2013;1830(10):4813–4819. doi: 10.1016/j.bbagen.2013.06.021. PubMed DOI PMC
Dreier D., Resetar M., Temml V., Rycek L., Kratena N., Schnürch M., Schuster D., M Dirsch V., D Mihovilovic M.. Magnolol Dimer-Derived Fragments as PPARγ-Selective Probes. Org. Biomol. Chem. 2018;16(38):7019–7028. doi: 10.1039/C8OB01745J. PubMed DOI PMC
Kucerova-Chlupacova M., Halakova D., Majekova M., Treml J., Stefek M., Soltesova Prnova M.. (4-Oxo-2-Thioxothiazolidin-3-Yl)Acetic Acids as Potent and Selective Aldose Reductase Inhibitors. Chem. Biol. Interact. 2020;332:109286. doi: 10.1016/j.cbi.2020.109286. PubMed DOI
Lima K. G., Schneider Levorse V. G., Rosa Garcia M. C., de Souza Basso B., Pasqualotto Costa B., Antunes G. L., Luft C., Haute G. V., Leal Xavier L., Donadio M. V. F., Rodrigues de Oliveira J.. Octyl Gallate Induces Hepatic Steatosis in HepG2 Cells through the Regulation of SREBP-1c and PPAR-Gamma Gene Expression. EXCLI J. 2020;19:962–971. doi: 10.17179/excli2020-2214. PubMed DOI PMC
Treml J., Leláková V., Šmejkal K., Paulíčková T., Labuda Š., Granica S., Havlík J., Jankovská D., Padrtová T., Hošek J.. Antioxidant Activity of Selected Stilbenoid Derivatives in a Cellular Model System. Biomolecules. 2019;9(9):468. doi: 10.3390/biom9090468. PubMed DOI PMC
Treml J., Šalamúnová P., Hanuš J., Hošek J.. The Effect of Curcumin Encapsulation into Yeast Glucan Particles on Antioxidant Enzyme Expression in Vitro. Food Funct. 2021;12:1954. doi: 10.1039/D0FO03237A. PubMed DOI
Stadlbauer V., Lanzerstorfer P., Neuhauser C., Weber F., Stübl F., Weber P., Wagner M., Plochberger B., Wieser S., Schneckenburger H., Weghuber J.. Fluorescence Microscopy-Based Quantitation of GLUT4 Translocation: High Throughput or High Content? Int. J. Mol. Sci. 2020;21(21):7964. doi: 10.3390/ijms21217964. PubMed DOI PMC
Stadlbauer V., Haselgrübler R., Lanzerstorfer P., Plochberger B., Borgmann D., Jacak J., Winkler S. M., Schröder K., Höglinger O., Weghuber J.. Biomolecular Characterization of Putative Antidiabetic Herbal Extracts. PLoS One. 2016;11(1):e0148109. doi: 10.1371/journal.pone.0148109. PubMed DOI PMC
Lanzerstorfer P., Stadlbauer V., Chtcheglova L. A., Haselgrübler R., Borgmann D., Wruss J., Hinterdorfer P., Schröder K., Winkler S. M., Höglinger O., Weghuber J.. Identification of Novel Insulin Mimetic Drugs by Quantitative Total Internal Reflection Fluorescence (TIRF) Microscopy. Br. J. Pharmacol. 2014;171(23):5237–5251. doi: 10.1111/bph.12845. PubMed DOI PMC
Haselgrübler R., Stübl F., Stadlbauer V., Lanzerstorfer P., Weghuber J.. An In Ovo Model for Testing Insulin-Mimetic Compounds. J. Visualized Exp. 2018;134:57237. doi: 10.3791/57237. PubMed DOI PMC
Haselgrübler R., Stübl F., Essl K., Iken M., Schröder K., Weghuber J.. Gluc-HET, a Complementary Chick Embryo Model for the Characterization of Antidiabetic Compounds. PLoS One. 2017;12(8):e0182788. doi: 10.1371/journal.pone.0182788. PubMed DOI PMC
Heckmann M., Klanert G., Sandner G., Lanzerstorfer P., Auer M., Weghuber J.. Fluorescence Microscopy-Based Quantitation of GLUT4 Translocation. Methods Appl. Fluoresc. 2022;10(2):022001. doi: 10.1088/2050-6120/ac4998. PubMed DOI
Haselgrübler R., Stadlbauer V., Stübl F., Schwarzinger B., Rudzionyte I., Himmelsbach M., Iken M., Weghuber J.. Insulin Mimetic Properties of Extracts Prepared from Bellis Perennis. Molecules. 2018;23(10):2605. doi: 10.3390/molecules23102605. PubMed DOI PMC
Treml J., Vecerova P., Herczogova P., Smejkal K.. Direct and Indirect Antioxidant Effects of Selected Plant Phenolics in Cell-Based Assays. Molecules. 2021;26(9):2534. doi: 10.3390/molecules26092534. PubMed DOI PMC
Vochyánová Z., Bartošová L., Bujdáková V., Fictum P., Husník R., Suchý P., Šmejkal K., Hošek J.. Diplacone and Mimulone Ameliorate Dextran Sulfate Sodium-Induced Colitis in Rats. Fitoterapia. 2015;101:201–207. doi: 10.1016/j.fitote.2015.01.012. PubMed DOI
Zhang W.-Y., Lee J.-J., Kim Y., Kim I.-S., Han J.-H., Lee S.-G., Ahn M.-J., Jung S.-H., Myung C.-S.. Effect of Eriodictyol on Glucose Uptake and Insulin Resistance in Vitro. J. Agric. Food Chem. 2012;60(31):7652–7658. doi: 10.1021/jf300601z. PubMed DOI
Song Y. H., Uddin Z., Jin Y. M., Li Z., Curtis-Long M. J., Kim K. D., Cho J. K., Park K. H.. Inhibition of Protein Tyrosine Phosphatase (PTP1B) and α-Glucosidase by Geranylated Flavonoids from Paulownia Tomentosa . J. Enzyme Inhib. Med. Chem. 2017;32(1):1195–1202. doi: 10.1080/14756366.2017.1368502. PubMed DOI PMC
Zima A., Hošek J., Treml J., Muselík J., Suchý P., Pražanová G., Lopes A., Žemlička M.. Antiradical and Cytoprotective Activities of Several C-Geranyl-Substituted Flavanones from Paulownia Tomentosa Fruit. Molecules. 2010;15(9):6035–6049. doi: 10.3390/molecules15096035. PubMed DOI PMC
Günther I., Rimbach G., Nevermann S., Neuhauser C., Stadlbauer V., Schwarzinger B., Schwarzinger C., Ipharraguerre I. R., Weghuber J., Lüersen K.. Avens Root (Geum Urbanum L.) Extract Discovered by Target-Based Screening Exhibits Antidiabetic Activity in the Hen’s Egg Test Model and Drosophila Melanogaster. Front. Pharmacol. 2021;12:794404. doi: 10.3389/fphar.2021.794404. PubMed DOI PMC
Ollinger N., Neuhauser C., Schwarzinger B., Wallner M., Schwarzinger C., Blank-Landeshammer B., Hager R., Sadova N., Drotarova I., Mathmann K., Karamouzi E., Panopoulos P., Rimbach G., Lüersen K., Weghuber J., Röhrl C.. Anti-Hyperglycemic Effects of Oils and Extracts Derived from Sea Buckthorn - A Comprehensive Analysis Utilizing In Vitro and In Vivo Models. Mol. Nutr. Food Res. 2022;66(12):e2101133. doi: 10.1002/mnfr.202101133. PubMed DOI PMC
Yoon J. S., Lee H.-J., Sim D. Y., Im E., Park J. E., Park W. Y., Koo J. I., Shim B. S., Kim S.-H.. Moracin D Induces Apoptosis in Prostate Cancer Cells via Activation of PPAR Gamma/PKC Delta and Inhibition of PKC Alpha. Phytother. Res. 2021;35(12):6944–6953. doi: 10.1002/ptr.7313. PubMed DOI
Kwon R.-H., Thaku N., Timalsina B., Park S.-E., Choi J.-S., Jung H.-A.. Inhibition Mechanism of Components Isolated from Morus Alba Branches on Diabetes and Diabetic Complications via Experimental and Molecular Docking Analyses. Antioxidants. 2022;11(2):383. doi: 10.3390/antiox11020383. PubMed DOI PMC
Zhang M., Chen M., Zhang H.-Q., Sun S., Xia B., Wu F.-H.. In Vivo Hypoglycemic Effects of Phenolics from the Root Bark of Morus Alba . Fitoterapia. 2009;80(8):475–477. doi: 10.1016/j.fitote.2009.06.009. PubMed DOI
Kwak H. J., Kim J., Kim S.-Y., Park S., Choi J., Kim S. H.. Moracin E and M Isolated from Morus Alba Linné Induced the Skeletal Muscle Cell Proliferation via PI3K-Akt-mTOR Signaling Pathway. Sci. Rep. 2023;13(1):20570. doi: 10.1038/s41598-023-47411-2. PubMed DOI PMC
Paudel P., Yu T., Seong S. H., Kuk E. B., Jung H. A., Choi J. S.. Protein Tyrosine Phosphatase 1B Inhibition and Glucose Uptake Potentials of Mulberrofuran G, Albanol B, and Kuwanon G from Root Bark of Morus Alba L. in Insulin-Resistant HepG2 Cells: An In Vitro and In Silico Study. Int. J. Mol. Sci. 2018;19(5):1542. doi: 10.3390/ijms19051542. PubMed DOI PMC
Ha M. T., Seong S. H., Nguyen T. D., Cho W.-K., Ah K. J., Ma J. Y., Woo M. H., Choi J. S., Min B. S.. Chalcone Derivatives from the Root Bark of Morus Alba L. Act as Inhibitors of PTP1B and α-Glucosidase. Phytochemistry. 2018;155:114–125. doi: 10.1016/j.phytochem.2018.08.001. PubMed DOI
Erlund I., Meririnne E., Alfthan G., Aro A.. Plasma Kinetics and Urinary Excretion of the Flavanones Naringenin and Hesperetin in Humans after Ingestion of Orange Juice and Grapefruit Juice. J. Nutr. 2001;131(2):235–241. doi: 10.1093/jn/131.2.235. PubMed DOI
You B. H., BasavanaGowda M. K., Lee J. U., Chin Y.-W., Choi W. J., Choi Y. H.. Pharmacokinetic Properties of Moracin C in Mice. Planta Med. 2021;87:642–651. doi: 10.1055/a-1321-1519. PubMed DOI