The Chemical Composition of Achillea wilhelmsii C. Koch and Its Desirable Effects on Hyperglycemia, Inflammatory Mediators and Hypercholesterolemia as Risk Factors for Cardiometabolic Disease

. 2016 Mar 25 ; 21 (4) : 404. [epub] 20160325

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27023504

This study was done to identify the content compounds of Achillea wilhelmsii (A. wilhelmsii) and to evaluate its hypoglycemic and anti-hypercholesterolemic activity and effect on inflammatory mediators. The extracts and fractions of A. wilhelmsii were thoroughly analyzed using high performance liquid chromatography (HPLC), and the total content of phenols and flavonoids was determined. The hypoglycemic activity was evaluated in vivo using alloxan-induced diabetic mice. The effect upon inflammatory mediators was evaluated in vitro using the human monocytic leukemia cell line (THP-1). The anti-hypercholesterolemic activity was evaluated in vitro using the 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase assay kit. The water extract (WE)-treated group showed the highest reduction in the fasting blood glucose levels (FBGL). The chloroform fraction (CF) and ethyl acetate fraction (EAF) both showed a significant ability to reduce the secretion of tumor necrosis factor alpha (TNF-α). The EAF, however, also attenuated the levels of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9). The CF showed the most significant 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) inhibition activity. The five main compounds in the CF were isolated and identified. Out of the five compounds in the CF, 1β,10β-epoxydesacetoxymatricarin (CP1) and leucodin (CP2) showed the highest anti-hypercholesterolemic potential. A molecular docking study provided corresponding results.

Zobrazit více v PubMed

Dokhani S.H., Cottrell T., Khajeddin J., Mazza G. Analysis of aroma and phenolic components of selected Achillea species. Plant Foods Hum. Nutr. 2005;60:55–62. doi: 10.1007/s11130-005-5100-9. PubMed DOI

Trifunovic S., Vajs V., Juranic Z., Zizak Z., Tesevic V., Macura S., Milosavljevic S. Cytotoxic constituents of Achillea clavennae from Montenegro. Phytochemistry. 2006;67:887–893. doi: 10.1016/j.phytochem.2006.02.026. PubMed DOI

Rezaeipoor R., Saeidnia M., Kamalinejad M. Immunosuppressive activity of Achillea talagonica on humoral immune responses in experimental animals. J. Ethnopharmacol. 2005;14:221–227. doi: 10.1016/S0378-8741(98)00191-3. PubMed DOI

Konyalioglu S., Karamenderes C. The protective effects of Achillea L. species native in Turkey against H2O2-induced oxidative damage in human erythrocytes and leucocytes. J. Ethnopharmacol. 2005;14:221–227. doi: 10.1016/j.jep.2005.06.018. PubMed DOI

Kotan R., Cakir A., Dadasoglu F., Aydin T., Cakmakci R., Ozar H., Kordali S., Mete E., Dikbas N. Antibacterial activities of essential oils and extracts of Turkish achillea, Satureja and Thymus species against plant pathogenic bacteria. J. Sci. Food Agric. 2010;15:145–160. doi: 10.1002/jsfa.3799. PubMed DOI

Stojanovic G., Radulovic N., Hashimoto T., Palic R. In vitro antimicrobial activity of extracts of four Achillea species: The composition of Achillea clavennae L. (Asteraceae) extract. J. Ethnopharmacol. 2005;101:185–190. doi: 10.1016/j.jep.2005.04.026. PubMed DOI

Yazdanparast R., Ardestani A., Jamshidi S.H. Experimental diabetes treated with Achillea santolina: Effect on pancreatic oxidative parameters. J. Ethnopharmacol. 2007;112:13–18. doi: 10.1016/j.jep.2007.01.030. PubMed DOI

Karamenderes C., Apaydin S. Antispasmodic effect of Achillea nobilis L. subsp. Sipylea (O. Schwarz) Bassler on the rat isolated duodenum. J. Ethnopharmacol. 2003;84:175–179. doi: 10.1016/S0378-8741(02)00296-9. PubMed DOI

Potrich F.B., Allemand A., da Silva L.M., dos Santos A.C., Baggio C.H., Freitas C.S., Mendes D.A.G.B., Andre E., Werner M.F.P., Marques M.C.A. Antiulcerogenic activity of hydroalcoholic extract of Achillea millefolium L.: Involvement of the antioxidant system. J. Ethnopharmacol. 2010;130:85–92. doi: 10.1016/j.jep.2010.04.014. PubMed DOI

Cavalcanti A.M., Baggio C.H., Freitas C.S., Rieck L., de Sousa R.S., Da Silva-Santos J.E., Mesia-Vela S., Marques M.C.A. Safety and antiulcer efficacy studies of Achillea millefolium L. after chronic treatment in Wistar rats. J. Ethnopharmacol. 2006;107:277–284. doi: 10.1016/j.jep.2006.03.011. PubMed DOI

Tuberoso C.I.G., Montoro P., Piacente S., Corona G., Deiana M., Dessi M.A., Pizza C., Cabras P. Flavonoid characterization and antioxidant activity of hydroalcoholic extracts from Achillea ligustica All. J. Pharm. Biomed. Anal. 2009;50:440–448. doi: 10.1016/j.jpba.2009.05.032. PubMed DOI

Kaliora A.C., Dedoussis G.V.Z. Natural antioxidant compounds in risk factors for CVD. Pharmacol. Res. 2007;56:99–109. doi: 10.1016/j.phrs.2007.04.018. PubMed DOI

Tosun F., Kizilay C.A., Sener B., Vural M., Palittapongarnpim P. Antimycobacterial screening of some Turkish plants. J. Ethnopharmacol. 2004;95:273–275. doi: 10.1016/j.jep.2004.07.011. PubMed DOI

Shetty A.K., Rashmi R., Rajan M.G.R., Sambaiah K., Salimath P.V. Antidiabetic influence of quercetin in Streptozotocin-induced diabetic rats. Nutr. Res. 2004;24:373–381. doi: 10.1016/j.nutres.2003.11.010. DOI

Jamkhande P.G., Chandak P.G., Dhawale S.C., Barde S.R., Tidke P.S., Sakhare R.S. Therapeutic approaches to drug targets in atherosclerosis. Saudi Pharm. J. 2014;22:179–190. doi: 10.1016/j.jsps.2013.04.005. PubMed DOI PMC

Bhatnagar D., Soran H., Durrington P.N. Hypercholesterolaemia and its management. BMJ. 2008;337 doi: 10.1136/bmj.a993. PubMed DOI

Buhaescu I., Izzedine H. Mevalonate pathway: A review of clinical and therapeutical implications. Clin. Biochem. 2007;40:575–584. doi: 10.1016/j.clinbiochem.2007.03.016. PubMed DOI

Manzoni M., Rollini M. Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl. Microbiol. Biotechnol. 2002;58:555–564. PubMed

Ferguson J.F., Ryan M.F., Gibney E.R., Brennan L., Roche H.M., Reilly M.P. Dietary isoflavone intake is associated with evoked responses to inflammatory cardiometabolic stimuli and improved glucose homeostasis in healthy volunteers. Nutr. Metab. Cardiovasc. Dis. 2014;24:996–1003. doi: 10.1016/j.numecd.2014.03.010. PubMed DOI PMC

Braun L.M., Rodríguez D.A., Evenson K.R., Hirsch J.A., Moore K.A., Roux A.V.D. Walkability and cardiometabolic risk factors: Cross-sectional and longitudinal associations from the Multi-Ethnic Study of Atherosclerosis. Health Place. 2016;39:9–17. doi: 10.1016/j.healthplace.2016.02.006. PubMed DOI PMC

Carney R., Cotter J., Bradshaw T., Firth J., Yung A.R. Cardiometabolic risk factors in young people at ultra-high risk for psychosis: A systematic review and meta-analysis. Schizophr. Res. 2016;170:290–300. doi: 10.1016/j.schres.2016.01.010. PubMed DOI

Bastien M., Poirier P., Lemieux I., Despres J.P. Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog. Cardiovasc. Dis. 2014;56:369–381. doi: 10.1016/j.pcad.2013.10.016. PubMed DOI

Mathieu P., Poirier P., Pibarot P., Lemieux I., Després J.P. Visceral obesity: The link among inflammation, hypertension, and cardiovascular disease. Hypertension. 2009;53:577–584. doi: 10.1161/HYPERTENSIONAHA.108.110320. PubMed DOI

Moy F.M., Loh D.A. Cardiometabolic risks profile of normal weight obese and multi-ethnic women in a developing country. Maturitas. 2015;81:389–393. doi: 10.1016/j.maturitas.2015.04.011. PubMed DOI

Bernatoniene J., Petkeviciute Z., Kalveniene Z., Masteikova R., Draksiene G., Muselik J., Bernatoniene R., Lazauskas R., Savickas A. The investigation of phenolic compounds and technological properties of Leonurus, Crataegus and Ginkgo extracts. J. Med. Plants Res. 2010;4:925–931. doi: 10.5897/JMPR10.111. DOI

Soto C., Mena R., Luna J., Cerbon M., Larrieta E., Vital P., Uriae E., Sancheza M., Recobaa R., Barrona H., et al. Silymarin induces recovery of pancreatic function after alloxan damage in rats. Life Sci. 2004;75:2167–2180. doi: 10.1016/j.lfs.2004.04.019. PubMed DOI

Ahlem S., Khaled H., Wafa M., Sofiane B., Mohamed D., Jean-Claude M., Abdelfattah E.F. Oral administration of Eucalyptus globulus extract reduces the alloxan-induced oxidative stress in rats. Chem. Biol. Interact. 2009;181:71–76. doi: 10.1016/j.cbi.2009.06.006. PubMed DOI

Valant-Vetschera K.M. Flavonoid glycoside accumulation trends of Achillea nobilis L. and related species. Biochem. Syst. Ecol. 1987;15:45–52. doi: 10.1016/0305-1978(87)90078-0. DOI

Marchart E., Kopp B. Capillary electrophoretic separation and quantification of flavone-O- and C-glycosides in Achillea setacea W. et K. J. Chromatogr. B. 2003;792:363–368. doi: 10.1016/S1570-0232(03)00262-9. PubMed DOI

Glasl S., Mucaji P., Werner I., Presser A., Jurenitsch J. Sesquiterpenes and flavonoid aglycones from a Hungarian taxon of the Achillea millefolium group. Z. Naturforsch. C. 2002;57:976–982. doi: 10.1515/znc-2002-11-1203. PubMed DOI

Moradkhani S., Ayatollahi A.M., Ghanadian M., Moin M.R., Razavizadeh M., Shahlaei M. Phytochemical analysis and metal-chelation activity of Achillea tenuifolia Lam. Iran. J. Pharm. Res. 2012;11:177–183. PubMed PMC

Saeidnia S., Gohari A.R., Mokhber-Dezfuli N., Kiuchi F. A review on phytochemistry and medicinal properties of the genus Achillea. Daru. 2011;19:173–186. PubMed PMC

Vessal M., Hemmati M., Vasei M. Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2003;135:357–364. doi: 10.1016/S1532-0456(03)00140-6. PubMed DOI

Cazarolli L.H., Kappel V.D., Pereira D.F., Moresco H.H., Brighente I.M., Pizzolatti M.G., Silva F.R.M.B. Anti-hyperglycemic action of apigenin-6-C-β-fucopyranoside from Averrhoa carambola. Fitoterapia. 2012;83:1176–1183. doi: 10.1016/j.fitote.2012.07.003. PubMed DOI

Zaidi S.F., Muhammad J.S., Shahryar S., Usmanghani K., Gilani A.H., Jafri W., Sugiyama T. Anti-inflammatory and cytoprotective effects of selected Pakistani medicinal plants in Helicobacter pylori-infected gastric epithelial cells. J. Ethnopharmacol. 2012;141:403–410. doi: 10.1016/j.jep.2012.03.001. PubMed DOI

Hosek J., Zavalova V., Smejkal K., Bartos M. Effect of diplacone on LPS-induced inflammatory gene expression in macrophages. Folia Biol. Praha. 2010;56:124–130. PubMed

Talhouk R.S., Chin J.R., Unemori E.N., Werb Z.E.N.A., Bissell M.J. Proteinases of the mammary gland: Developmental regulation in vivo and vectorial secretion in culture. Development. 1991;112:439–449. PubMed PMC

Bernstein F.C., Koetzle T.F., Williams G.J., Meyer E.F., Brice M.D., Rodgers J.R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: A computer-based archival file for macromolecular structures. Arch. Biochem. Biophys. 1978;185:584–591. doi: 10.1016/0003-9861(78)90204-7. PubMed DOI

Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...