From no-confidence to nitric oxide acknowledgement: a story of bacterial nitric-oxide reductase
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
11271799
DOI
10.1007/bf02908943
Knihovny.cz E-zdroje
- MeSH
- Bacteria enzymologie MeSH
- oxid dusnatý metabolismus MeSH
- oxidoreduktasy chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- nitric-oxide reductase MeSH Prohlížeč
- oxid dusnatý MeSH
- oxidoreduktasy MeSH
The review briefly summarizes current knowledge of the bacterial nitric-oxide reductase (NOR). This membrane enzyme consists of two subunits, the smaller one contains haem C and the larger one two haems B and nonhaem iron. The protein sequence and structure of metal centres demonstrate the relationship of NOR to the family of terminal oxidases. The binuclear Fe-Fe reaction centre, consisting of antiferromagnetically coupled haem B and nonhaem iron, is analogous to Fe-Cu centre of terminal oxidases. The data on the structure and function of NOR and terminal oxidases suggest that all these enzymes are closely evolutionally related. The catalytic properties are determined most of all by the relatively high toxicity of nitric oxide as a substrate and the resulting strong need to maintain its concentration at nanomolar levels. A kinetic model of the action of the enzyme comprises substrate inhibition. NOR does not conserve the free energy of nitric oxide reduction because it does not work as a proton pump and, moreover, the protons coming into the reaction are taken from periplasm, i.e. they do not cross the membrane.
Zobrazit více v PubMed
J Biol Chem. 1989 Apr 5;264(10):5694-9 PubMed
Biochem J. 1990 Jul 15;269(2):423-9 PubMed
Biochem J. 1987 Sep 15;246(3):779-82 PubMed
Biochemistry. 1998 Sep 22;37(38):13102-9 PubMed
J Bacteriol. 1986 May;166(2):604-8 PubMed
Arch Microbiol. 1988;149(6):492-8 PubMed
Biochem Biophys Res Commun. 1982 Aug 31;107(4):1504-7 PubMed
FEBS Lett. 1999 Apr 1;448(1):157-9 PubMed
Eur J Biochem. 1994 Dec 1;226(2):731-7 PubMed
J Bacteriol. 1989 Jun;171(6):3288-97 PubMed
Biochemistry. 1994 Mar 15;33(10):3113-9 PubMed
Biochemistry. 1998 Mar 17;37(11):3994-4000 PubMed
Eur J Biochem. 1994 Jun 1;222(2):293-303 PubMed
Arch Microbiol. 1984 Jan;137(1):79-84 PubMed
Antonie Van Leeuwenhoek. 1997 Feb;71(1-2):43-58 PubMed
Free Radic Res. 1996 May;24(5):343-9 PubMed
Science. 1991 Nov 15;254(5034):1001-3 PubMed
J Bacteriol. 1996 Apr;178(7):1866-71 PubMed
Biochem Biophys Res Commun. 1999 Aug 27;262(2):562-4 PubMed
Biochem Biophys Res Commun. 1979 Mar 30;87(2):355-62 PubMed
FEBS Lett. 1994 Mar 14;341(1):1-4 PubMed
Microbiol Mol Biol Rev. 1997 Dec;61(4):533-616 PubMed
Mol Microbiol. 1997 Mar;23(5):893-907 PubMed
J Gen Microbiol. 1992 Mar;138(3):437-43 PubMed
J Bacteriol. 1985 Sep;163(3):837-40 PubMed
Eur J Biochem. 1994 Jan 15;219(1-2):481-90 PubMed
Biochem Biophys Res Commun. 1998 Oct 9;251(1):248-51 PubMed
FEMS Microbiol Lett. 1994 Aug 1;121(1):1-9 PubMed
J Bacteriol. 1999 Jul;181(13):4129-32 PubMed
Biochemistry. 1994 Mar 15;33(10):3120-7 PubMed
J Biol Chem. 1991 Jun 15;266(17):10899-905 PubMed
Folia Microbiol (Praha). 1999;44(6):587-624 PubMed
J Biochem. 1971 Aug;70(2):205-13 PubMed
J Biol Chem. 1991 Dec 5;266(34):22785-8 PubMed
Biochemistry. 1997 Nov 11;36(45):13809-15 PubMed
Eur J Biochem. 1996 Dec 15;242(3):592-600 PubMed
J Biol Chem. 1981 Jun 10;256(11):5459-65 PubMed
J Biol Chem. 1990 Jan 15;265(2):889-95 PubMed
J Biol Chem. 1977 Jan 10;252(1):212-8 PubMed
Orig Life Evol Biosph. 1992;20:199-231 PubMed
Biochem J. 1992 Aug 15;286 ( Pt 1):111-6 PubMed
Eur J Biochem. 1989 Feb 15;179(3):683-92 PubMed
DNA Res. 1996 Jun 30;3(3):109-36 PubMed
Antonie Van Leeuwenhoek. 1994;66(1-3):89-110 PubMed
Arch Microbiol. 1996 Jul;166(1):23-31 PubMed
J Biol Chem. 1988 Feb 15;263(5):2316-23 PubMed
J Bacteriol. 1997 Nov;179(21):6769-77 PubMed
Biochim Biophys Acta. 1997 Jan 16;1318(1-2):202-16 PubMed
Effect of peroxynitrite on dormant spores and germlings of Aspergillus fumigatus in vitro