Nitric oxide plays a role as second messenger in the ultraviolet-B irradiated green alga Chlorella pyrenoidosa
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- bílkoviny řas metabolismus MeSH
- buněčná membrána enzymologie MeSH
- Chlorella fyziologie účinky záření MeSH
- enzymy metabolismus MeSH
- oxid dusnatý fyziologie MeSH
- systémy druhého messengeru * MeSH
- ultrafialové záření * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bílkoviny řas MeSH
- enzymy MeSH
- oxid dusnatý MeSH
Nitric oxide (NO) stimulated the activity of plasma membrane H+-ATPase, 5'-nucleotidase, peroxidase, ascorbate peroxidase and glutathione reductase in ultraviolet B (UV-B) irradiated Chlorella pyrenoidosa. It also boosted the activity of nitrogen-metabolism enzymes such as nitrate reductase, nitrite reductase, glutamine synthetase, which were inhibited by UV-B irradiation. The chlorophyll fluorescence ratio (Fv/Fm) of the UV-B irradiated algae and decreased continuously after the cells were transferred to UV-B irradiation. A continuing decrease of the Fv/Fm was observed even after the cells were transferred to photosynthetically active radiation (PAR). After adaptation for 8 h under PAR (after treatment with nitric oxide), Fv/Fm recovered to 55 % of normal levels--without NO the value approached zero. Exogenous NO stopped the decay of chlorophyll and thylakoid membrane in cells exposed to UV-B irradiation. NO plays probably a key role in damage induced by UV-B irradiation in green algae.
Zobrazit více v PubMed
Folia Microbiol (Praha). 2002;47(1):61-7 PubMed
Anal Biochem. 1976 May 7;72:248-54 PubMed
Folia Microbiol (Praha). 1999;44(6):587-624 PubMed
Cell. 2003 May 16;113(4):469-82 PubMed
Photochem Photobiol. 2002 Aug;76(2):188-96 PubMed
Plant Physiol. 1994 Aug;105(4):1125-32 PubMed
Plant Physiol. 1995 May;108(1):1-6 PubMed
Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7161-6 PubMed
Mol Cell Biol. 1981 Feb;1(2):158-64 PubMed
Plant Physiol. 1949 Jan;24(1):1-15 PubMed
Curr Opin Plant Biol. 1999 Oct;2(5):369-74 PubMed
Curr Opin Plant Biol. 2002 Oct;5(5):388-95 PubMed
Folia Microbiol (Praha). 2000;45(5):457-63 PubMed
Folia Microbiol (Praha). 2003;48(4):501-9 PubMed
Planta. 2000 Jan;210(2):215-21 PubMed
FEBS Lett. 2001 Feb 2;489(2-3):237-42 PubMed
Eur J Biochem. 1997 Dec 1;250(2):567-77 PubMed
J Photochem Photobiol B. 2002 Jun;67(2):116-29 PubMed
Biochem J. 1994 Mar 15;298 Pt 3:593-8 PubMed
Folia Microbiol (Praha). 2006;51(2):121-8 PubMed
Folia Microbiol (Praha). 2001;46(4):353-8 PubMed
Plant Physiol. 1972 Oct;50(4):421-4 PubMed
Folia Microbiol (Praha). 2003;48(3):389-93 PubMed
Science. 2003 Oct 3;302(5642):100-3 PubMed
Folia Microbiol (Praha). 2000;45(3):197-203 PubMed
Folia Microbiol (Praha). 2002;47(6):709-16 PubMed
Ecotoxicol Environ Saf. 2008 Jan;69(1):150-7 PubMed
Nature. 1998 Aug 6;394(6693):585-8 PubMed
Biochem J. 1992 Jul 15;285 ( Pt 2):345-65 PubMed
Methods Enzymol. 1990;186:585-91 PubMed
Plant Physiol. 2004 Feb;134(2):849-57 PubMed
Folia Microbiol (Praha). 2008;53(4):343-50 PubMed
Photochem Photobiol. 2003 Feb;77(2):219-25 PubMed