Phytochromes and Their Role in Diurnal Variations of ROS Metabolism and Plant Proteome
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000738
Ministry of Education Youth and Sports
CZ.02.2.69/0.0/0.0/19_073/0016670
Ministry of Education Youth and Sports
PubMed
36430613
PubMed Central
PMC9695588
DOI
10.3390/ijms232214134
PII: ijms232214134
Knihovny.cz E-zdroje
- Klíčová slova
- cytokinin, diurnal, glutathione metabolism, light, peroxide, phytochrome, signaling,
- MeSH
- apoproteiny metabolismus MeSH
- Arabidopsis * metabolismus MeSH
- cytokininy metabolismus MeSH
- fytochrom B metabolismus MeSH
- fytochrom * genetika metabolismus MeSH
- glutathion metabolismus MeSH
- proteiny huseníčku * genetika metabolismus MeSH
- proteom genetika metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- apoproteiny MeSH
- cytokininy MeSH
- fytochrom B MeSH
- fytochrom * MeSH
- glutathion MeSH
- PHYD protein, Arabidopsis MeSH Prohlížeč
- proteiny huseníčku * MeSH
- proteom MeSH
- reaktivní formy kyslíku MeSH
Plants are sessile organisms forced to adapt to environmental variations recurring in a day-night cycle. Extensive research has uncovered the transcriptional control of plants' inner clock and has revealed at least some part of the intricate and elaborate regulatory mechanisms that govern plant diel responses and provide adaptation to the ever-changing environment. Here, we analyzed the proteome of the Arabidopsis thaliana mutant genotypes collected in the middle of the day and the middle of the night, including four mutants in the phytochrome (phyA, phyB, phyC, and phyD) and the circadian clock protein LHY. Our approach provided a novel insight into the diel regulations, identifying 640 significant changes in the night-day protein abundance. The comparison with previous studies confirmed that a large portion of identified proteins was a known target of diurnal regulation. However, more than 300 were novel oscillations hidden under standard growth chamber conditions or not manifested in the wild type. Our results indicated a prominent role for ROS metabolism and phytohormone cytokinin in the observed regulations, and the consecutive analyses confirmed that. The cytokinin signaling significantly increased at night, and in the mutants, the hydrogen peroxide content was lower, and the night-day variation seemed to be lost in the phyD genotype. Furthermore, regulations in the lhy and phyB mutants were partially similar to those found in the catalase mutant cat2, indicating shared ROS-mediated signaling pathways. Our data also shed light on the role of the relatively poorly characterized Phytochrome D, pointing to its connection to glutathione metabolism and the regulation of glutathione S-transferases.
Zobrazit více v PubMed
Covington M.F., Maloof J.N., Straume M., Kay S.A., Harmer S.L. Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol. 2008;9:R130. doi: 10.1186/gb-2008-9-8-r130. PubMed DOI PMC
Hazen S.P., Naef F., Quisel T., Gendron J.M., Chen H., Ecker J.R., Borevitz J.O., Kay S.A. Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays. Genome Biol. 2009;10:R17. doi: 10.1186/gb-2009-10-2-r17. PubMed DOI PMC
Paajanen P., Lane de Barros Dantas L., Dodd A.N. Layers of crosstalk between circadian regulation and environmental signalling in plants. Curr. Biol. 2021;31:R399–R413. doi: 10.1016/j.cub.2021.03.046. PubMed DOI
Harmer S.L. The Circadian System in Higher Plants. Annu. Rev. Plant Biol. 2009;60:357–377. doi: 10.1146/annurev.arplant.043008.092054. PubMed DOI
Gil K., Park C. Thermal adaptation and plasticity of the plant circadian clock. New Phytol. 2019;221:1215–1229. doi: 10.1111/nph.15518. PubMed DOI
Dubois M., Claeys H., Van den Broeck L., Inzé D. Time of day determines Arabidopsis transcriptome and growth dynamics under mild drought. Plant. Cell Environ. 2017;40:180–189. doi: 10.1111/pce.12809. PubMed DOI
Blair E.J., Bonnot T., Hummel M., Hay E., Marzolino J.M., Quijada I.A., Nagel D.H. Contribution of time of day and the circadian clock to the heat stress responsive transcriptome in Arabidopsis. Sci. Rep. 2019;9:4814. doi: 10.1038/s41598-019-41234-w. PubMed DOI PMC
Hua J. Modulation of plant immunity by light, circadian rhythm, and temperature. Curr. Opin. Plant Biol. 2013;16:406–413. doi: 10.1016/j.pbi.2013.06.017. PubMed DOI
Hermans C., Vuylsteke M., Coppens F., Craciun A., Inzé D., Verbruggen N. Early transcriptomic changes induced by magnesium deficiency in Arabidopsis thaliana reveal the alteration of circadian clock gene expression in roots and the triggering of abscisic acid-responsive genes. New Phytol. 2010;187:119–131. doi: 10.1111/j.1469-8137.2010.03258.x. PubMed DOI
Chen Y.-Y., Wang Y., Shin L.-J., Wu J.-F., Shanmugam V., Tsednee M., Lo J.-C., Chen C.-C., Wu S.-H., Yeh K.-C. Iron Is Involved in the Maintenance of Circadian Period Length in Arabidopsis. Plant Physiol. 2013;161:1409–1420. doi: 10.1104/pp.112.212068. PubMed DOI PMC
Kolmos E., Chow B.Y., Pruneda-Paz J.L., Kay S.A. HsfB2b-mediated repression of PRR7 directs abiotic stress responses of the circadian clock. Proc. Natl. Acad. Sci. USA. 2014;111:16172–16177. doi: 10.1073/pnas.1418483111. PubMed DOI PMC
Marcolino-Gomes J., Rodrigues F.A., Fuganti-Pagliarini R., Bendix C., Nakayama T.J., Celaya B., Molinari H.B.C., de Oliveira M.C.N., Harmon F.G., Nepomuceno A. Diurnal Oscillations of Soybean Circadian Clock and Drought Responsive Genes. PLoS ONE. 2014;9:e86402. doi: 10.1371/journal.pone.0086402. PubMed DOI PMC
Staiger D., Köster T. Spotlight on post-transcriptional control in the circadian system. Cell. Mol. Life Sci. 2011;68:71–83. doi: 10.1007/s00018-010-0513-5. PubMed DOI PMC
Romanowski A., Schlaen R.G., Perez-Santangelo S., Mancini E., Yanovsky M.J. Global transcriptome analysis reveals circadian control of splicing events in Arabidopsis thaliana. Plant J. 2020;103:889–902. doi: 10.1111/tpj.14776. PubMed DOI
Vogel C., Marcotte E.M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 2012;13:227–232. doi: 10.1038/nrg3185. PubMed DOI PMC
Hwang H., Cho M.-H., Hahn B.-S., Lim H., Kwon Y.-K., Hahn T.-R., Bhoo S.H. Proteomic identification of rhythmic proteins in rice seedlings. Biochim. Biophys. Acta Proteins Proteom. 2011;1814:470–479. doi: 10.1016/j.bbapap.2011.01.010. PubMed DOI
Choudhary M.K., Nomura Y., Shi H., Nakagami H., Somers D.E. Circadian Profiling of the Arabidopsis Proteome Using 2D-DIGE. Front. Plant Sci. 2016;7:1007. doi: 10.3389/fpls.2016.01007. PubMed DOI PMC
Choudhary M.K., Nomura Y., Wang L., Nakagami H., Somers D.E. Quantitative Circadian Phosphoproteomic Analysis of Arabidopsis Reveals Extensive Clock Control of Key Components in Physiological, Metabolic, and Signaling Pathways. Mol. Cell. Proteom. 2015;14:2243–2260. doi: 10.1074/mcp.M114.047183. PubMed DOI PMC
Graf A., Coman D., Uhrig R.G., Walsh S., Flis A., Stitt M., Gruissem W. Parallel analysis of Arabidopsis circadian clock mutants reveals different scales of transcriptome and proteome regulation. Open Biol. 2017;7:160333. doi: 10.1098/rsob.160333. PubMed DOI PMC
Seaton D.D., Graf A., Baerenfaller K., Stitt M., Millar A.J., Gruissem W. Photoperiodic control of the Arabidopsis proteome reveals a translational coincidence mechanism. Mol. Syst. Biol. 2018;14:e7962. doi: 10.15252/msb.20177962. PubMed DOI PMC
Uhrig R.G., Echevarría-Zomeño S., Schlapfer P., Grossmann J., Roschitzki B., Koerber N., Fiorani F., Gruissem W. Diurnal dynamics of the Arabidopsis rosette proteome and phosphoproteome. Plant. Cell Environ. 2021;44:821–841. doi: 10.1111/pce.13969. PubMed DOI PMC
Verhage L. Isotope labeling to measure protein synthesis rates throughout the diurnal cycle—The technique explained. Plant J. 2022;109:743–744. doi: 10.1111/tpj.15696. PubMed DOI
He Y., Yu Y., Wang X., Qin Y., Su C., Wang L. Aschoff’s rule on circadian rhythms orchestrated by blue light sensor CRY2 and clock component PRR9. Nat. Commun. 2022;13:5869. doi: 10.1038/s41467-022-33568-3. PubMed DOI PMC
Oakenfull R.J., Davis S.J. Shining a light on the Arabidopsis circadian clock. Plant. Cell Environ. 2017;40:2571–2585. doi: 10.1111/pce.13033. PubMed DOI
Legris M., Ince Y.Ç., Fankhauser C. Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants. Nat. Commun. 2019;10:5219. doi: 10.1038/s41467-019-13045-0. PubMed DOI PMC
Schaffer R., Ramsay N., Samach A., Corden S., Putterill J., Carré I.A., Coupland G. The late elongated hypocotyl Mutation of Arabidopsis Disrupts Circadian Rhythms and the Photoperiodic Control of Flowering. Cell. 1998;93:1219–1229. doi: 10.1016/S0092-8674(00)81465-8. PubMed DOI
Park M.-J., Kwon Y.-J., Gil K.-E., Park C.-M. LATE ELONGATED HYPOCOTYL regulates photoperiodic flowering via the circadian clock in Arabidopsis. BMC Plant Biol. 2016;16:114. doi: 10.1186/s12870-016-0810-8. PubMed DOI PMC
Kyung J., Jeon M., Jeong G., Shin Y., Seo E., Yu J., Kim H., Park C.-M., Hwang D., Lee I. The two clock proteins CCA1 and LHY activate VIN3 transcription during vernalization through the vernalization-responsive cis-element. Plant Cell. 2022;34:1020–1037. doi: 10.1093/plcell/koab304. PubMed DOI PMC
Yang S.W., Jang I.-C., Henriques R., Chua N.-H. FAR-RED ELONGATED HYPOCOTYL1 and FHY1-LIKE Associate with the Arabidopsis Transcription Factors LAF1 and HFR1 to Transmit Phytochrome A Signals for Inhibition of Hypocotyl Elongation. Plant Cell. 2009;21:1341–1359. doi: 10.1105/tpc.109.067215. PubMed DOI PMC
Nagatani A., Reed J.W., Chory J. Isolation and Initial Characterization of Arabidopsis Mutants That Are Deficient in Phytochrome A. Plant Physiol. 1993;102:269–277. doi: 10.1104/pp.102.1.269. PubMed DOI PMC
Salomé P.A., Michael T.P., Kearns E.V., Fett-Neto A.G., Sharrock R.A., McClung C.R. The out of phase 1 Mutant Defines a Role for PHYB in Circadian Phase Control in Arabidopsis. Plant Physiol. 2002;129:1674–1685. doi: 10.1104/pp.003418. PubMed DOI PMC
Jung J.-H., Domijan M., Klose C., Biswas S., Ezer D., Gao M., Khattak A.K., Box M.S., Charoensawan V., Cortijo S., et al. Phytochromes function as thermosensors in Arabidopsis. Science. 2016;354:886–889. doi: 10.1126/science.aaf6005. PubMed DOI
Arico D., Legris M., Castro L., Garcia C.F., Laino A., Casal J.J., Mazzella M.A. Neighbour signals perceived by phytochrome B increase thermotolerance in Arabidopsis. Plant. Cell Environ. 2019;42:2554–2566. doi: 10.1111/pce.13575. PubMed DOI
Monte E., Alonso J.M., Ecker J.R., Zhang Y., Li X., Young J., Austin-Phillips S., Quail P.H. Isolation and Characterization of phyC Mutants in Arabidopsis Reveals Complex Crosstalk between Phytochrome Signaling Pathways. Plant Cell. 2003;15:1962–1980. doi: 10.1105/tpc.012971. PubMed DOI PMC
Edwards K.D., Guerineau F., Devlin P.F., Millar A.J. Low-temperature-specific effects of PHYTOCHROME C on the circadian clock in Arabidopsis suggest that PHYC underlies natural variation in biological timing. bioRxiv. 2015:30577. doi: 10.1101/030577. DOI
Devlin P.F., Robson P.R.H., Patel S.R., Goosey L., Sharrock R.A., Whitelam G.C. Phytochrome D Acts in the Shade-Avoidance Syndrome in Arabidopsis by Controlling Elongation Growth and Flowering Time1. Plant Physiol. 1999;119:909–916. doi: 10.1104/pp.119.3.909. PubMed DOI PMC
Aukerman M.J., Hirschfeld M., Wester L., Weaver M., Clack T., Amasino R.M., Sharrock R.A. A deletion in the PHYD gene of the Arabidopsis Wassilewskija ecotype defines a role for phytochrome D in red/far-red light sensing. Plant Cell. 1997;9:1317–1326. doi: 10.1105/tpc.9.8.1317. PubMed DOI PMC
Tóth R., Kevei E., Hall A., Millar A.J., Nagy F., Kozma-Bognár L. Circadian Clock-Regulated Expression of Phytochrome and Cryptochrome Genes in Arabidopsis. Plant Physiol. 2001;127:1607–1616. doi: 10.1104/pp.010467. PubMed DOI PMC
Ferrari C., Proost S., Janowski M., Becker J., Nikoloski Z., Bhattacharya D., Price D., Tohge T., Bar-Even A., Fernie A., et al. Kingdom-wide comparison reveals the evolution of diurnal gene expression in Archaeplastida. Nat. Commun. 2019;10:737. doi: 10.1038/s41467-019-08703-2. PubMed DOI PMC
Kircher S., Gil P., Kozma-Bognár L., Fejes E., Speth V., Husselstein-Muller T., Bauer D., Ádám É., Schäfer E., Nagy F. Nucleocytoplasmic Partitioning of the Plant Photoreceptors Phytochrome A, B, C, D, and E Is Regulated Differentially by Light and Exhibits a Diurnal Rhythm. Plant Cell. 2002;14:1541–1555. doi: 10.1105/tpc.001156. PubMed DOI PMC
Liu Y., Sun Y., Yao H., Zheng Y., Cao S., Wang H. Arabidopsis Circadian Clock Repress Phytochrome A Signaling. Front. Plant Sci. 2022;13:809563. doi: 10.3389/fpls.2022.809563. PubMed DOI PMC
Pfeiffer A., Nagel M.-K., Popp C., Wüst F., Bindics J., Viczián A., Hiltbrunner A., Nagy F., Kunkel T., Schäfer E. Interaction with plant transcription factors can mediate nuclear import of phytochrome B. Proc. Natl. Acad. Sci. USA. 2012;109:5892–5897. doi: 10.1073/pnas.1120764109. PubMed DOI PMC
Fulton D.C., Stettler M., Mettler T., Vaughan C.K., Li J., Francisco P., Gil M., Reinhold H., Eicke S., Messerli G., et al. β-AMYLASE4, a Noncatalytic Protein Required for Starch Breakdown, Acts Upstream of Three Active β-Amylases in Arabidopsis Chloroplasts. Plant Cell. 2008;20:1040–1058. doi: 10.1105/tpc.107.056507. PubMed DOI PMC
Charron J.-B.F., Ouellet F., Houde M., Sarhan F. The plant Apolipoprotein D ortholog protects Arabidopsis against oxidative stress. BMC Plant Biol. 2008;8:86. doi: 10.1186/1471-2229-8-86. PubMed DOI PMC
Chi W.-T., Fung R.W.M., Liu H.-C., Hsu C.-C., Charng Y.-Y. Temperature-induced lipocalin is required for basal and acquired thermotolerance in Arabidopsis. Plant. Cell Environ. 2009;32:917–927. doi: 10.1111/j.1365-3040.2009.01972.x. PubMed DOI
Lee K.H., Piao H.L., Kim H.-Y., Choi S.M., Jiang F., Hartung W., Hwang I., Kwak J.M., Lee I.-J., Hwang I. Activation of Glucosidase via Stress-Induced Polymerization Rapidly Increases Active Pools of Abscisic Acid. Cell. 2006;126:1109–1120. doi: 10.1016/j.cell.2006.07.034. PubMed DOI
Larkin R.M., Stefano G., Ruckle M.E., Stavoe A.K., Sinkler C.A., Brandizzi F., Malmstrom C.M., Osteryoung K.W. REDUCED CHLOROPLAST COVERAGE genes from Arabidopsis thaliana help to establish the size of the chloroplast compartment. Proc. Natl. Acad. Sci. USA. 2016;113:E1116–E1125. doi: 10.1073/pnas.1515741113. PubMed DOI PMC
Papp I., Mur L., Dalmadi Á., Dulai S., Koncz C. A mutation in the Cap Binding Protein 20 gene confers drought. Plant Mol. Biol. 2004;55:679–686. doi: 10.1007/s11103-004-1680-2. PubMed DOI
Luo Y., Wang Z., Ji H., Fang H., Wang S., Tian L., Li X. An Arabidopsis homolog of importin β1 is required for ABA response and drought tolerance. Plant J. 2013;75:377–389. doi: 10.1111/tpj.12207. PubMed DOI
Zheng B.S., Rönnberg E., Viitanen L., Salminen T.A., Lundgren K., Moritz T., Edqvist J. Arabidopsis sterol carrier protein-2 is required for normal development of seeds and seedlings. J. Exp. Bot. 2008;59:3485–3499. doi: 10.1093/jxb/ern201. PubMed DOI PMC
Diaz C., Kusano M., Sulpice R., Araki M., Redestig H., Saito K., Stitt M., Shin R. Determining novel functions of Arabidopsis14-3-3 proteins in central metabolic processes. BMC Syst. Biol. 2011;5:192. doi: 10.1186/1752-0509-5-192. PubMed DOI PMC
Link S., Engelmann K., Meierhoff K., Westhoff P. The Atypical Short-Chain Dehydrogenases HCF173 and HCF244 Are Jointly Involved in Translational Initiation of the psbA mRNA of Arabidopsis. Plant Physiol. 2012;160:2202–2218. doi: 10.1104/pp.112.205104. PubMed DOI PMC
Christians M.J., Larsen P.B. Mutational loss of the prohibitin AtPHB3 results in an extreme constitutive ethylene response phenotype coupled with partial loss of ethylene-inducible gene expression in Arabidopsis seedlings. J. Exp. Bot. 2007;58:2237–2248. doi: 10.1093/jxb/erm086. PubMed DOI
Wang Y., Ries A., Wu K., Yang A., Crawford N.M. The Arabidopsis Prohibitin Gene PHB3 Functions in Nitric Oxide–Mediated Responses and in Hydrogen Peroxide–Induced Nitric Oxide Accumulation. Plant Cell. 2010;22:249–259. doi: 10.1105/tpc.109.072066. PubMed DOI PMC
Clark S.M., Di Leo R., Dhanoa P.K., Van Cauwenberghe O.R., Mullen R.T., Shelp B.J. Biochemical characterization, mitochondrial localization, expression, and potential functions for an Arabidopsis γ-aminobutyrate transaminase that utilizes both pyruvate and glyoxylate. J. Exp. Bot. 2009;60:1743–1757. doi: 10.1093/jxb/erp044. PubMed DOI PMC
Ahn G., Kim H., Kim D.H., Hanh H., Yoon Y., Singaram I., Wijesinghe K.J., Johnson K.A., Zhuang X., Liang Z., et al. SH3 Domain-Containing Protein 2 Plays a Crucial Role at the Step of Membrane Tubulation during Cell Plate Formation. Plant Cell. 2017;29:1388–1405. doi: 10.1105/tpc.17.00108. PubMed DOI PMC
Niehaus T.D., Patterson J.A., Alexander D.C., Folz J.S., Pyc M., MacTavish B.S., Bruner S.D., Mullen R.T., Fiehn O., Hanson A.D. The metabolite repair enzyme Nit1 is a dual-targeted amidase that disposes of damaged glutathione in Arabidopsis. Biochem. J. 2019;476:683–697. doi: 10.1042/BCJ20180931. PubMed DOI
Sibout R., Eudes A., Mouille G., Pollet B., Lapierre C., Jouanin L., Séguin A. CINNAMYL ALCOHOL DEHYDROGENASE-C and -D Are the Primary Genes Involved in Lignin Biosynthesis in the Floral Stem of Arabidopsis. Plant Cell. 2005;17:2059–2076. doi: 10.1105/tpc.105.030767. PubMed DOI PMC
Burow M., Zhang Z.-Y., Ober J.A., Lambrix V.M., Wittstock U., Gershenzon J., Kliebenstein D.J. ESP and ESM1 mediate indol-3-acetonitrile production from indol-3-ylmethyl glucosinolate in Arabidopsis. Phytochemistry. 2008;69:663–671. doi: 10.1016/j.phytochem.2007.08.027. PubMed DOI
Černý M., Novák J., Habánová H., Cerna H., Brzobohatý B. Role of the proteome in phytohormonal signaling. Biochim. Biophys. Acta Proteins Proteom. 2016;1864:1003–1015. doi: 10.1016/j.bbapap.2015.12.008. PubMed DOI
Ancín M., Fernandez-Irigoyen J., Santamaria E., Larraya L., Fernández-San Millán A., Veramendi J., Farran I. New In Vivo Approach to Broaden the Thioredoxin Family Interactome in Chloroplasts. Antioxidants. 2022;11:1979. doi: 10.3390/antiox11101979. PubMed DOI PMC
Mergner J., Frejno M., List M., Papacek M., Chen X., Chaudhary A., Samaras P., Richter S., Shikata H., Messerer M., et al. Mass-spectrometry-based draft of the Arabidopsis proteome. Nature. 2020;579:409–414. doi: 10.1038/s41586-020-2094-2. PubMed DOI
Stewart J.L., Nemhauser J.L. Do Trees Grow on Money? Auxin as the Currency of the Cellular Economy. Cold Spring Harb. Perspect. Biol. 2010;2:a001420. doi: 10.1101/cshperspect.a001420. PubMed DOI PMC
Singh M., Mas P. A Functional Connection between the Circadian Clock and Hormonal Timing in Arabidopsis. Genes. 2018;9:567. doi: 10.3390/genes9120567. PubMed DOI PMC
Rawat R., Schwartz J., Jones M.A., Sairanen I., Cheng Y., Andersson C.R., Zhao Y., Ljung K., Harmer S.L. REVEILLE1, a Myb-like transcription factor, integrates the circadian clock and auxin pathways. Proc. Natl. Acad. Sci. USA. 2009;106:16883–16888. doi: 10.1073/pnas.0813035106. PubMed DOI PMC
Covington M.F., Harmer S.L. The Circadian Clock Regulates Auxin Signaling and Responses in Arabidopsis. PLoS Biol. 2007;5:e222. doi: 10.1371/journal.pbio.0050222. PubMed DOI PMC
Voß U., Wilson M.H., Kenobi K., Gould P.D., Robertson F.C., Peer W.A., Lucas M., Swarup K., Casimiro I., Holman T.J., et al. The circadian clock rephases during lateral root organ initiation in Arabidopsis thaliana. Nat. Commun. 2015;6:7641. doi: 10.1038/ncomms8641. PubMed DOI PMC
Adams S., Grundy J., Veflingstad S.R., Dyer N.P., Hannah M.A., Ott S., Carré I.A. Circadian control of abscisic acid biosynthesis and signalling pathways revealed by genome-wide analysis of LHY binding targets. New Phytol. 2018;220:893–907. doi: 10.1111/nph.15415. PubMed DOI
Li B., Takahashi D., Kawamura Y., Uemura M. Comparison of Plasma Membrane Proteomic Changes of Arabidopsis Suspension-Cultured Cells (T87 Line) after Cold and ABA Treatment in Association with Freezing Tolerance Development. Plant Cell Physiol. 2012;53:543–554. doi: 10.1093/pcp/pcs010. PubMed DOI
Ezer D., Jung J.-H., Lan H., Biswas S., Gregoire L., Box M.S., Charoensawan V., Cortijo S., Lai X., Stöckle D., et al. The evening complex coordinates environmental and endogenous signals in Arabidopsis. Nat. Plants. 2017;3:17087. doi: 10.1038/nplants.2017.87. PubMed DOI PMC
Nováková M., Motyka V., Dobrev P.I., Malbeck J., Gaudinová A., Vanková R. Diurnal variation of cytokinin, auxin and abscisic acid levels in tobacco leaves. J. Exp. Bot. 2005;56:2877–2883. doi: 10.1093/jxb/eri282. PubMed DOI
Hanano S., Domagalska M.A., Nagy F., Davis S.J. Multiple phytohormones influence distinct parameters of the plant circadian clock. Genes Cells. 2006;11:1381–1392. doi: 10.1111/j.1365-2443.2006.01026.x. PubMed DOI
Salome P.A., To J.P.C., Kieber J.J., McClung R. Arabidopsis Response Regulators ARR3 and ARR4 Play Cytokinin-Independent Roles in the Control of Circadian Period. Plant Cell Online. 2006;18:55–69. doi: 10.1105/tpc.105.037994. PubMed DOI PMC
Nitschke S., Cortleven A., Iven T., Feussner I., Havaux M., Riefler M., Schmülling T. Circadian Stress Regimes Affect the Circadian Clock and Cause Jasmonic Acid-Dependent Cell Death in Cytokinin-Deficient Arabidopsis Plants. Plant Cell. 2016;28:1616–1639. doi: 10.1105/tpc.16.00016. PubMed DOI PMC
Pavlů J., Novák J., Koukalová V., Luklová M., Brzobohatý B., Černý M. Cytokinin at the Crossroads of Abiotic Stress Signalling Pathways. Int. J. Mol. Sci. 2018;19:2450. doi: 10.3390/ijms19082450. PubMed DOI PMC
Zheng B., Deng Y., Mu J., Ji Z., Xiang T., Niu Q.-W., Chua N.-H., Zuo J. Cytokinin affects circadian-clock oscillation in a phytochrome B- and Arabidopsis response regulator 4-dependent manner. Physiol. Plant. 2006;127:277–292. doi: 10.1111/j.1399-3054.2006.00660.x. DOI
Dobisova T., Hrdinova V., Cuesta C., Michlickova S., Urbankova I., Hejatkova R., Zadnikova P., Pernisova M., Benkova E., Hejatko J. Light Controls Cytokinin Signaling via Transcriptional Regulation of Constitutively Active Sensor Histidine Kinase CKI1. Plant Physiol. 2017;174:387–404. doi: 10.1104/pp.16.01964. PubMed DOI PMC
Mizoguchi T., Wheatley K., Hanzawa Y., Wright L., Mizoguchi M., Song H.-R., Carré I.A., Coupland G. LHY and CCA1 Are Partially Redundant Genes Required to Maintain Circadian Rhythms in Arabidopsis. Dev. Cell. 2002;2:629–641. doi: 10.1016/S1534-5807(02)00170-3. PubMed DOI
Černý M., Habánová H., Berka M., Luklová M., Brzobohatý B. Hydrogen Peroxide: Its Role in Plant Biology and Crosstalk with Signalling Networks. Int. J. Mol. Sci. 2018;19:2812. doi: 10.3390/ijms19092812. PubMed DOI PMC
Lai A.G., Doherty C.J., Mueller-Roeber B., Kay S.A., Schippers J.H.M., Dijkwel P.P. CIRCADIAN CLOCK-ASSOCIATED 1 regulates ROS homeostasis and oxidative stress responses. Proc. Natl. Acad. Sci. USA. 2012;109:17129–17134. doi: 10.1073/pnas.1209148109. PubMed DOI PMC
Román Á., Li X., Deng D., Davey J.W., James S., Graham I.A., Haydon M.J. Superoxide is promoted by sucrose and affects amplitude of circadian rhythms in the evening. Proc. Natl. Acad. Sci. USA. 2021;118:e2020646118. doi: 10.1073/pnas.2020646118. PubMed DOI PMC
Gallé Á., Czékus Z., Bela K., Horváth E., Ördög A., Csiszár J., Poór P. Plant Glutathione Transferases and Light. Front. Plant Sci. 2019;9:1944. doi: 10.3389/fpls.2018.01944. PubMed DOI PMC
Gallé Á., Czékus Z., Bela K., Horváth E., Csiszár J., Poór P. Diurnal changes in tomato glutathione transferase activity and expression. Acta Biol. Hung. 2018;69:505–509. doi: 10.1556/018.69.2018.4.11. PubMed DOI
Jiang H.-W., Liu M.-J., Chen I.-C., Huang C.-H., Chao L.-Y., Hsieh H.-L. A Glutathione S -Transferase Regulated by Light and Hormones Participates in the Modulation of Arabidopsis Seedling Development. Plant Physiol. 2010;154:1646–1658. doi: 10.1104/pp.110.159152. PubMed DOI PMC
Zechmann B. Diurnal changes of subcellular glutathione content in Arabidopsis thaliana. Biol. Plant. 2017;61:791–796. doi: 10.1007/s10535-017-0729-4. DOI
Pavlů J., Kerchev P., Černý M., Novák J., Berka M., Jobe T.O., López Ramos J.M., Saiz-Fernández I., Michael Rashotte A., Kopriva S., et al. Cytokinin modulates sulfur and glutathione metabolic network. J. Exp. Bot. 2022 doi: 10.1093/jxb/erac391. PubMed DOI
van Zanten M., Snoek L.B., Proveniers M.C.G., Peeters A.J.M. The many functions of ERECTA. Trends Plant Sci. 2009;14:214–218. doi: 10.1016/j.tplants.2009.01.010. PubMed DOI
McCarthy A., Chung M., Ivanov A.G., Krol M., Inman M., Maxwell D.P., Hüner N.P.A. An established Arabidopsis thaliana var. Landsberg erecta cell suspension culture accumulates chlorophyll and exhibits a stay-green phenotype in response to high external sucrose concentrations. J. Plant Physiol. 2016;199:40–51. doi: 10.1016/j.jplph.2016.05.008. PubMed DOI
Li X., Wang H., Wang Y., Zhang L., Wang Y. Comparison of Metabolic Profiling of Arabidopsis Inflorescences Between Landsberg erecta and Columbia, and Meiosis-Defective Mutants by 1H-NMR Spectroscopy. Phenomics. 2021;1:73–89. doi: 10.1007/s43657-021-00012-3. PubMed DOI PMC
Burgie E.S., Gannam Z.T.K., McLoughlin K.E., Sherman C.D., Holehouse A.S., Stankey R.J., Vierstra R.D. Differing biophysical properties underpin the unique signaling potentials within the plant phytochrome photoreceptor families. Proc. Natl. Acad. Sci. USA. 2021;118:e2105649118. doi: 10.1073/pnas.2105649118. PubMed DOI PMC
Ha J.-H., Kim J.-H., Kim S.-G., Sim H.-J., Lee G., Halitschke R., Baldwin I.T., Kim J.-I., Park C.-M. Shoot phytochrome B modulates reactive oxygen species homeostasis in roots via abscisic acid signaling in Arabidopsis. Plant J. 2018;94:790–798. doi: 10.1111/tpj.13902. PubMed DOI
Berka M., Luklová M., Dufková H., Malých V., Novák J., Saiz-Fernández I., Rashotte A.M., Brzobohaty B., Cerny M. Barley root proteome and metabolome in response to cytokinin and abiotic stimuli. Front. Plant Sci. 2020;11:1647. doi: 10.3389/fpls.2020.590337. PubMed DOI PMC
Dufková H., Berka M., Luklová M., Rashotte A.M., Brzobohatý B., Černý M. Eggplant Germination is Promoted by Hydrogen Peroxide and Temperature in an Independent but Overlapping Manner. Molecules. 2019;24:4270. doi: 10.3390/molecules24234270. PubMed DOI PMC
Berková V., Kameniarová M., Ondrisková V., Berka M., Menšíková S., Kopecká R., Luklová M., Novák J., Spíchal L., Rashotte A.M., et al. Arabidopsis Response to Inhibitor of Cytokinin Degradation INCYDE: Modulations of Cytokinin Signaling and Plant Proteome. Plants. 2020;9:1563. doi: 10.3390/plants9111563. PubMed DOI PMC
Krishnakumar V., Contrino S., Cheng C.Y., Belyaeva I., Ferlanti E.S., Miller J.R., Vaughn M.W., Micklem G., Town C.D., Chan A.P. Thalemine: A warehouse for Arabidopsis data integration and discovery. Plant Cell Physiol. 2017;58:e4. doi: 10.1093/pcp/pcw200. PubMed DOI
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Béziat C., Kleine-Vehn J., Feraru E. Histochemical staining of β-glucuronidase and its spatial quantification. Methods Mol. Biol. 2017;1497:73–80. doi: 10.1007/978-1-4939-6469-7_8. PubMed DOI
Pang Z., Chong J., Zhou G., De Lima Morais D.A., Chang L., Barrette M., Gauthier C., Jacques P.É., Li S., Xia J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021;49:W388–W396. doi: 10.1093/nar/gkab382. PubMed DOI PMC
Liebermeister W., Noor E., Flamholz A., Davidi D., Bernhardt J., Milo R. Visual account of protein investment in cellular functions. Proc. Natl. Acad. Sci. USA. 2014;111:8488–8493. doi: 10.1073/pnas.1314810111. PubMed DOI PMC
Sun L., Dong S., Ge Y., Fonseca J.P., Robinson Z.T., Mysore K.S., Mehta P. DiVenn: An interactive and integrated web-based visualization tool for comparing gene lists. Front. Genet. 2021;10:421. doi: 10.3389/fgene.2019.00421. PubMed DOI PMC