Residues of acidic chitinase cause chitinolytic activity degrading chitosan in porcine pepsin preparations

. 2019 Oct 30 ; 9 (1) : 15609. [epub] 20191030

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31666642
Odkazy

PubMed 31666642
PubMed Central PMC6821832
DOI 10.1038/s41598-019-52136-2
PII: 10.1038/s41598-019-52136-2
Knihovny.cz E-zdroje

Commercially available porcine pepsin preparations have been used for the production of chitooligosaccharides with various biomedical activities. However, the origin of this activity is not well understood. Here we show that the chitosan-degrading activity is conferred by residues with chitinolytic activity of truncated forms of acidic chitinase (Chia) persisting in the pepsin preparation. Chia is an acid-stable and pepsin-resistant enzyme that degrades chitin to produce N-acetyl-D-glucosamine dimer. We found that Chia can be truncated by pepsin under stomach-like conditions while maintaining its enzymatic activity. Similarly to the full-length protein, truncated Chia as well as the pepsin preparations digested chitosan with different degrees of deacetylation (DD: 69-84%) with comparable degradation products. The efficiency was DD-dependent with a marked decrease with higher DD, indicating that the chitosan-degrading activity in the pepsin preparation is due to the chitinolytic activity rather than chitosanolytic activity. We suggest that natural or recombinant porcine Chia are suitable for producing chitooligosaccharides for biomedical purposes.

Zobrazit více v PubMed

Khoushab F, Yamabhai M. Chitin research revisited. Mar. Drugs. 2010;8:1988–2012. doi: 10.3390/md8071988. PubMed DOI PMC

Bueter CL, Specht CA, Levitz SM. Innate sensing of chitin and chitosan. PLoS Pathog. 2013;9:e1003080. doi: 10.1371/journal.ppat.1003080. PubMed DOI PMC

Van Dyken SJ, Locksley RM. Chitins and chitinase activity in airway diseases. J. Allergy Clin. Immunol. 2018;142:364–369. doi: 10.1016/j.jaci.2018.06.017. PubMed DOI PMC

Boot RG, et al. Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J. Biol. Chem. 2001;276:6770–6778. doi: 10.1074/jbc.M009886200. PubMed DOI

Boot RG, et al. Marked differences in tissue-specific expression of chitinases in mouse and man. J. Histochem. Cytochem. 2005;53:1283–1292. doi: 10.1369/jhc.4A6547.2005. PubMed DOI

Ohno M, Tsuda K, Sakaguchi M, Sugahara Y, Oyama F. Chitinase mRNA levels by quantitative PCR using the single standard DNA: acidic mammalian chitinase is a major transcript in the mouse stomach. PLoS One. 2012;7:e50381. doi: 10.1371/journal.pone.0050381. PubMed DOI PMC

Lee CG, et al. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu. Rev. Physiol. 2011;73:479–501. doi: 10.1146/annurev-physiol-012110-142250. PubMed DOI PMC

Koch BE, Stougaard J, Spaink HP. Keeping track of the growing number of biological functions of chitin and its interaction partners in biomedical research. Glycobiology. 2015;25:469–482. doi: 10.1093/glycob/cwv005. PubMed DOI PMC

Ohno M, et al. Acidic mammalian chitinase is a proteases-resistant glycosidase in mouse digestive system. Sci. Rep. 2016;6:37756. doi: 10.1038/srep37756. PubMed DOI PMC

Tabata E, et al. Gastric and intestinal proteases resistance of chicken acidic chitinase nominates chitin-containing organisms for alternative whole edible diets for poultry. Sci. Rep. 2017;7:6662. doi: 10.1038/s41598-017-07146-3. PubMed DOI PMC

Tabata E, et al. Protease resistance of porcine acidic mammalian chitinase under gastrointestinal conditions implies that chitin-containing organisms can be sustainable dietary resources. Sci. Rep. 2017;7:12963. doi: 10.1038/s41598-017-13526-6. PubMed DOI PMC

Tabata E, et al. High expression of acidic chitinase and chitin digestibility in the stomach of common marmoset (Callithrix jacchus), an insectivorous nonhuman primate. Sci Rep. 2019;9:159. doi: 10.1038/s41598-018-36477-y. PubMed DOI PMC

Tabata E, et al. Acidic chitinase-chitin complex is dissociated in a competitive manner by acetic acid: purification of natural enzyme for supplementation purposes. Int. J. Mol. Sci. 2018;19:362. doi: 10.3390/ijms19020362. PubMed DOI PMC

Chien RC, Yen MT, Mau JL. Antimicrobial and antitumor activities of chitosan from shiitake stipes, compared to commercial chitosan from crab shells. Carbohydr Polym. 2016;138:259–264. doi: 10.1016/j.carbpol.2015.11.061. PubMed DOI

Chiu, C. Y., Feng, S. A., Liu, S. H. & Chiang, M. T. Functional comparison for lipid metabolism and intestinal and fecal microflora enzyme activities between low molecular weight chitosan and chitosan oligosaccharide in high-fat-diet-fed rats. Mar. Drugs15, 10.3390/md15070234 (2017). PubMed PMC

Qiao Y, Bai XF, Du YG. Chitosan oligosaccharides protect mice from LPS challenge by attenuation of inflammation and oxidative stress. Int. Immunopharmacol. 2011;11:121–127. doi: 10.1016/j.intimp.2010.10.016. PubMed DOI

Shen KT, Chen MH, Chan HY, Jeng JH, Wang YJ. Inhibitory effects of chitooligosaccharides on tumor growth and metastasis. Food Chem. Toxicol. 2009;47:1864–1871. doi: 10.1016/j.fct.2009.04.044. PubMed DOI

Park JH, Saravanakumar G, Kim K, Kwon IC. Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv Drug Deliv Rev. 2010;62:28–41. doi: 10.1016/j.addr.2009.10.003. PubMed DOI

Bravo-Osuna I, Millotti G, Vauthier C, Ponchel G. In vitro evaluation of calcium binding capacity of chitosan and thiolated chitosan poly(isobutyl cyanoacrylate) core-shell nanoparticles. Int. J. Pharm. 2007;338:284–290. doi: 10.1016/j.ijpharm.2007.01.039. PubMed DOI

Kazami N, et al. A simple procedure for preparing chitin oligomers through acetone precipitation after hydrolysis in concentrated hydrochloric acid. Carbohydr Polym. 2015;132:304–310. doi: 10.1016/j.carbpol.2015.05.082. PubMed DOI

Cabrera JC, Cutsem PV. Preparation of chitooligosaccharides with degree of polymerization higher than 6 by acid or enzymatic degradation of chitosan. Biochemical Engineering Journal. 2005;25:165–172. doi: 10.1016/j.bej.2005.04.025. DOI

Roncal T, Oviedo A, Lopez de Armentia I, Fernandez L, Villaran MC. High yield production of monomer-free chitosan oligosaccharides by pepsin catalyzed hydrolysis of a high deacetylation degree chitosan. Carbohydr. Res. 2007;342:2750–2756. doi: 10.1016/j.carres.2007.08.023. PubMed DOI

Vishu Kumar AB, Varadaraj MC, Gowda LR, Tharanathan RN. Low molecular weight chitosans–preparation with the aid of pronase, characterization and their bactericidal activity towards Bacillus cereus and Escherichia coli. Biochim. Biophys. Acta. 2007;1770:495–505. doi: 10.1016/j.bbagen.2006.12.003. PubMed DOI

Kumar BA, Tharanathan RN. A comparative study on depolymerization of chitosan by proteolytic enzymes. Carbohydr Polym. 2004;58:275–283. doi: 10.1016/j.carbpol.2004.07.001. DOI

Fu JY, Wu SM, Chang CT, Sung HY. Characterization of three chitosanase isozymes isolated from a commercial crude porcine pepsin preparation. J. Agric. Food Chem. 2003;51:1042–1048. doi: 10.1021/jf020675g. PubMed DOI

Kumar BA, Varadaraj MC, Tharanathan RN. Low molecular weight chitosan–preparation with the aid of pepsin, characterization, and its bactericidal activity. Biomacromolecules. 2007;8:566–572. doi: 10.1021/bm060753z. PubMed DOI

Gohi, B., Zeng, H. Y. & Pan, A. D. Optimization and characterization of chitosan enzymolysis by pepsin. Bioengineering (Basel)3, 10.3390/bioengineering3030017 (2016). PubMed PMC

Jackson P. The use of polyacrylamide-gel electrophoresis for the high-resolution separation of reducing saccharides labelled with the fluorophore 8-aminonaphthalene-1,3,6-trisulphonic acid. Detection of picomolar quantities by an imaging system based on a cooled charge-coupled device. Biochem. J. 1990;270:705–713. doi: 10.1042/bj2700705. PubMed DOI PMC

Wakita S, et al. Improved fluorescent labeling of chitin oligomers: Chitinolytic properties of acidic mammalian chitinase under somatic tissue pH conditions. Carbohydr Polym. 2017;164:145–153. doi: 10.1016/j.carbpol.2017.01.095. PubMed DOI

Kashimura A, et al. Functional properties of the catalytic domain of mouse acidic mammalian chitinase expressed in Escherichia coli. Int. J. Mol. Sci. 2015;16:4028–4042. doi: 10.3390/ijms16024028. PubMed DOI PMC

Tjoelker LW, et al. Structural and functional definition of the human chitinase chitin-binding domain. J. Biol. Chem. 2000;275:514–520. doi: 10.1074/jbc.275.1.514. PubMed DOI

Fukamizo T, Ohkawa T, Ikeda Y, Goto S. Specificity of chitosanase from Bacillus pumilus. Biochim Biophys Acta. 1994;1205:183–188. doi: 10.1016/0167-4838(94)90232-1. PubMed DOI

Sorbotten A, Horn SJ, Eijsink VG, Varum KM. Degradation of chitosans with chitinase B from Serratia marcescens. Production of chito-oligosaccharides and insight into enzyme processivity. FEBS J. 2005;272:538–549. doi: 10.1111/j.1742-4658.2004.04495.x. PubMed DOI

Horn SJ, et al. Endo/exo mechanism and processivity of family 18 chitinases produced by Serratia marcescens. FEBS J. 2006;273:491–503. doi: 10.1111/j.1742-4658.2005.05079.x. PubMed DOI

Heggset EB, Hoell IA, Kristoffersen M, Eijsink VG, Varum KM. Degradation of chitosans with chitinase G from Streptomyces coelicolor A3(2): production of chito-oligosaccharides and insight into subsite specificities. Biomacromolecules. 2009;10:892–899. doi: 10.1021/bm801418p. PubMed DOI

Aam BB, et al. Production of chitooligosaccharides and their potential applications in medicine. Mar. Drugs. 2010;8:1482–1517. doi: 10.3390/md8051482. PubMed DOI PMC

Heggset EB, et al. Degradation of chitosans with a family 46 chitosanase from Streptomyces coelicolor A3(2) Biomacromolecules. 2010;11:2487–2497. doi: 10.1021/bm1006745. PubMed DOI

Eide KB, et al. Human chitotriosidase-catalyzed hydrolysis of chitosan. Biochemistry. 2012;51:487–495. doi: 10.1021/bi2015585. PubMed DOI

Kurita K, Sannan T, Iwakura Y. Studies on chitin, 4. Evidence for formation of block and random copolymers of N-acetyl-D-glucosamine and D-glucosamine by hetero- and homogeneous hydrolyses. Macromol Chem Phys. 1977;178:3197–3202. doi: 10.1002/macp.1977.021781203. DOI

Terbojevich M, Cosani A, Muzzarellib RAA. Molecular parameters of chitosans depolymerized with the aid of papain. Carbohydr Polym. 1996;29:63–68. doi: 10.1016/0144-8617(95)00147-6. DOI

Sashiwa H, et al. Enzymatic production of N-acetyl-d-glucosamine from chitin. Degradation study of N-acetylchitooligosaccharide and the effect of mixing of crude enzymes. Carbohydr Polym. 2003;51:391–395. doi: 10.1016/S0144-8617(02)00192-3. DOI

Xie Y, Wei Y, Hu J. Depolymerization of chitosan with a crude cellulase preparation from Aspergillus niger. Appl. Biochem. Biotechnol. 2010;160:1074–1083. doi: 10.1007/s12010-009-8559-2. PubMed DOI

Kashimura A, et al. Protein A-mouse acidic mammalian chitinase-V5-His expressed in periplasmic space of Escherichia coli possesses chitinase functions comparable to CHO-expressed protein. PLoS One. 2013;8:e78669. doi: 10.1371/journal.pone.0078669. PubMed DOI PMC

Ohno M, et al. Quantification of chitinase mRNA levels in human and mouse tissues by real-time PCR: species-specific expression of acidic mammalian chitinase in stomach tissues. PLoS One. 2013;8:e67399. doi: 10.1371/journal.pone.0067399. PubMed DOI PMC

Tabata E, et al. Chitin digestibility is dependent on feeding behaviors, which determine acidic chitinase mRNA levels in mammalian and poultry stomachs. Sci. Rep. 2018;8:1461. doi: 10.1038/s41598-018-19940-8. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...