Residues of acidic chitinase cause chitinolytic activity degrading chitosan in porcine pepsin preparations
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31666642
PubMed Central
PMC6821832
DOI
10.1038/s41598-019-52136-2
PII: 10.1038/s41598-019-52136-2
Knihovny.cz E-zdroje
- MeSH
- chitinasy metabolismus MeSH
- chitosan metabolismus MeSH
- hydrolýza MeSH
- koncentrace vodíkových iontů MeSH
- pepsin A metabolismus MeSH
- prasata MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chitinasy MeSH
- chitosan MeSH
- pepsin A MeSH
Commercially available porcine pepsin preparations have been used for the production of chitooligosaccharides with various biomedical activities. However, the origin of this activity is not well understood. Here we show that the chitosan-degrading activity is conferred by residues with chitinolytic activity of truncated forms of acidic chitinase (Chia) persisting in the pepsin preparation. Chia is an acid-stable and pepsin-resistant enzyme that degrades chitin to produce N-acetyl-D-glucosamine dimer. We found that Chia can be truncated by pepsin under stomach-like conditions while maintaining its enzymatic activity. Similarly to the full-length protein, truncated Chia as well as the pepsin preparations digested chitosan with different degrees of deacetylation (DD: 69-84%) with comparable degradation products. The efficiency was DD-dependent with a marked decrease with higher DD, indicating that the chitosan-degrading activity in the pepsin preparation is due to the chitinolytic activity rather than chitosanolytic activity. We suggest that natural or recombinant porcine Chia are suitable for producing chitooligosaccharides for biomedical purposes.
Bioinova Ltd Videnska 1083 Prague 142 20 Czech Republic
Department of Chemistry and Life Science Kogakuin University Hachioji Tokyo 192 0015 Japan
Zobrazit více v PubMed
Khoushab F, Yamabhai M. Chitin research revisited. Mar. Drugs. 2010;8:1988–2012. doi: 10.3390/md8071988. PubMed DOI PMC
Bueter CL, Specht CA, Levitz SM. Innate sensing of chitin and chitosan. PLoS Pathog. 2013;9:e1003080. doi: 10.1371/journal.ppat.1003080. PubMed DOI PMC
Van Dyken SJ, Locksley RM. Chitins and chitinase activity in airway diseases. J. Allergy Clin. Immunol. 2018;142:364–369. doi: 10.1016/j.jaci.2018.06.017. PubMed DOI PMC
Boot RG, et al. Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J. Biol. Chem. 2001;276:6770–6778. doi: 10.1074/jbc.M009886200. PubMed DOI
Boot RG, et al. Marked differences in tissue-specific expression of chitinases in mouse and man. J. Histochem. Cytochem. 2005;53:1283–1292. doi: 10.1369/jhc.4A6547.2005. PubMed DOI
Ohno M, Tsuda K, Sakaguchi M, Sugahara Y, Oyama F. Chitinase mRNA levels by quantitative PCR using the single standard DNA: acidic mammalian chitinase is a major transcript in the mouse stomach. PLoS One. 2012;7:e50381. doi: 10.1371/journal.pone.0050381. PubMed DOI PMC
Lee CG, et al. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu. Rev. Physiol. 2011;73:479–501. doi: 10.1146/annurev-physiol-012110-142250. PubMed DOI PMC
Koch BE, Stougaard J, Spaink HP. Keeping track of the growing number of biological functions of chitin and its interaction partners in biomedical research. Glycobiology. 2015;25:469–482. doi: 10.1093/glycob/cwv005. PubMed DOI PMC
Ohno M, et al. Acidic mammalian chitinase is a proteases-resistant glycosidase in mouse digestive system. Sci. Rep. 2016;6:37756. doi: 10.1038/srep37756. PubMed DOI PMC
Tabata E, et al. Gastric and intestinal proteases resistance of chicken acidic chitinase nominates chitin-containing organisms for alternative whole edible diets for poultry. Sci. Rep. 2017;7:6662. doi: 10.1038/s41598-017-07146-3. PubMed DOI PMC
Tabata E, et al. Protease resistance of porcine acidic mammalian chitinase under gastrointestinal conditions implies that chitin-containing organisms can be sustainable dietary resources. Sci. Rep. 2017;7:12963. doi: 10.1038/s41598-017-13526-6. PubMed DOI PMC
Tabata E, et al. High expression of acidic chitinase and chitin digestibility in the stomach of common marmoset (Callithrix jacchus), an insectivorous nonhuman primate. Sci Rep. 2019;9:159. doi: 10.1038/s41598-018-36477-y. PubMed DOI PMC
Tabata E, et al. Acidic chitinase-chitin complex is dissociated in a competitive manner by acetic acid: purification of natural enzyme for supplementation purposes. Int. J. Mol. Sci. 2018;19:362. doi: 10.3390/ijms19020362. PubMed DOI PMC
Chien RC, Yen MT, Mau JL. Antimicrobial and antitumor activities of chitosan from shiitake stipes, compared to commercial chitosan from crab shells. Carbohydr Polym. 2016;138:259–264. doi: 10.1016/j.carbpol.2015.11.061. PubMed DOI
Chiu, C. Y., Feng, S. A., Liu, S. H. & Chiang, M. T. Functional comparison for lipid metabolism and intestinal and fecal microflora enzyme activities between low molecular weight chitosan and chitosan oligosaccharide in high-fat-diet-fed rats. Mar. Drugs15, 10.3390/md15070234 (2017). PubMed PMC
Qiao Y, Bai XF, Du YG. Chitosan oligosaccharides protect mice from LPS challenge by attenuation of inflammation and oxidative stress. Int. Immunopharmacol. 2011;11:121–127. doi: 10.1016/j.intimp.2010.10.016. PubMed DOI
Shen KT, Chen MH, Chan HY, Jeng JH, Wang YJ. Inhibitory effects of chitooligosaccharides on tumor growth and metastasis. Food Chem. Toxicol. 2009;47:1864–1871. doi: 10.1016/j.fct.2009.04.044. PubMed DOI
Park JH, Saravanakumar G, Kim K, Kwon IC. Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv Drug Deliv Rev. 2010;62:28–41. doi: 10.1016/j.addr.2009.10.003. PubMed DOI
Bravo-Osuna I, Millotti G, Vauthier C, Ponchel G. In vitro evaluation of calcium binding capacity of chitosan and thiolated chitosan poly(isobutyl cyanoacrylate) core-shell nanoparticles. Int. J. Pharm. 2007;338:284–290. doi: 10.1016/j.ijpharm.2007.01.039. PubMed DOI
Kazami N, et al. A simple procedure for preparing chitin oligomers through acetone precipitation after hydrolysis in concentrated hydrochloric acid. Carbohydr Polym. 2015;132:304–310. doi: 10.1016/j.carbpol.2015.05.082. PubMed DOI
Cabrera JC, Cutsem PV. Preparation of chitooligosaccharides with degree of polymerization higher than 6 by acid or enzymatic degradation of chitosan. Biochemical Engineering Journal. 2005;25:165–172. doi: 10.1016/j.bej.2005.04.025. DOI
Roncal T, Oviedo A, Lopez de Armentia I, Fernandez L, Villaran MC. High yield production of monomer-free chitosan oligosaccharides by pepsin catalyzed hydrolysis of a high deacetylation degree chitosan. Carbohydr. Res. 2007;342:2750–2756. doi: 10.1016/j.carres.2007.08.023. PubMed DOI
Vishu Kumar AB, Varadaraj MC, Gowda LR, Tharanathan RN. Low molecular weight chitosans–preparation with the aid of pronase, characterization and their bactericidal activity towards Bacillus cereus and Escherichia coli. Biochim. Biophys. Acta. 2007;1770:495–505. doi: 10.1016/j.bbagen.2006.12.003. PubMed DOI
Kumar BA, Tharanathan RN. A comparative study on depolymerization of chitosan by proteolytic enzymes. Carbohydr Polym. 2004;58:275–283. doi: 10.1016/j.carbpol.2004.07.001. DOI
Fu JY, Wu SM, Chang CT, Sung HY. Characterization of three chitosanase isozymes isolated from a commercial crude porcine pepsin preparation. J. Agric. Food Chem. 2003;51:1042–1048. doi: 10.1021/jf020675g. PubMed DOI
Kumar BA, Varadaraj MC, Tharanathan RN. Low molecular weight chitosan–preparation with the aid of pepsin, characterization, and its bactericidal activity. Biomacromolecules. 2007;8:566–572. doi: 10.1021/bm060753z. PubMed DOI
Gohi, B., Zeng, H. Y. & Pan, A. D. Optimization and characterization of chitosan enzymolysis by pepsin. Bioengineering (Basel)3, 10.3390/bioengineering3030017 (2016). PubMed PMC
Jackson P. The use of polyacrylamide-gel electrophoresis for the high-resolution separation of reducing saccharides labelled with the fluorophore 8-aminonaphthalene-1,3,6-trisulphonic acid. Detection of picomolar quantities by an imaging system based on a cooled charge-coupled device. Biochem. J. 1990;270:705–713. doi: 10.1042/bj2700705. PubMed DOI PMC
Wakita S, et al. Improved fluorescent labeling of chitin oligomers: Chitinolytic properties of acidic mammalian chitinase under somatic tissue pH conditions. Carbohydr Polym. 2017;164:145–153. doi: 10.1016/j.carbpol.2017.01.095. PubMed DOI
Kashimura A, et al. Functional properties of the catalytic domain of mouse acidic mammalian chitinase expressed in Escherichia coli. Int. J. Mol. Sci. 2015;16:4028–4042. doi: 10.3390/ijms16024028. PubMed DOI PMC
Tjoelker LW, et al. Structural and functional definition of the human chitinase chitin-binding domain. J. Biol. Chem. 2000;275:514–520. doi: 10.1074/jbc.275.1.514. PubMed DOI
Fukamizo T, Ohkawa T, Ikeda Y, Goto S. Specificity of chitosanase from Bacillus pumilus. Biochim Biophys Acta. 1994;1205:183–188. doi: 10.1016/0167-4838(94)90232-1. PubMed DOI
Sorbotten A, Horn SJ, Eijsink VG, Varum KM. Degradation of chitosans with chitinase B from Serratia marcescens. Production of chito-oligosaccharides and insight into enzyme processivity. FEBS J. 2005;272:538–549. doi: 10.1111/j.1742-4658.2004.04495.x. PubMed DOI
Horn SJ, et al. Endo/exo mechanism and processivity of family 18 chitinases produced by Serratia marcescens. FEBS J. 2006;273:491–503. doi: 10.1111/j.1742-4658.2005.05079.x. PubMed DOI
Heggset EB, Hoell IA, Kristoffersen M, Eijsink VG, Varum KM. Degradation of chitosans with chitinase G from Streptomyces coelicolor A3(2): production of chito-oligosaccharides and insight into subsite specificities. Biomacromolecules. 2009;10:892–899. doi: 10.1021/bm801418p. PubMed DOI
Aam BB, et al. Production of chitooligosaccharides and their potential applications in medicine. Mar. Drugs. 2010;8:1482–1517. doi: 10.3390/md8051482. PubMed DOI PMC
Heggset EB, et al. Degradation of chitosans with a family 46 chitosanase from Streptomyces coelicolor A3(2) Biomacromolecules. 2010;11:2487–2497. doi: 10.1021/bm1006745. PubMed DOI
Eide KB, et al. Human chitotriosidase-catalyzed hydrolysis of chitosan. Biochemistry. 2012;51:487–495. doi: 10.1021/bi2015585. PubMed DOI
Kurita K, Sannan T, Iwakura Y. Studies on chitin, 4. Evidence for formation of block and random copolymers of N-acetyl-D-glucosamine and D-glucosamine by hetero- and homogeneous hydrolyses. Macromol Chem Phys. 1977;178:3197–3202. doi: 10.1002/macp.1977.021781203. DOI
Terbojevich M, Cosani A, Muzzarellib RAA. Molecular parameters of chitosans depolymerized with the aid of papain. Carbohydr Polym. 1996;29:63–68. doi: 10.1016/0144-8617(95)00147-6. DOI
Sashiwa H, et al. Enzymatic production of N-acetyl-d-glucosamine from chitin. Degradation study of N-acetylchitooligosaccharide and the effect of mixing of crude enzymes. Carbohydr Polym. 2003;51:391–395. doi: 10.1016/S0144-8617(02)00192-3. DOI
Xie Y, Wei Y, Hu J. Depolymerization of chitosan with a crude cellulase preparation from Aspergillus niger. Appl. Biochem. Biotechnol. 2010;160:1074–1083. doi: 10.1007/s12010-009-8559-2. PubMed DOI
Kashimura A, et al. Protein A-mouse acidic mammalian chitinase-V5-His expressed in periplasmic space of Escherichia coli possesses chitinase functions comparable to CHO-expressed protein. PLoS One. 2013;8:e78669. doi: 10.1371/journal.pone.0078669. PubMed DOI PMC
Ohno M, et al. Quantification of chitinase mRNA levels in human and mouse tissues by real-time PCR: species-specific expression of acidic mammalian chitinase in stomach tissues. PLoS One. 2013;8:e67399. doi: 10.1371/journal.pone.0067399. PubMed DOI PMC
Tabata E, et al. Chitin digestibility is dependent on feeding behaviors, which determine acidic chitinase mRNA levels in mammalian and poultry stomachs. Sci. Rep. 2018;8:1461. doi: 10.1038/s41598-018-19940-8. PubMed DOI PMC
Noninsect-Based Diet Leads to Structural and Functional Changes of Acidic Chitinase in Carnivora