Noninsect-Based Diet Leads to Structural and Functional Changes of Acidic Chitinase in Carnivora
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34897517
PubMed Central
PMC8789059
DOI
10.1093/molbev/msab331
PII: 6432054
Knihovny.cz E-zdroje
- Klíčová slova
- Chia, acidic chitinase, carnivores, digestive enzyme, gene loss, insectivores,
- MeSH
- Carnivora * metabolismus MeSH
- chitin chemie metabolismus MeSH
- chitinasy * genetika metabolismus MeSH
- dieta MeSH
- myši MeSH
- psi MeSH
- sekvence aminokyselin MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chitin MeSH
- chitinasy * MeSH
Acidic chitinase (Chia) digests the chitin of insects in the omnivorous stomach and the chitinase activity in carnivorous Chia is significantly lower than that of the omnivorous enzyme. However, mechanistic and evolutionary insights into the functional changes in Chia remain unclear. Here we show that a noninsect-based diet has caused structural and functional changes in Chia during the course of evolution in Carnivora. By creating mouse-dog chimeric Chia proteins and modifying the amino acid sequences, we revealed that F214L and A216G substitutions led to the dog enzyme activation. In 31 Carnivora, Chia was present as a pseudogene with stop codons in the open reading frame (ORF) region. Importantly, the Chia proteins of skunk, meerkat, mongoose, and hyena, which are insect-eating species, showed high chitinolytic activity. The cat Chia pseudogene product was still inactive even after ORF restoration. However, the enzyme was activated by matching the number and position of Cys residues to an active form and by introducing five meerkat Chia residues. Mutations affecting the Chia conformation and activity after pseudogenization have accumulated in the common ancestor of Felidae due to functional constraints. Evolutionary analysis indicates that Chia genes are under relaxed selective constraint in species with noninsect-based diets except for Canidae. These results suggest that there are two types of inactivating processes in Carnivora and that dietary changes affect the structure and activity of Chia.
Bioinova JSC Prague Czech Republic
Department of Cellular and Molecular Biology Primate Research Institute Kyoto University Aichi Japan
Department of Chemistry and Life Science Kogakuin University Tokyo Japan
Research Fellow of Japan Society for the Promotion of Science Tokyo Japan
doi: 10.1093/ageing/afab186 PubMed
Zobrazit více v PubMed
Axelsson E, Ratnakumar A, Arendt ML, Maqbool K, Webster MT, Perloski M, Liberg O, Arnemo JM, Hedhammar A, Lindblad-Toh K.. 2013. The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature 495(7441):360–364. PubMed
Barad BA, Liu L, Diaz RE, Basilio R, Van Dyken SJ, Locksley RM, Fraser JS.. 2020. Differences in the chitinolytic activity of mammalian chitinases on soluble and insoluble substrates. Protein Sci. 29(4):966–977. PubMed PMC
Bierbaum S, Nickel R, Koch A, Lau S, Deichmann KA, Wahn U, Superti-Furga A, Heinzmann A.. 2005. Polymorphisms and haplotypes of acid mammalian chitinase are associated with bronchial asthma. Am J Respir Crit Care Med. 172(12):1505–1509. PubMed PMC
Boot RG, Blommaart EF, Swart E, Ghauharali-van der Vlugt K, Bijl N, Moe C, Place A, Aerts JM.. 2001. Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J Biol Chem. 276(9):6770–6778. PubMed
Boot RG, Bussink AP, Verhoek M, de Boer PA, Moorman AF, Aerts JM.. 2005. Marked differences in tissue-specific expression of chitinases in mouse and man. J Histochem Cytochem. 53(10):1283–1292. PubMed
Bueter CL, Specht CA, Levitz SM.. 2013. Innate sensing of chitin and chitosan. PLoS Pathog. 9(1):e1003080. PubMed PMC
Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32(5):1792–1797. PubMed PMC
Emerling CA, Delsuc F, Nachman MW.. 2018. Chitinase genes (CHIAs) provide genomic footprints of a post-Cretaceous dietary radiation in placental mammals. Sci Adv. 4(5):eaar6478. PubMed PMC
Esfeld K, Berardi AE, Moser M, Bossolini E, Freitas L, Kuhlemeier C.. 2018. Pseudogenization and Resurrection of a Speciation Gene. Curr Biol. 28(23):3776–3786. PubMed
Hecker N, Sharma V, Hiller M.. 2019. Convergent gene losses illuminate metabolic and physiological changes in herbivores and carnivores. Proc Natl Acad Sci USA. 116(8):3036–3041. PubMed PMC
Janiak MC, Chaney ME, Tosi AJ.. 2018. Evolution of acidic mammalian chitinase genes (CHIA) is related to body mass and insectivory in primates. Mol Biol Evol. 35(3):607–622. PubMed
Kashimura A, Okawa K, Ishikawa K, Kida Y, Iwabuchi K, Matsushima Y, Sakaguchi M, Sugahara Y, Oyama F.. 2013. Protein A-mouse acidic mammalian chitinase-V5-His expressed in periplasmic space of Escherichia coli possesses chitinase functions comparable to CHO-expressed protein. PLoS One 8(11):e78669. PubMed PMC
Koike C, Uddin M, Wildman DE, Gray EA, Trucco M, Starzl TE, Goodman M.. 2007. Functionally important glycosyltransferase gain and loss during catarrhine primate emergence. Proc Natl Acad Sci USA. 104(2):559–564. PubMed PMC
Kumar S, Stecher G, Li M, Knyaz C, Tamura K.. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 35(6):1547–1549. PubMed PMC
Kumar S, Stecher G, Suleski M, Hedges SB.. 2017. TimeTree: a resource for timelines, timetrees, and divergence times. Mol Biol Evol. 34(7):1812–1819. PubMed
Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, Clamp M, Chang JL, Kulbokas EJ 3rd, Zody MC, et al.2005. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438(7069):803–819. PubMed
Lyu T, Liu G, Zhang H, Wang L, Zhou S, Dou H, Pang B, Sha W, Zhang H.. 2018. Changes in feeding habits promoted the differentiation of the composition and function of gut microbiotas between domestic dogs (Canis lupus familiaris) and gray wolves (Canis lupus). AMB Express 8(1):123. PubMed PMC
Ma JE, Li LM, Jiang HY, Zhang XJ, Li J, Li GY, Chen JP.. 2018. Acidic mammalian chitinase gene is highly expressed in the special oxyntic glands of Manis javanica. FEBS Open Bio. 8(8):1247–1255. PubMed PMC
O’Leary MA, Bloch JI, Flynn JJ, Gaudin TJ, Giallombardo A, Giannini NP, Goldberg SL, Kraatz BP, Luo ZX, Meng J, et al.2013. The placental mammal ancestor and the post-K-Pg radiation of placentals. Science 339(6120):662–667. PubMed
Ohno M, Kimura M, Miyazaki H, Okawa K, Onuki R, Nemoto C, Tabata E, Wakita S, Kashimura A, Sakaguchi M, et al.2016. Acidic mammalian chitinase is a proteases-resistant glycosidase in mouse digestive system. Sci Rep. 6:37756. PubMed PMC
Ohno M, Togashi Y, Tsuda K, Okawa K, Kamaya M, Sakaguchi M, Sugahara Y, Oyama F.. 2013. Quantification of chitinase mRNA levels in human and mouse tissues by real-time PCR: species-specific expression of acidic mammalian chitinase in stomach tissues. PLoS One 8(6):e67399. PubMed PMC
Okawa K, Ohno M, Kashimura A, Kimura M, Kobayashi Y, Sakaguchi M, Sugahara Y, Kamaya M, Kino Y, Bauer PO, et al.2016. Loss and gain of human acidic mammalian chitinase activity by nonsynonymous SNPs. Mol Biol Evol. 33(12):3183–3193. PubMed PMC
Olland AM, Strand J, Presman E, Czerwinski R, Joseph-McCarthy D, Krykbaev R, Schlingmann G, Chopra R, Lin L, Fleming M, et al.2009. Triad of polar residues implicated in pH specificity of acidic mammalian chitinase. Protein Sci. 18(3):569–578. PubMed PMC
Pang JF, Kluetsch C, Zou XJ, Zhang AB, Luo LY, Angleby H, Ardalan A, Ekstrom C, Skollermo A, Lundeberg J, et al.2009. mtDNA data indicate a single origin for dogs south of Yangtze River, less than 16,300 years ago, from numerous wolves. Mol Biol Evol. 26(12):2849–2864. PubMed PMC
Reese TA, Liang HE, Tager AM, Luster AD, Van Rooijen N, Voehringer D, Locksley RM.. 2007. Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature 447(7140):92–96. PubMed PMC
Risso D, Behrens M, Sainz E, Meyerhof W, Drayna D.. 2017. Probing the evolutionary history of human bitter taste receptor pseudogenes by restoring their function. Mol Biol Evol. 34(7):1587–1595. PubMed PMC
Seibold MA, Reese TA, Choudhry S, Salam MT, Beckman K, Eng C, Atakilit A, Meade K, Lenoir M, Watson HG, et al.2009. Differential enzymatic activity of common haplotypic versions of the human acidic mammalian chitinase protein. J Biol Chem. 284(29):19650–19658. PubMed PMC
Sharma V, Hecker N, Roscito JG, Foerster L, Langer BE, Hiller M.. 2018. A genomics approach reveals insights into the importance of gene losses for mammalian adaptations. Nat Commun. 9(1):1215. PubMed PMC
Skoglund P, Gotherstrom A, Jakobsson M.. 2011. Estimation of population divergence times from non-overlapping genomic sequences: examples from dogs and wolves. Mol Biol Evol. 28(4):1505–1517. PubMed
Strobel S, Roswag A, Becker NI, Trenczek TE, Encarnacao JA.. 2013. Insectivorous bats digest chitin in the stomach using acidic mammalian chitinase. PLoS One 8(9):e72770. PubMed PMC
Tabata E, Kashimura A, Kikuchi A, Masuda H, Miyahara R, Hiruma Y, Wakita S, Ohno M, Sakaguchi M, Sugahara Y, et al.2018. Chitin digestibility is dependent on feeding behaviors, which determine acidic chitinase mRNA levels in mammalian and poultry stomachs. Sci Rep. 8(1):1461. PubMed PMC
Tabata E, Kashimura A, Uehara M, Wakita S, Sakaguchi M, Sugahara Y, Yurimoto T, Sasaki E, Matoska V, Bauer PO, et al.2019. High expression of acidic chitinase and chitin digestibility in the stomach of common marmoset (Callithrix jacchus), an insectivorous nonhuman primate. Sci Rep. 9(1):159. PubMed PMC
Tabata E, Kashimura A, Wakita S, Ohno M, Sakaguchi M, Sugahara Y, Imamura Y, Seki S, Ueda H, Matoska V, et al.2017. Protease resistance of porcine acidic mammalian chitinase under gastrointestinal conditions implies that chitin-containing organisms can be sustainable dietary resources. Sci Rep. 7(1):12963. PubMed PMC
Tabata E, Kashimura A, Wakita S, Ohno M, Sakaguchi M, Sugahara Y, Kino Y, Matoska V, Bauer PO, Oyama F.. 2017. Gastric and intestinal proteases resistance of chicken acidic chitinase nominates chitin-containing organisms for alternative whole edible diets for poultry. Sci Rep. 7(1):6662. PubMed PMC
Tabata E, Kashimura A, Wakita S, Sakaguchi M, Sugahara Y, Imamura Y, Shimizu H, Matoska V, Bauer PO, Oyama F.. 2018. Acidic chitinase-chitin complex is dissociated in a competitive manner by acetic acid: purification of natural enzyme for supplementation purposes. Int J Mol Sci. 19(2):362. PubMed PMC
Tabata E, Wakita S, Kashimura A, Sugahara Y, Matoska V, Bauer PO, Oyama F.. 2019. Residues of acidic chitinase cause chitinolytic activity degrading chitosan in porcine pepsin preparations. Sci Rep. 9(1):15609. PubMed PMC
Uehara M, Tabata E, Ishii K, Sawa A, Ohno M, Sakaguchi M, Matoska V, Bauer PO, Oyama F.. 2018. Chitinase mRNA levels determined by qPCR in crab-eating monkey (Macaca fascicularis) tissues: species-specific expression of acidic mammalian chitinase and chitotriosidase. Genes (Basel) 9(5):244. PubMed PMC
Uehara M, Tabata E, Okuda M, Maruyama Y, Matoska V, Bauer PO, Oyama F.. 2021. Robust chitinolytic activity of crab-eating monkey (Macaca fascicularis) acidic chitinase under a broad pH and temperature range. Sci Rep. 11(1):15470. PubMed PMC
Van Dyken SJ, Liang HE, Naikawadi RP, Woodruff PG, Wolters PJ, Erle DJ, Locksley RM.. 2017. Spontaneous chitin accumulation in airways and age-related fibrotic lung disease. Cell 169(3):497–509.e13. PubMed PMC
Van Dyken SJ, Locksley RM.. 2018. Chitins and chitinase activity in airway diseases. J Allergy Clin Immunol. 142(2):364–369. PubMed PMC
Van Valkenburgh B, Wayne RK.. 2010. Carnivores. Curr Biol. 20(21):R915–R919. PubMed
Wertheim JO, Murrell B, Smith MD, Kosakovsky Pond SL, Scheffler K.. 2015. RELAX: detecting relaxed selection in a phylogenetic framework. Mol Biol Evol. 32(3):820–832. PubMed PMC
Wysokowski M, Petrenko I, Stelling AL, Stawski D, Jesionowski T, Ehrlich H.. 2015. Poriferan chitin as a versatile template for extreme biomimetics. Polymers 7(2):235–265.
Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 24(8):1586–1591. PubMed
Zhao H, Yang JR, Xu H, Zhang J.. 2010. Pseudogenization of the umami taste receptor gene Tas1r1 in the giant panda coincided with its dietary switch to bamboo. Mol Biol Evol. 27(12):2669–2673. PubMed PMC
Zhu Z, Zheng T, Homer RJ, Kim YK, Chen NY, Cohn L, Hamid Q, Elias JA.. 2004. Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation. Science 304(5677):1678–1682. PubMed
Hyperactivation of human acidic chitinase (Chia) for potential medical use