Chitinase mRNA Levels Determined by QPCR in Crab-Eating Monkey (Macaca fascicularis) Tissues: Species-Specific Expression of Acidic Mammalian Chitinase and Chitotriosidase
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
P50 MH094268
NIMH NIH HHS - United States
PubMed
29747453
PubMed Central
PMC5977184
DOI
10.3390/genes9050244
PII: genes9050244
Knihovny.cz E-zdroje
- Klíčová slova
- acidic mammalian chitinase, asthma, chitinolytic activity, chitotriosidase, crab-eating monkey, human, mouse, nonhuman primate model, qPCR, species-specific gene expression,
- Publikační typ
- časopisecké články MeSH
Mice and humans express two active chitinases: acidic mammalian chitinase (AMCase) and chitotriosidase (CHIT1). Both chitinases are thought to play important roles in specific pathophysiological conditions. The crab-eating monkey (Macaca fascicularis) is one of the most frequently used nonhuman primate models in basic and applied biomedical research. Here, we performed gene expression analysis of two chitinases in normal crab-eating monkey tissues by way of quantitative real-time polymerase chain reaction (qPCR) using a single standard DNA molecule. Levels of AMCase and CHIT1 messenger RNAs (mRNAs) were highest in the stomach and the lung, respectively, when compared to other tissues. Comparative gene expression analysis of mouse, monkey, and human using monkey⁻mouse⁻human hybrid standard DNA showed that the AMCase mRNA levels were exceptionally high in mouse and monkey stomachs while very low in the human stomach. As for the CHIT1 mRNA, we detected higher levels in the monkey lung when compared with those of mouse and human. The differences of mRNA expression between the species in the stomach tissues were basically reflecting the levels of the chitinolytic activities. These results indicate that gene expression of AMCase and CHIT1 differs between mammalian species and requiring special attention in handling data in chitinase-related studies in particular organisms.
Bioinova Ltd 142 20 Prague Czech Republic
Department of Chemistry and Life Science Kogakuin University Hachioji Tokyo 192 0015 Japan
Japan Society for the Promotion of Science Koujimachi Chiyoda ku Tokyo 102 0083 Japan
Zobrazit více v PubMed
Khoushab F., Yamabhai M. Chitin research revisited. Mar. Drugs. 2010;8:1988–2012. doi: 10.3390/md8071988. PubMed DOI PMC
Koch B.E., Stougaard J., Spaink H.P. Keeping track of the growing number of biological functions of chitin and its interaction partners in biomedical research. Glycobiology. 2015;25:469–482. doi: 10.1093/glycob/cwv005. PubMed DOI PMC
Bueter C.L., Specht C.A., Levitz S.M. Innate sensing of chitin and chitosan. PLoS Pathog. 2013;9:e1003080. doi: 10.1371/journal.ppat.1003080. PubMed DOI PMC
Lee C.G., Da Silva C.A., Dela Cruz C.S., Ahangari F., Ma B., Kang M.J., He C.H., Takyar S., Elias J.A. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu. Rev. Physiol. 2011;73:479–501. doi: 10.1146/annurev-physiol-012110-142250. PubMed DOI PMC
Hollak C.E., van Weely S., van Oers M.H., Aerts J.M. Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease. J. Clin. Investig. 1994;93:1288–1292. doi: 10.1172/JCI117084. PubMed DOI PMC
Renkema G.H., Boot R.G., Muijsers A.O., Donker-Koopman W.E., Aerts J.M. Purification and characterization of human chitotriosidase, a novel member of the chitinase family of proteins. J. Biol. Chem. 1995;270:2198–2202. doi: 10.1074/jbc.270.5.2198. PubMed DOI
Boot R.G., Renkema G.H., Strijland A., van Zonneveld A.J., Aerts J.M. Cloning of a cDNA encoding chitotriosidase, a human chitinase produced by macrophages. J. Biol. Chem. 1995;270:26252–26256. doi: 10.1074/jbc.270.44.26252. PubMed DOI
Boot R.G., Blommaart E.F., Swart E., Ghauharali-van der Vlugt K., Bijl N., Moe C., Place A., Aerts J.M. Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J. Biol. Chem. 2001;276:6770–6778. doi: 10.1074/jbc.M009886200. PubMed DOI
Boot R.G., Bussink A.P., Verhoek M., de Boer P.A., Moorman A.F., Aerts J.M. Marked differences in tissue-specific expression of chitinases in mouse and man. J. Histochem. Cytochem. 2005;53:1283–1292. doi: 10.1369/jhc.4A6547.2005. PubMed DOI
Letuve S., Kozhich A., Humbles A., Brewah Y., Dombret M.C., Grandsaigne M., Adle H., Kolbeck R., Aubier M., Coyle A.J., et al. Lung chitinolytic activity and chitotriosidase are elevated in chronic obstructive pulmonary disease and contribute to lung inflammation. Am. J. Pathol. 2010;176:638–649. doi: 10.2353/ajpath.2010.090455. PubMed DOI PMC
Watabe-Rudolph M., Song Z., Lausser L., Schnack C., Begus-Nahrmann Y., Scheithauer M.O., Rettinger G., Otto M., Tumani H., Thal D.R., et al. Chitinase enzyme activity in CSF is a powerful biomarker of Alzheimer disease. Neurology. 2012;78:569–577. doi: 10.1212/WNL.0b013e318247caa1. PubMed DOI
Seibold M.A., Donnelly S., Solon M., Innes A., Woodruff P.G., Boot R.G., Burchard E.G., Fahy J.V. Chitotriosidase is the primary active chitinase in the human lung and is modulated by genotype and smoking habit. J. Allergy Clin. Immunol. 2008;122:944–950.e3. doi: 10.1016/j.jaci.2008.08.023. PubMed DOI PMC
Artieda M., Cenarro A., Ganan A., Jerico I., Gonzalvo C., Casado J.M., Vitoria I., Puzo J., Pocovi M., Civeira F. Serum chitotriosidase activity is increased in subjects with atherosclerosis disease. Arterioscler. Thromb. Vasc. Biol. 2003;23:1645–1652. doi: 10.1161/01.ATV.0000089329.09061.07. PubMed DOI
Sonmez A., Haymana C., Tapan S., Safer U., Celebi G., Ozturk O., Genc H., Dogru T., Tasci I., Erdem G., et al. Chitotriosidase activity predicts endothelial dysfunction in type-2 diabetes mellitus. Endocrine. 2010;37:455–459. doi: 10.1007/s12020-010-9334-4. PubMed DOI
Livnat G., Bar-Yoseph R., Mory A., Dagan E., Elias N., Gershoni R., Bentur L. Duplication in CHIT1 gene and the risk for Aspergillus lung disease in CF patients. Pediatr. Pulmonol. 2014;49:21–27. doi: 10.1002/ppul.22749. PubMed DOI
Hall A.J., Morroll S., Tighe P., Gotz F., Falcone F.H. Human chitotriosidase is expressed in the eye and lacrimal gland and has an antimicrobial spectrum different from lysozyme. Microbes Infect. 2008;10:69–78. doi: 10.1016/j.micinf.2007.10.007. PubMed DOI
Zhu Z., Zheng T., Homer R.J., Kim Y.K., Chen N.Y., Cohn L., Hamid Q., Elias J.A. Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation. Science. 2004;304:1678–1682. doi: 10.1126/science.1095336. PubMed DOI
Reese T.A., Liang H.E., Tager A.M., Luster A.D., Van Rooijen N., Voehringer D., Locksley R.M. Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature. 2007;447:92–96. doi: 10.1038/nature05746. PubMed DOI PMC
Bierbaum S., Nickel R., Koch A., Lau S., Deichmann K.A., Wahn U., Superti-Furga A., Heinzmann A. Polymorphisms and haplotypes of acid mammalian chitinase are associated with bronchial asthma. Am. J. Respir. Crit. Care Med. 2005;172:1505–1509. doi: 10.1164/rccm.200506-890OC. PubMed DOI PMC
Chatterjee R., Batra J., Das S., Sharma S.K., Ghosh B. Genetic association of acidic mammalian chitinase with atopic asthma and serum total IgE levels. J. Allergy Clin. Immunol. 2008;122:202–208.e7. doi: 10.1016/j.jaci.2008.04.030. PubMed DOI
Seibold M.A., Reese T.A., Choudhry S., Salam M.T., Beckman K., Eng C., Atakilit A., Meade K., Lenoir M., Watson H.G., et al. Differential enzymatic activity of common haplotypic versions of the human acidic mammalian chitinase protein. J. Biol. Chem. 2009;284:19650–19658. doi: 10.1074/jbc.M109.012443. PubMed DOI PMC
Okawa K., Ohno M., Kashimura A., Kimura M., Kobayashi Y., Sakaguchi M., Sugahara Y., Kamaya M., Kino Y., Bauer P.O., et al. Loss and gain of human acidic mammalian chitinase activity by nonsynonymous SNPs. Mol. Biol. Evol. 2016;33:3183–3193. doi: 10.1093/molbev/msw198. PubMed DOI PMC
Van Dyken S.J., Liang H.E., Naikawadi R.P., Woodruff P.G., Wolters P.J., Erle D.J., Locksley R.M. Spontaneous chitin accumulation in airways and age-related fibrotic lung disease. Cell. 2017;169:497–509.e13. doi: 10.1016/j.cell.2017.03.044. PubMed DOI PMC
Vannella K.M., Ramalingam T.R., Hart K.M., de Queiroz Prado R., Sciurba J., Barron L., Borthwick L.A., Smith A.D., Mentink-Kane M., White S., et al. Acidic chitinase primes the protective immune response to gastrointestinal nematodes. Nat. Immunol. 2016;17:538–544. doi: 10.1038/ni.3417. PubMed DOI PMC
Ohno M., Tsuda K., Sakaguchi M., Sugahara Y., Oyama F. Chitinase mRNA levels by quantitative PCR using the single standard DNA: Acidic mammalian chitinase is a major transcript in the mouse stomach. PLoS ONE. 2012;7:e50381. doi: 10.1371/journal.pone.0050381. PubMed DOI PMC
Ohno M., Togashi Y., Tsuda K., Okawa K., Kamaya M., Sakaguchi M., Sugahara Y., Oyama F. Quantification of chitinase mRNA levels in human and mouse tissues by real-time PCR: Species-specific expression of acidic mammalian chitinase in stomach tissues. PLoS ONE. 2013;8:e67399. doi: 10.1371/journal.pone.0067399. PubMed DOI PMC
Ohno M., Kimura M., Miyazaki H., Okawa K., Onuki R., Nemoto C., Tabata E., Wakita S., Kashimura A., Sakaguchi M., et al. Acidic mammalian chitinase is a proteases-resistant glycosidase in mouse digestive system. Sci. Rep. 2016;6:37756. doi: 10.1038/srep37756. PubMed DOI PMC
Tabata E., Kashimura A., Wakita S., Ohno M., Sakaguchi M., Sugahara Y., Kino Y., Matoska V., Bauer P.O., Oyama F. Gastric and intestinal proteases resistance of chicken acidic chitinase nominates chitin-containing organisms for alternative whole edible diets for poultry. Sci. Rep. 2017;7:6662. doi: 10.1038/s41598-017-07146-3. PubMed DOI PMC
Tabata E., Kashimura A., Wakita S., Ohno M., Sakaguchi M., Sugahara Y., Imamura Y., Seki S., Ueda H., Matoska V., et al. Protease resistance of porcine acidic mammalian chitinase under gastrointestinal conditions implies that chitin-containing organisms can be sustainable dietary resources. Sci. Rep. 2017;7:12963. doi: 10.1038/s41598-017-13526-6. PubMed DOI PMC
Tabata E., Kashimura A., Kikuchi A., Masuda H., Miyahara R., Hiruma Y., Wakita S., Ohno M., Sakaguchi M., Sugahara Y., et al. Chitin digestibility is dependent on feeding behaviors, which determine acidic chitinase mRNA levels in mammalian and poultry stomachs. Sci. Rep. 2018;8:1461. doi: 10.1038/s41598-018-19940-8. PubMed DOI PMC
Huh J.W., Kim Y.H., Park S.J., Kim D.S., Lee S.R., Kim K.M., Jeong K.J., Kim J.S., Song B.S., Sim B.W., et al. Large-scale transcriptome sequencing and gene analyses in the crab-eating macaque (Macaca fascicularis) for biomedical research. BMC Genom. 2012;13:163. doi: 10.1186/1471-2164-13-163. PubMed DOI PMC
Ilham K., Rizaldi, Nurdin J., Tsuji Y. Status of urban populations of the long-tailed macaque (Macaca fascicularis) in west Sumatra, Indonesia. Primates. 2017;58:295–305. doi: 10.1007/s10329-016-0588-1. PubMed DOI
Register T.C., Carlson C.S., Adams M.R. Serum YKL-40 is associated with osteoarthritis and atherosclerosis in nonhuman primates. Clin. Chem. 2001;47:2159–2161. PubMed
Krykbaev R., Fitz L.J., Reddy P.S., Winkler A., Xuan D., Yang X., Fleming M., Wolf S.F. Evolutionary and biochemical differences between human and monkey acidic mammalian chitinases. Gene. 2010;452:63–71. doi: 10.1016/j.gene.2009.12.005. PubMed DOI
Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., et al. The miqe guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI
Bustin S.A., Beaulieu J.F., Huggett J., Jaggi R., Kibenge F.S., Olsvik P.A., Penning L.C., Toegel S. MIQE précis: Practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments. BMC Mol. Biol. 2010;11:74. doi: 10.1186/1471-2199-11-74. PubMed DOI PMC
Zainuddin A., Chua K.H., Abdul Rahim N., Makpol S. Effect of experimental treatment on GAPDH mRNA expression as a housekeeping gene in human diploid fibroblasts. BMC Mol. Biol. 2010;11:59. doi: 10.1186/1471-2199-11-59. PubMed DOI PMC
Kageyama T. Pepsinogens, progastricsins, and prochymosins: Structure, function, evolution, and development. Cell. Mol. Life Sci. 2002;59:288–306. doi: 10.1007/s00018-002-8423-9. PubMed DOI PMC
Chou Y.T., Yao S., Czerwinski R., Fleming M., Krykbaev R., Xuan D., Zhou H., Brooks J., Fitz L., Strand J., et al. Kinetic characterization of recombinant human acidic mammalian chitinase. Biochemistry. 2006;45:4444–4454. doi: 10.1021/bi0525977. PubMed DOI
Strobel S., Roswag A., Becker N.I., Trenczek T.E., Encarnacao J.A. Insectivorous bats digest chitin in the stomach using acidic mammalian chitinase. PLoS ONE. 2013;8:e72770. doi: 10.1371/journal.pone.0072770. PubMed DOI PMC
Janiak M.C., Chaney M.E., Tosi A.J. Evolution of acidic mammalian chitinase genes (CHIA) is related to body mass and insectivory in primates. Mol. Biol. Evol. 2018;35:607–622. doi: 10.1093/molbev/msx312. PubMed DOI
Kondo H., Shinoda T., Nakashima H., Watanabe T., Yokohama S. Characteristics of the gastric pH profiles of unfed and fed cynomolgus monkeys as pharmaceutical product development subjects. Biopharm. Drug Dispos. 2003;24:45–51. doi: 10.1002/bdd.338. PubMed DOI
Hyperactivation of human acidic chitinase (Chia) for potential medical use
Noninsect-Based Diet Leads to Structural and Functional Changes of Acidic Chitinase in Carnivora