chitotriosidase Dotaz Zobrazit nápovědu
Chitotriosidase (Chit1) and acidic mammalian chitinase (AMCase) have been implicated in food processing and various pathophysiological conditions such as chronic inflammatory diseases. By combination of the colorimetric analysis and fluorophore-assisted carbohydrate electrophoresis (FACE) method, we directly compared the chitinolytic properties of mouse Chit1 and AMCase and determined their combinatory effects in artificial and natural chitin substrates processing. Chit1 and AMCase display different dynamics of chitinolytic properties through acidic to neutral conditions. At pH2.0, the activity of AMCase was higher than that of Chit1 and stronger or comparable with that of Serratia marcescens chitinase B, a well-characterized bacterium chitinase. Changes of degradation products using different substrates indicate that AMCase and Chit1 have diverse properties under various pH conditions. Exposure of the chitin substrates to both Chit1 and AMCase did not indicate any mutual interference of these enzymes and showed no synergistic effect, in contrast to observations regarding some bacterial chitinases. Our results suggest that Chit1 and AMCase have no synergistic effect under physiological conditions.
- MeSH
- bakteriální proteiny chemie genetika MeSH
- chitin chemie MeSH
- chitinasy chemie genetika MeSH
- hexosaminidasy chemie MeSH
- hydrolýza MeSH
- kolorimetrie MeSH
- koncentrace vodíkových iontů MeSH
- molekulová hmotnost MeSH
- myši MeSH
- rekombinantní proteiny MeSH
- substrátová specifita MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Chitotriosidase (Chit1) and acidic mammalian chitinase (AMCase) have been attracting research interest due to their involvement in various pathological conditions such as Gaucher's disease and asthma, respectively. Both enzymes are highly expressed in mice, while the level of AMCase mRNA was low in human tissues. In addition, the chitinolytic activity of the recombinant human AMCase was significantly lower than that of the mouse counterpart. Here, we revealed a substantially higher chitinolytic and transglycosylation activity of human Chit1 against artificial and natural chitin substrates as compared to the mouse enzyme. We found that the substitution of leucine (L) by tryptophan (W) at position 218 markedly reduced both activities in human Chit1. Conversely, the L218W substitution in mouse Chit1 increased the activity of the enzyme. These results suggest that Chit1 may compensate for the low of AMCase activity in humans, while in mice, highly active AMCase may supplements low Chit1 activity.
- MeSH
- chitin metabolismus MeSH
- chitinasy genetika metabolismus MeSH
- Escherichia coli genetika růst a vývoj MeSH
- glykosylace MeSH
- hexosaminidasy genetika metabolismus MeSH
- lidé MeSH
- myši MeSH
- regulace genové exprese enzymů MeSH
- rekombinantní proteiny metabolismus MeSH
- substituce aminokyselin * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- MeSH
- amyloidóza komplikace patologie MeSH
- dospělí MeSH
- Gaucherova nemoc komplikace patologie MeSH
- hexosaminidasy analýza krev nedostatek MeSH
- lidé středního věku MeSH
- lidé MeSH
- myokard chemie patologie ultrastruktura MeSH
- plíce chemie patologie ultrastruktura MeSH
- slezina enzymologie chemie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- Publikační typ
- kazuistiky MeSH
In various mammals, enzymatically active and inactive members of family 18 glycosyl hydrolases, containing chitinases, have been identified. In man, chitotriosidase is the functional chitinolytic enzyme, whilst the homologous human cartilage 39-kDa glycoprotein (HC gp-39) does not exhibit chitinase activity and its function is unknown. This study establishes that HC gp-39 is a chitin-specific lectin. It is experimentally demonstrated that a single amino acid substitution in the catalytic centre of the 39-kDa isoform of chitotriosidase, which generates a similar sequence to that in HC gp-39, results in a loss of hydrolytic activity and creates the capacity to bind to chitin. The possible implication of the finding for chitinolytic and chitin-binding proteins that are produced in high quantities by activated macrophages are discussed.
- MeSH
- adipokiny MeSH
- chitin * metabolismus MeSH
- COS buňky MeSH
- glykoproteiny metabolismus sekrece MeSH
- hexosaminidasy genetika metabolismus sekrece MeSH
- kultivované buňky MeSH
- lektiny MeSH
- lidé MeSH
- makrofágy enzymologie sekrece MeSH
- molekulární sekvence - údaje MeSH
- mutageneze cílená MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie aminokyselin MeSH
- vazebná místa MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- práce podpořená grantem MeSH
Mice and humans express two active chitinases: acidic mammalian chitinase (AMCase) and chitotriosidase (CHIT1). Both chitinases are thought to play important roles in specific pathophysiological conditions. The crab-eating monkey (Macaca fascicularis) is one of the most frequently used nonhuman primate models in basic and applied biomedical research. Here, we performed gene expression analysis of two chitinases in normal crab-eating monkey tissues by way of quantitative real-time polymerase chain reaction (qPCR) using a single standard DNA molecule. Levels of AMCase and CHIT1 messenger RNAs (mRNAs) were highest in the stomach and the lung, respectively, when compared to other tissues. Comparative gene expression analysis of mouse, monkey, and human using monkey⁻mouse⁻human hybrid standard DNA showed that the AMCase mRNA levels were exceptionally high in mouse and monkey stomachs while very low in the human stomach. As for the CHIT1 mRNA, we detected higher levels in the monkey lung when compared with those of mouse and human. The differences of mRNA expression between the species in the stomach tissues were basically reflecting the levels of the chitinolytic activities. These results indicate that gene expression of AMCase and CHIT1 differs between mammalian species and requiring special attention in handling data in chitinase-related studies in particular organisms.
- Publikační typ
- časopisecké články MeSH
Chitin, a polymer of N-acetyl-D-glucosamine (GlcNAc), is a major structural component in chitin-containing organism including crustaceans, insects and fungi. Mammals express two chitinases, chitotriosidase (Chit1) and acidic mammalian chitinase (AMCase). Here, we report that pig AMCase is stable in the presence of other digestive proteases and functions as chitinolytic enzyme under the gastrointestinal conditions. Quantification of chitinases expression in pig tissues using quantitative real-time PCR showed that Chit1 mRNA was highly expressed in eyes, whereas the AMCase mRNA was predominantly expressed in stomach at even higher levels than the housekeeping genes. AMCase purified from pig stomach has highest activity at pH of around 2-4 and remains active at up to pH 7.0. It was resistant to robust proteolytic activities of pepsin at pH 2.0 and trypsin and chymotrypsin at pH 7.6. AMCase degraded polymeric chitin substrates including mealworm shells to GlcNAc dimers. Furthermore, we visualized chitin digestion of fly wings by endogenous AMCase and pepsin in stomach extract. Thus, pig AMCase can function as a protease resistant chitin digestive enzyme at broad pH range present in stomach as well as in the intestine. These results indicate that chitin-containing organisms may be a sustainable feed ingredient in pig diet.
- MeSH
- chitin metabolismus MeSH
- chitinasy genetika izolace a purifikace metabolismus MeSH
- chymotrypsin metabolismus MeSH
- dieta * MeSH
- Drosophila chemie MeSH
- endopeptidasy metabolismus MeSH
- gastrointestinální trakt metabolismus MeSH
- křídla zvířecí chemie MeSH
- messenger RNA genetika metabolismus MeSH
- orgánová specificita MeSH
- pepsinogen A metabolismus MeSH
- prasata genetika MeSH
- rozpustnost MeSH
- substrátová specifita MeSH
- Tenebrio MeSH
- tkáňové extrakty MeSH
- trypsin metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Závěrečná zpráva o řešení grantu Interní grantové agentury MZ ČR
1 svazek : ilustrace, tabulky ; 30 cm
Lysosomal storage disorders (LSD) are severe hereditary diseases caused by defect in the function of enzyme or noncatalytic protein due to mutation of the corresponding gene. Most of them are associated with a progressive neurodegeneration. Early diagnosis is of crucial importance for genetic counseling and prevention in families and in view of current and future therapeutic options. The project focuses primarily on the development of screening examinations in enzymology (dry blood spot analysis), in metabolomics/lipidomics (dry urine sample analysis) and on the molecular genetic analysis of GM1 and GM2 gangliosidoses and chitotriosidase deficiency. Advanced technology New Generation Sequencing (NGS) will be used for examination of 51 genes in screening study for neurodegenerative disorders with unclear etiology. Preparation of induced pluripotent cell lines (iPS) of LSD will provide a platform for research of the biology of these diseases and for testing therapeutic approaches.
Lysosomální střádavé choroby (LSD) jsou závažná dědičná onemocnění způsobená poruchou funkcí enzymových nebo nekatalytických proteinů v důsledku mutace v odpovídajícím genu. Většina z nich je spojena s progresivní neurodegenerací. Časná diagnostika zde má zásadní důležitost z hlediska genetického poradenství a prevence v rodinách a z hlediska současných i budoucích terapeutických možností. Projekt je zaměřen především na rozvoj screeningových vyšetření v enzymologii (analýza v suché krevní kapce), metabolomice/lipidomice (MS analýza v suchém vzorku moče), a na molekulárně genetické vyšetření GM1 a GM2 gangliosidos a deficitu chitotriosidasy. Pro screeningové vyšetření 51 genů u neurodegenerativních onemocnění s nejasnou etiologií bude využita moderní sekvenační technika New Generation Sequencing (NGS). Příprava indukovaných pluripotentních (iPS) buněčných modelů LSD poskytne další možnosti pro výzkum biologické podstaty těchto chorob i pro testování různých způsobů terapie.
- MeSH
- analýza moči metody MeSH
- časná diagnóza MeSH
- diagnostické techniky molekulární MeSH
- G(M1) gangliosid analýza MeSH
- G(M2) gangliosid analýza MeSH
- genetické poradenství MeSH
- genetické testování MeSH
- hexosaminidasy analýza MeSH
- hmotnostní spektrometrie MeSH
- indukované pluripotentní kmenové buňky MeSH
- lyzozomální střádavé nemoci v nervovém systému diagnóza MeSH
- metabolomika MeSH
- test suché kapky krve MeSH
- Konspekt
- Patologie. Klinická medicína
- NLK Obory
- neurologie
- NLK Publikační typ
- závěrečné zprávy o řešení grantu IGA MZ ČR
A personalized treatment decision for Gaucher disease (GD) patients should be based on relevant markers that are specific to GD, play a direct role in GD pathophysiology, exhibit low genetic variation, reflect the therapy, and can be used for all patients. Thirty-four GD patients treated with enzyme replacement therapy (ERT) or substrate reduction therapy (SRT) were analyzed for platelet count, chitotriosidase, and tartrate-resistant acid phosphatase activity in plasma samples, and quantitative measurement of Lyso-Gb1 was performed in dried blood spots. In our ERT and SRT study cohorts, plasma lyso-GL1 correlated significantly with chito-triosidase (ERT: r = 0.55, p < 0.001; SRT: r = 0.83, p < 0.001) and TRAP (ERT: r = 0.34, p < 0.001; SRT: r = 0.88, p < 0.001), irrespective of treatment method. A platelet count increase was associated with a Lyso-Gb1 decrease in both treatment groups (ERT: p = 0.021; SRT: p = 0.028). The association of Lyso-Gb1 with evaluated markers was stronger in the SRT cohort. Our results indicate that ERT and SRT in combination or in a switch manner could offer the potential of individual drug effectiveness for particular GD symptoms. Combination of the key biomarker of GD, Lyso-Gb1, with other biomarkers can offer improved response assessment to long-term therapy.
- MeSH
- biologické markery MeSH
- enzymová substituční terapie MeSH
- Gaucherova nemoc * diagnóza farmakoterapie MeSH
- lidé MeSH
- počet trombocytů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
BACKGROUND: Acid sphingomyelinase deficiency (ASMD), due to mutations in the sphingomyelin phosphodiesterase 1 (SMPD1) gene, is divided into infantile neurovisceral ASMD (Niemann-Pick type A), chronic neurovisceral ASMD (intermediate form, Niemann-Pick type A/B) and chronic visceral ASMD (Niemann-Pick type B). We conducted a long-term observational, single-center study including 16 patients with chronic visceral ASMD. RESULTS: 12 patients were diagnosed in childhood and 4 others in adulthood, the oldest at the age of 50. The mean time of follow-up was approximately 10 years (range: 6 months - 36 years). Splenomegaly was noted in all patients at diagnosis. Hepatomegaly was observed in 88% of patients. Moderately elevated (several-fold above the upper limit of normal values) serum transaminases were noted in 38% of patients. Cherry-red spots were found in five Gypsy children from one family and also in one adult Polish patient, a heterozygote for p.delR610 mutation. Dyslipidemia was noted in 50% of patients. Interstitial lung disease was diagnosed in 44% of patients. Plasmatic lysosphingomyelin (SPC) was elevated in all the patients except one with p.V36A homozygosity and a very mild phenotype also presenting with elevated plasmatic SPC-509 but normal chitotriosidase activity. The most common variant of SMPD1 gene was p.G166R. We found a previously unreported variant in exon 2 (c.491G > T, p.G164 V) in one patient. CONCLUSIONS: Chronic visceral ASMD could constitute a slowly progressing disease with a relatively good outcome. The combined measurement of lysosphingomyelin (SPC) and lysospingomyelin-509 (SPC-509) is an essential method for the assessment of ASMD course.
- MeSH
- dítě MeSH
- dospělí MeSH
- exony genetika MeSH
- hexosaminidasy genetika metabolismus MeSH
- homozygot MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mutace genetika MeSH
- následné studie MeSH
- Niemannova-Pickova nemoc typu A genetika metabolismus MeSH
- předškolní dítě MeSH
- sfingomyelinfosfodiesterasa genetika metabolismus MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Polsko MeSH