Crab-Eating Monkey Acidic Chitinase (CHIA) Efficiently Degrades Chitin and Chitosan under Acidic and High-Temperature Conditions
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35056724
PubMed Central
PMC8781735
DOI
10.3390/molecules27020409
PII: molecules27020409
Knihovny.cz E-zdroje
- Klíčová slova
- FACE method, acidic chitinase, chitin, chitooligosaccharides, chitosan,
- MeSH
- chitin * chemie metabolismus analogy a deriváty MeSH
- chitinasy * metabolismus chemie MeSH
- chitosan * chemie MeSH
- hydrolýza MeSH
- koncentrace vodíkových iontů MeSH
- oligosacharidy * chemie MeSH
- substrátová specifita MeSH
- vysoká teplota MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chitin * MeSH
- chitinasy * MeSH
- chitosan * MeSH
- oligochitosan MeSH Prohlížeč
- oligosacharidy * MeSH
Chitooligosaccharides, the degradation products of chitin and chitosan, possess anti-bacterial, anti-tumor, and anti-inflammatory activities. The enzymatic production of chitooligosaccharides may increase the interest in their potential biomedical or agricultural usability in terms of the safety and simplicity of the manufacturing process. Crab-eating monkey acidic chitinase (CHIA) is an enzyme with robust activity in various environments. Here, we report the efficient degradation of chitin and chitosan by monkey CHIA under acidic and high-temperature conditions. Monkey CHIA hydrolyzed α-chitin at 50 °C, producing N-acetyl-d-glucosamine (GlcNAc) dimers more efficiently than at 37 °C. Moreover, the degradation rate increased with a longer incubation time (up to 72 h) without the inactivation of the enzyme. Five substrates (α-chitin, colloidal chitin, P-chitin, block-type, and random-type chitosan substrates) were exposed to monkey CHIS at pH 2.0 or pH 5.0 at 50 °C. P-chitin and random-type chitosan appeared to be the best sources of GlcNAc dimers and broad-scale chitooligosaccharides, respectively. In addition, the pattern of the products from the block-type chitosan was different between pH conditions (pH 2.0 and pH 5.0). Thus, monkey CHIA can degrade chitin and chitosan efficiently without inactivation under high-temperature or low pH conditions. Our results show that certain chitooligosaccharides are enriched by using different substrates under different conditions. Therefore, the reaction conditions can be adjusted to obtain desired oligomers. Crab-eating monkey CHIA can potentially become an efficient tool in producing chitooligosaccharide sets for agricultural and biomedical purposes.
Bioinova JSC Videnska 1083 142 20 Prague Czech Republic
Department of Chemistry and Life Science Kogakuin University Tokyo 192 0015 Japan
Japan Society for the Promotion of Science Tokyo 102 0083 Japan
Zobrazit více v PubMed
Wysokowski M., Petrenko I., Stelling A.L., Stawski D., Jesionowski T., Ehrlich H. Poriferan chitin as a versatile template for extreme biomimetics. Polymers. 2015;7:235–265. doi: 10.3390/polym7020235. DOI
Koch B.E.V., Stougaard J., Spaink H.P. Keeping track of the growing number of biological functions of chitin and its interaction partners in biomedical research. Glycobiology. 2015;25:469–482. doi: 10.1093/glycob/cwv005. PubMed DOI PMC
Bueter C.L., Specht C.A., Levitz S.M. Innate sensing of chitin and chitosan. PLoS Pathog. 2013;9:e1003080. doi: 10.1371/journal.ppat.1003080. PubMed DOI PMC
Juang R.S., Shao H.J. A simplified equilibrium model for sorption of heavy metal ions from aqueous solutions on chitosan. Water Res. 2002;36:2999–3008. doi: 10.1016/S0043-1354(01)00537-1. PubMed DOI
Sannan T., Kurita K., Iwakura Y. Studies on chitin, 2. Effect of deacetylation on solubility. Die Makromol. Chem. Macromol. Chem. Phys. 1976;177:3589–3600. doi: 10.1002/macp.1976.021771210. DOI
Kurita K., Sannan T., Iwakura Y. Studies on chitin, 4. Evidence for formation of block and random copolymers of N-acetyl-d-glucosamine and d-glucosamine by hetero- and homogeneous hydrolyses. Macromol Chem Phys. 1977;178:3197–3202. doi: 10.1002/macp.1977.021781203. DOI
Van Dyken S.J., Locksley R.M. Chitins and chitinase activity in airway diseases. J. Allergy Clin. Immunol. 2018;142:364–369. doi: 10.1016/j.jaci.2018.06.017. PubMed DOI PMC
Boot R.G., Blommaart E.F.C., Swart E., der Vlugt K.G.-V., Bijl N., Moe C., Place A., Aerts J. Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J. Biol. Chem. 2001;276:6770–6778. doi: 10.1074/jbc.M009886200. PubMed DOI
Boot R.G., Bussink A.P., Verhoek M., de Boer P.A., Moorman A.F., Aerts J.M. Marked differences in tissue-specific expression of chitinases in mouse and man. J. Histochem. Cytochem. 2005;53:1283–1292. doi: 10.1369/jhc.4A6547.2005. PubMed DOI
Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Pt 2Biochem. J. 1991;280:309–316. doi: 10.1042/bj2800309. PubMed DOI PMC
Bussink A.P., Speijer D., Aerts J.M., Boot R.G. Evolution of mammalian chitinase (-like) members of family 18 glycosyl hydrolases. Genetics. 2007;177:959–970. doi: 10.1534/genetics.107.075846. PubMed DOI PMC
Cantarel B.L., Coutinho P.M., Rancurel C., Bernard T., Lombard V., Henrissat B. The carbohydrate-active enzymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Res. 2009;37:D233–D238. doi: 10.1093/nar/gkn663. PubMed DOI PMC
Boot R.G., Renkema G.H., Strijland A., van Zonneveld A.J., Aerts J.M. Cloning of a cDNA encoding chitotriosidase, a human chitinase produced by macrophages. J. Biol. Chem. 1995;270:26252–26256. doi: 10.1074/jbc.270.44.26252. PubMed DOI
Eide K.B., Norberg A.L., Heggset E.B., Lindbom A.R., Varum K.M., Eijsink V.G., Sorlie M. Human chitotriosidase-catalyzed hydrolysis of chitosan. Biochemistry. 2012;51:487–495. doi: 10.1021/bi2015585. PubMed DOI
Zhu Z., Zheng T., Homer R.J., Kim Y.K., Chen N.Y., Cohn L., Hamid Q., Elias J.A. Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation. Science. 2004;304:1678–1682. doi: 10.1126/science.1095336. PubMed DOI
Reese T.A., Liang H.E., Tager A.M., Luster A.D., Van Rooijen N., Voehringer D., Locksley R.M. Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature. 2007;447:92–96. doi: 10.1038/nature05746. PubMed DOI PMC
Bierbaum S., Nickel R., Koch A., Lau S., Deichmann K.A., Wahn U., Superti-Furga A., Heinzmann A. Polymorphisms and haplotypes of acid mammalian chitinase are associated with bronchial asthma. Am. J. Respir. Crit. Care Med. 2005;172:1505–1509. doi: 10.1164/rccm.200506-890OC. PubMed DOI PMC
Seibold M.A., Reese T.A., Choudhry S., Salam M.T., Beckman K., Eng C., Atakilit A., Meade K., Lenoir M., Watson H.G., et al. Differential enzymatic activity of common haplotypic versions of the human acidic mammalian chitinase protein. J. Biol. Chem. 2009;284:19650–19658. doi: 10.1074/jbc.M109.012443. PubMed DOI PMC
Okawa K., Ohno M., Kashimura A., Kimura M., Kobayashi Y., Sakaguchi M., Sugahara Y., Kamaya M., Kino Y., Bauer P.O., et al. Loss and gain of human acidic mammalian chitinase activity by nonsynonymous SNPs. Mol. Biol. Evol. 2016;33:3183–3193. doi: 10.1093/molbev/msw198. PubMed DOI PMC
Van Dyken S.J., Liang H.-E., Naikawadi R.P., Woodruff P.G., Wolters P.J., Erle D.J., Locksley R.M. Spontaneous chitin accumulation in airways and age-related fibrotic lung disease. Cell. 2017;169:497–509.e13. doi: 10.1016/j.cell.2017.03.044. PubMed DOI PMC
Ohno M., Kimura M., Miyazaki H., Okawa K., Onuki R., Nemoto C., Tabata E., Wakita S., Kashimura A., Sakaguchi M., et al. Acidic mammalian chitinase is a proteases-resistant glycosidase in mouse digestive system. Sci. Rep. 2016;6:37756. doi: 10.1038/srep37756. PubMed DOI PMC
Tabata E., Kashimura A., Wakita S., Ohno M., Sakaguchi M., Sugahara Y., Kino Y., Matoska V., Bauer P.O., Oyama F. Gastric and intestinal proteases resistance of chicken acidic chitinase nominates chitin-containing organisms for alternative whole edible diets for poultry. Sci. Rep. 2017;7:6662. doi: 10.1038/s41598-017-07146-3. PubMed DOI PMC
Tabata E., Kashimura A., Wakita S., Ohno M., Sakaguchi M., Sugahara Y., Imamura Y., Seki S., Ueda H., Matoska V., et al. Protease resistance of porcine acidic mammalian chitinase under gastrointestinal conditions implies that chitin-containing organisms can be sustainable dietary resources. Sci. Rep. 2017;7:12963. doi: 10.1038/s41598-017-13526-6. PubMed DOI PMC
Tabata E., Kashimura A., Uehara M., Wakita S., Sakaguchi M., Sugahara Y., Yurimoto T., Sasaki E., Matoska V., Bauer P., et al. High expression of acidic chitinase and chitin digestibility in the stomach of common marmoset (Callithrix jacchus), an insectivorous nonhuman primate. Sci. Rep. 2019;9:159. doi: 10.1038/s41598-018-36477-y. PubMed DOI PMC
Chien R.-C., Yen M.-T., Mau J.-L. Antimicrobial and antitumor activities of chitosan from shiitake stipes, compared to commercial chitosan from crab shells. Carbohydr. Polym. 2016;138:259–264. doi: 10.1016/j.carbpol.2015.11.061. PubMed DOI
Shen K.-T., Chen M.-H., Chan H.-Y., Jeng J.-H., Wang Y.-J. Inhibitory effects of chitooligosaccharides on tumor growth and metastasis. Food Chem. Toxicol. 2009;47:1864–1871. doi: 10.1016/j.fct.2009.04.044. PubMed DOI
Qiao Y., Bai X.-F., Du Y.-G. Chitosan oligosaccharides protect mice from LPS challenge by attenuation of inflammation and oxidative stress. Int. Immunopharmacol. 2011;11:121–127. doi: 10.1016/j.intimp.2010.10.016. PubMed DOI
Park J.H., Saravanakumar G., Kim K., Kwon I.C. Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv. Drug Deliv. Rev. 2010;62:28–41. doi: 10.1016/j.addr.2009.10.003. PubMed DOI
Winkler A.J., Dominguez-Nuñez J.A., Aranaz I., Poza-Carrión C., Ramonell K., Somerville S., Berrocal-Lobo M. Short-chain chitin oligomers: Promoters of plant growth. Mar. Drugs. 2017;15:40. doi: 10.3390/md15020040. PubMed DOI PMC
Zhang X., Li K., Liu S., Zou P., Xing R., Yu H., Chen X., Qin Y., Li P. Relationship between the degree of polymerization of chitooligomers and their activity affecting the growth of wheat seedlings under salt stress. J. Agric. Food Chem. 2017;65:501–509. doi: 10.1021/acs.jafc.6b03665. PubMed DOI
Du C., Jiang S., Jiang S., Zhou Y., Zhang G. A Bacillus pumilus originated beta-N-acetylglucosaminidase for chitin combinatory hydrolysis and exploration of its thermostable mechanism. Int. J. Biol. Macromol. 2019;132:1282–1289. doi: 10.1016/j.ijbiomac.2019.04.054. PubMed DOI
Oyeleye A., Normi Y.M. Chitinase: Diversity, limitations, and trends in engineering for suitable applications. Biosci. Rep. 2018;38:BSR2018032300. doi: 10.1042/BSR20180323. PubMed DOI PMC
Barad B.A., Liu L., Diaz R.E., Basilio R., Van Dyken S.J., Locksley R.M., Fraser J.S. Differences in the chitinolytic activity of mammalian chitinases on soluble and insoluble substrates. Protein Sci. 2020;29:952–963. doi: 10.1002/pro.3822. PubMed DOI PMC
Kazami N., Sakaguchi M., Mizutani D., Masuda T., Wakita S., Oyama F., Kawakita M., Sugahara Y. A simple procedure for preparing chitin oligomers through acetone precipitation after hydrolysis in concentrated hydrochloric acid. Carbohydr. Polym. 2015;132:304–310. doi: 10.1016/j.carbpol.2015.05.082. PubMed DOI
Dahiya N., Tewari R., Hoondal G.S. Biotechnological aspects of chitinolytic enzymes: A review. Appl. Microbiol. Biotechnol. 2006;71:773–782. doi: 10.1007/s00253-005-0183-7. PubMed DOI
Roncal T., Oviedo A., de Armentia I.L., Fernández L., Villarán M.C. High yield production of monomer-free chitosan oligosaccharides by pepsin catalyzed hydrolysis of a high deacetylation degree chitosan. Carbohydr. Res. 2007;342:2750–2756. doi: 10.1016/j.carres.2007.08.023. PubMed DOI
Tabata E., Wakita S., Kashimura A., Sugahara Y., Matoska V., Bauer P.O., Oyama F. Residues of acidic chitinase cause chitinolytic activity degrading chitosan in porcine pepsin preparations. Sci. Rep. 2019;9:15609. doi: 10.1038/s41598-019-52136-2. PubMed DOI PMC
Wakita S., Sugahara Y., Nakamura M., Kobayashi S., Matsuda K., Takasaki C., Kimura M., Kida Y., Uehara M., Tabata E., et al. Mouse acidic chitinase effectively degrades random-type chitosan to chitooligosaccharides of variable lengths under stomach and lung tissue pH conditions. Molecules. 2021;26:6706. doi: 10.3390/molecules26216706. PubMed DOI PMC
Huh J.-W., Kim Y.-H., Park S.-J., Kim D.-S., Lee S.-R., Kim K.-M., Jeong K.-J., Kim J.-S., Song B.-S., Sim B.-W., et al. Large-scale transcriptome sequencing and gene analyses in the crab-eating macaque (Macaca fascicularis) for biomedical research. BMC Genom. 2012;13:163. doi: 10.1186/1471-2164-13-163. PubMed DOI PMC
Ilham K., Rizaldi, Nurdin J., Tsuji Y. Status of urban populations of the long-tailed macaque (Macaca fascicularis) in West Sumatra, Indonesia. Primates. 2017;58:295–305. doi: 10.1007/s10329-016-0588-1. PubMed DOI
Janiak M.C., Chaney M.E., Tosi A.J. Evolution of acidic mammalian chitinase genes (CHIA) is related to body mass and insectivory in primates. Mol. Biol. Evol. 2018;35:607–622. doi: 10.1093/molbev/msx312. PubMed DOI
Uehara M., Tabata E., Ishii K., Sawa A., Ohno M., Sakaguchi M., Matoska V., Bauer P.O., Oyama F. Chitinase mRNA levels determined by qPCR in crab-eating monkey (Macaca fascicularis) tissues: Species-specific expression of acidic mammalian chitinase and chitotriosidase. Genes. 2018;9:244. doi: 10.3390/genes9050244. PubMed DOI PMC
Krykbaev R., Fitz L.J., Reddy P.S., Winkler A., Xuan D., Yang X., Fleming M., Wolf S.F. Evolutionary and biochemical differences between human and monkey acidic mammalian chitinases. Gene. 2010;452:63–71. doi: 10.1016/j.gene.2009.12.005. PubMed DOI
Uehara M., Tabata E., Okuda M., Maruyama Y., Matoska V., Bauer P.O., Oyama F. Robust chitinolytic activity of crab-eating monkey (Macaca fascicularis) acidic chitinase under a broad pH and temperature range. Sci. Rep. 2021;11:15470. doi: 10.1038/s41598-021-95010-w. PubMed DOI PMC
Kashimura A., Okawa K., Ishikawa K., Kida Y., Iwabuchi K., Matsushima Y., Sakaguchi M., Sugahara Y., Oyama F. Protein A-mouse acidic mammalian chitinase-V5-His expressed in periplasmic space of Escherichia coli possesses chitinase functions comparable to CHO-expressed protein. PLoS ONE. 2013;8:e78669. doi: 10.1371/journal.pone.0078669. PubMed DOI PMC
Sorbotten A., Horn S.J., Eijsink V.G., Varum K.M. Degradation of chitosans with chitinase B from Serratia marcescens. Production of chito-oligosaccharides and insight into enzyme processivity. FEBS J. 2005;272:538–549. doi: 10.1111/j.1742-4658.2004.04495.x. PubMed DOI
Horn S.J., Sørbotten A., Synstad B., Sikorski P., Sørlie M., Vårum K.M., Eijsink V.G. Endo/exo mechanism and processivity of family 18 chitinases produced by Serratia marcescens. FEBS J. 2006;273:491–503. doi: 10.1111/j.1742-4658.2005.05079.x. PubMed DOI
Jackson P. The use of polyacrylamide-gel electrophoresis for the high-resolution separation of reducing saccharides labelled with the fluorophore 8-aminonaphthalene-1,3,6-trisulphonic acid. Detection of picomolar quantities by an imaging system based on a cooled charge-coupled device. Biochem. J. 1990;270:705–713. PubMed PMC
Wakita S., Kimura M., Kato N., Kashimura A., Kobayashi S., Kanayama N., Ohno M., Honda S., Sakaguchi M., Sugahara Y., et al. Improved fluorescent labeling of chitin oligomers: Chitinolytic properties of acidic mammalian chitinase under somatic tissue pH conditions. Carbohydr. Polym. 2017;164:145–153. doi: 10.1016/j.carbpol.2017.01.095. PubMed DOI
Villa-Lerma G., González-Márquez H., Gimeno M., López-Luna A., Bárzana E., Shirai K. Ultrasonication and steam-explosion as chitin pretreatments for chitin oligosaccharide production by chitinases of Lecanicillium lecanii. Bioresour. Technol. 2013;146:794–798. doi: 10.1016/j.biortech.2013.08.003. PubMed DOI
Lodhi G., Kim Y.S., Hwang J.W., Kim S.K., Jeon Y.J., Je J.Y., Ahn C.B., Moon S.H., Jeon B.T., Park P.J. Chitooligosaccharide and its derivatives: Preparation and biological applications. Biomed. Res. Int. 2014;2014:654913. doi: 10.1155/2014/654913. PubMed DOI PMC
Ma J.-E., Li L.-M., Jiang H.-Y., Zhang X.-J., Li J., Li G.-Y., Chen J. Acidic mammalian chitinase gene is highly expressed in the special oxyntic glands of Manis javanica. FEBS Open Bio. 2018;8:1247–1255. doi: 10.1002/2211-5463.12461. PubMed DOI PMC
Du C., Zhao X., Song W., He N., Jiang S., Zhou Y., Zhang G. Combined strategies to improve the expression of acidic mammalian chitinase in Pichia pastoris for the production of N, N’-diacetylchitobiose. Biochem. Eng. J. 2021;167:107907. doi: 10.1016/j.bej.2020.107907. DOI
Ohno M., Togashi Y., Tsuda K., Okawa K., Kamaya M., Sakaguchi M., Sugahara Y., Oyama F. Quantification of chitinase mRNA levels in human and mouse tissues by real-time PCR: Species-specific expression of acidic mammalian chitinase in stomach tissues. PLoS ONE. 2013;8:e67399. doi: 10.1371/journal.pone.0067399. PubMed DOI PMC
Poria V., Rana A., Kumari A., Grewal J., Pranaw K., Singh S. Current perspectives on chitinolytic enzymes and their agro-industrial applications. Biology. 2021;10:1319. doi: 10.3390/biology10121319. PubMed DOI PMC
Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Hyperactivation of human acidic chitinase (Chia) for potential medical use