Crab-Eating Monkey Acidic Chitinase (CHIA) Efficiently Degrades Chitin and Chitosan under Acidic and High-Temperature Conditions

. 2022 Jan 09 ; 27 (2) : . [epub] 20220109

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35056724

Chitooligosaccharides, the degradation products of chitin and chitosan, possess anti-bacterial, anti-tumor, and anti-inflammatory activities. The enzymatic production of chitooligosaccharides may increase the interest in their potential biomedical or agricultural usability in terms of the safety and simplicity of the manufacturing process. Crab-eating monkey acidic chitinase (CHIA) is an enzyme with robust activity in various environments. Here, we report the efficient degradation of chitin and chitosan by monkey CHIA under acidic and high-temperature conditions. Monkey CHIA hydrolyzed α-chitin at 50 °C, producing N-acetyl-d-glucosamine (GlcNAc) dimers more efficiently than at 37 °C. Moreover, the degradation rate increased with a longer incubation time (up to 72 h) without the inactivation of the enzyme. Five substrates (α-chitin, colloidal chitin, P-chitin, block-type, and random-type chitosan substrates) were exposed to monkey CHIS at pH 2.0 or pH 5.0 at 50 °C. P-chitin and random-type chitosan appeared to be the best sources of GlcNAc dimers and broad-scale chitooligosaccharides, respectively. In addition, the pattern of the products from the block-type chitosan was different between pH conditions (pH 2.0 and pH 5.0). Thus, monkey CHIA can degrade chitin and chitosan efficiently without inactivation under high-temperature or low pH conditions. Our results show that certain chitooligosaccharides are enriched by using different substrates under different conditions. Therefore, the reaction conditions can be adjusted to obtain desired oligomers. Crab-eating monkey CHIA can potentially become an efficient tool in producing chitooligosaccharide sets for agricultural and biomedical purposes.

Zobrazit více v PubMed

Wysokowski M., Petrenko I., Stelling A.L., Stawski D., Jesionowski T., Ehrlich H. Poriferan chitin as a versatile template for extreme biomimetics. Polymers. 2015;7:235–265. doi: 10.3390/polym7020235. DOI

Koch B.E.V., Stougaard J., Spaink H.P. Keeping track of the growing number of biological functions of chitin and its interaction partners in biomedical research. Glycobiology. 2015;25:469–482. doi: 10.1093/glycob/cwv005. PubMed DOI PMC

Bueter C.L., Specht C.A., Levitz S.M. Innate sensing of chitin and chitosan. PLoS Pathog. 2013;9:e1003080. doi: 10.1371/journal.ppat.1003080. PubMed DOI PMC

Juang R.S., Shao H.J. A simplified equilibrium model for sorption of heavy metal ions from aqueous solutions on chitosan. Water Res. 2002;36:2999–3008. doi: 10.1016/S0043-1354(01)00537-1. PubMed DOI

Sannan T., Kurita K., Iwakura Y. Studies on chitin, 2. Effect of deacetylation on solubility. Die Makromol. Chem. Macromol. Chem. Phys. 1976;177:3589–3600. doi: 10.1002/macp.1976.021771210. DOI

Kurita K., Sannan T., Iwakura Y. Studies on chitin, 4. Evidence for formation of block and random copolymers of N-acetyl-d-glucosamine and d-glucosamine by hetero- and homogeneous hydrolyses. Macromol Chem Phys. 1977;178:3197–3202. doi: 10.1002/macp.1977.021781203. DOI

Van Dyken S.J., Locksley R.M. Chitins and chitinase activity in airway diseases. J. Allergy Clin. Immunol. 2018;142:364–369. doi: 10.1016/j.jaci.2018.06.017. PubMed DOI PMC

Boot R.G., Blommaart E.F.C., Swart E., der Vlugt K.G.-V., Bijl N., Moe C., Place A., Aerts J. Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J. Biol. Chem. 2001;276:6770–6778. doi: 10.1074/jbc.M009886200. PubMed DOI

Boot R.G., Bussink A.P., Verhoek M., de Boer P.A., Moorman A.F., Aerts J.M. Marked differences in tissue-specific expression of chitinases in mouse and man. J. Histochem. Cytochem. 2005;53:1283–1292. doi: 10.1369/jhc.4A6547.2005. PubMed DOI

Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Pt 2Biochem. J. 1991;280:309–316. doi: 10.1042/bj2800309. PubMed DOI PMC

Bussink A.P., Speijer D., Aerts J.M., Boot R.G. Evolution of mammalian chitinase (-like) members of family 18 glycosyl hydrolases. Genetics. 2007;177:959–970. doi: 10.1534/genetics.107.075846. PubMed DOI PMC

Cantarel B.L., Coutinho P.M., Rancurel C., Bernard T., Lombard V., Henrissat B. The carbohydrate-active enzymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Res. 2009;37:D233–D238. doi: 10.1093/nar/gkn663. PubMed DOI PMC

Boot R.G., Renkema G.H., Strijland A., van Zonneveld A.J., Aerts J.M. Cloning of a cDNA encoding chitotriosidase, a human chitinase produced by macrophages. J. Biol. Chem. 1995;270:26252–26256. doi: 10.1074/jbc.270.44.26252. PubMed DOI

Eide K.B., Norberg A.L., Heggset E.B., Lindbom A.R., Varum K.M., Eijsink V.G., Sorlie M. Human chitotriosidase-catalyzed hydrolysis of chitosan. Biochemistry. 2012;51:487–495. doi: 10.1021/bi2015585. PubMed DOI

Zhu Z., Zheng T., Homer R.J., Kim Y.K., Chen N.Y., Cohn L., Hamid Q., Elias J.A. Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation. Science. 2004;304:1678–1682. doi: 10.1126/science.1095336. PubMed DOI

Reese T.A., Liang H.E., Tager A.M., Luster A.D., Van Rooijen N., Voehringer D., Locksley R.M. Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature. 2007;447:92–96. doi: 10.1038/nature05746. PubMed DOI PMC

Bierbaum S., Nickel R., Koch A., Lau S., Deichmann K.A., Wahn U., Superti-Furga A., Heinzmann A. Polymorphisms and haplotypes of acid mammalian chitinase are associated with bronchial asthma. Am. J. Respir. Crit. Care Med. 2005;172:1505–1509. doi: 10.1164/rccm.200506-890OC. PubMed DOI PMC

Seibold M.A., Reese T.A., Choudhry S., Salam M.T., Beckman K., Eng C., Atakilit A., Meade K., Lenoir M., Watson H.G., et al. Differential enzymatic activity of common haplotypic versions of the human acidic mammalian chitinase protein. J. Biol. Chem. 2009;284:19650–19658. doi: 10.1074/jbc.M109.012443. PubMed DOI PMC

Okawa K., Ohno M., Kashimura A., Kimura M., Kobayashi Y., Sakaguchi M., Sugahara Y., Kamaya M., Kino Y., Bauer P.O., et al. Loss and gain of human acidic mammalian chitinase activity by nonsynonymous SNPs. Mol. Biol. Evol. 2016;33:3183–3193. doi: 10.1093/molbev/msw198. PubMed DOI PMC

Van Dyken S.J., Liang H.-E., Naikawadi R.P., Woodruff P.G., Wolters P.J., Erle D.J., Locksley R.M. Spontaneous chitin accumulation in airways and age-related fibrotic lung disease. Cell. 2017;169:497–509.e13. doi: 10.1016/j.cell.2017.03.044. PubMed DOI PMC

Ohno M., Kimura M., Miyazaki H., Okawa K., Onuki R., Nemoto C., Tabata E., Wakita S., Kashimura A., Sakaguchi M., et al. Acidic mammalian chitinase is a proteases-resistant glycosidase in mouse digestive system. Sci. Rep. 2016;6:37756. doi: 10.1038/srep37756. PubMed DOI PMC

Tabata E., Kashimura A., Wakita S., Ohno M., Sakaguchi M., Sugahara Y., Kino Y., Matoska V., Bauer P.O., Oyama F. Gastric and intestinal proteases resistance of chicken acidic chitinase nominates chitin-containing organisms for alternative whole edible diets for poultry. Sci. Rep. 2017;7:6662. doi: 10.1038/s41598-017-07146-3. PubMed DOI PMC

Tabata E., Kashimura A., Wakita S., Ohno M., Sakaguchi M., Sugahara Y., Imamura Y., Seki S., Ueda H., Matoska V., et al. Protease resistance of porcine acidic mammalian chitinase under gastrointestinal conditions implies that chitin-containing organisms can be sustainable dietary resources. Sci. Rep. 2017;7:12963. doi: 10.1038/s41598-017-13526-6. PubMed DOI PMC

Tabata E., Kashimura A., Uehara M., Wakita S., Sakaguchi M., Sugahara Y., Yurimoto T., Sasaki E., Matoska V., Bauer P., et al. High expression of acidic chitinase and chitin digestibility in the stomach of common marmoset (Callithrix jacchus), an insectivorous nonhuman primate. Sci. Rep. 2019;9:159. doi: 10.1038/s41598-018-36477-y. PubMed DOI PMC

Chien R.-C., Yen M.-T., Mau J.-L. Antimicrobial and antitumor activities of chitosan from shiitake stipes, compared to commercial chitosan from crab shells. Carbohydr. Polym. 2016;138:259–264. doi: 10.1016/j.carbpol.2015.11.061. PubMed DOI

Shen K.-T., Chen M.-H., Chan H.-Y., Jeng J.-H., Wang Y.-J. Inhibitory effects of chitooligosaccharides on tumor growth and metastasis. Food Chem. Toxicol. 2009;47:1864–1871. doi: 10.1016/j.fct.2009.04.044. PubMed DOI

Qiao Y., Bai X.-F., Du Y.-G. Chitosan oligosaccharides protect mice from LPS challenge by attenuation of inflammation and oxidative stress. Int. Immunopharmacol. 2011;11:121–127. doi: 10.1016/j.intimp.2010.10.016. PubMed DOI

Park J.H., Saravanakumar G., Kim K., Kwon I.C. Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv. Drug Deliv. Rev. 2010;62:28–41. doi: 10.1016/j.addr.2009.10.003. PubMed DOI

Winkler A.J., Dominguez-Nuñez J.A., Aranaz I., Poza-Carrión C., Ramonell K., Somerville S., Berrocal-Lobo M. Short-chain chitin oligomers: Promoters of plant growth. Mar. Drugs. 2017;15:40. doi: 10.3390/md15020040. PubMed DOI PMC

Zhang X., Li K., Liu S., Zou P., Xing R., Yu H., Chen X., Qin Y., Li P. Relationship between the degree of polymerization of chitooligomers and their activity affecting the growth of wheat seedlings under salt stress. J. Agric. Food Chem. 2017;65:501–509. doi: 10.1021/acs.jafc.6b03665. PubMed DOI

Du C., Jiang S., Jiang S., Zhou Y., Zhang G. A Bacillus pumilus originated beta-N-acetylglucosaminidase for chitin combinatory hydrolysis and exploration of its thermostable mechanism. Int. J. Biol. Macromol. 2019;132:1282–1289. doi: 10.1016/j.ijbiomac.2019.04.054. PubMed DOI

Oyeleye A., Normi Y.M. Chitinase: Diversity, limitations, and trends in engineering for suitable applications. Biosci. Rep. 2018;38:BSR2018032300. doi: 10.1042/BSR20180323. PubMed DOI PMC

Barad B.A., Liu L., Diaz R.E., Basilio R., Van Dyken S.J., Locksley R.M., Fraser J.S. Differences in the chitinolytic activity of mammalian chitinases on soluble and insoluble substrates. Protein Sci. 2020;29:952–963. doi: 10.1002/pro.3822. PubMed DOI PMC

Kazami N., Sakaguchi M., Mizutani D., Masuda T., Wakita S., Oyama F., Kawakita M., Sugahara Y. A simple procedure for preparing chitin oligomers through acetone precipitation after hydrolysis in concentrated hydrochloric acid. Carbohydr. Polym. 2015;132:304–310. doi: 10.1016/j.carbpol.2015.05.082. PubMed DOI

Dahiya N., Tewari R., Hoondal G.S. Biotechnological aspects of chitinolytic enzymes: A review. Appl. Microbiol. Biotechnol. 2006;71:773–782. doi: 10.1007/s00253-005-0183-7. PubMed DOI

Roncal T., Oviedo A., de Armentia I.L., Fernández L., Villarán M.C. High yield production of monomer-free chitosan oligosaccharides by pepsin catalyzed hydrolysis of a high deacetylation degree chitosan. Carbohydr. Res. 2007;342:2750–2756. doi: 10.1016/j.carres.2007.08.023. PubMed DOI

Tabata E., Wakita S., Kashimura A., Sugahara Y., Matoska V., Bauer P.O., Oyama F. Residues of acidic chitinase cause chitinolytic activity degrading chitosan in porcine pepsin preparations. Sci. Rep. 2019;9:15609. doi: 10.1038/s41598-019-52136-2. PubMed DOI PMC

Wakita S., Sugahara Y., Nakamura M., Kobayashi S., Matsuda K., Takasaki C., Kimura M., Kida Y., Uehara M., Tabata E., et al. Mouse acidic chitinase effectively degrades random-type chitosan to chitooligosaccharides of variable lengths under stomach and lung tissue pH conditions. Molecules. 2021;26:6706. doi: 10.3390/molecules26216706. PubMed DOI PMC

Huh J.-W., Kim Y.-H., Park S.-J., Kim D.-S., Lee S.-R., Kim K.-M., Jeong K.-J., Kim J.-S., Song B.-S., Sim B.-W., et al. Large-scale transcriptome sequencing and gene analyses in the crab-eating macaque (Macaca fascicularis) for biomedical research. BMC Genom. 2012;13:163. doi: 10.1186/1471-2164-13-163. PubMed DOI PMC

Ilham K., Rizaldi, Nurdin J., Tsuji Y. Status of urban populations of the long-tailed macaque (Macaca fascicularis) in West Sumatra, Indonesia. Primates. 2017;58:295–305. doi: 10.1007/s10329-016-0588-1. PubMed DOI

Janiak M.C., Chaney M.E., Tosi A.J. Evolution of acidic mammalian chitinase genes (CHIA) is related to body mass and insectivory in primates. Mol. Biol. Evol. 2018;35:607–622. doi: 10.1093/molbev/msx312. PubMed DOI

Uehara M., Tabata E., Ishii K., Sawa A., Ohno M., Sakaguchi M., Matoska V., Bauer P.O., Oyama F. Chitinase mRNA levels determined by qPCR in crab-eating monkey (Macaca fascicularis) tissues: Species-specific expression of acidic mammalian chitinase and chitotriosidase. Genes. 2018;9:244. doi: 10.3390/genes9050244. PubMed DOI PMC

Krykbaev R., Fitz L.J., Reddy P.S., Winkler A., Xuan D., Yang X., Fleming M., Wolf S.F. Evolutionary and biochemical differences between human and monkey acidic mammalian chitinases. Gene. 2010;452:63–71. doi: 10.1016/j.gene.2009.12.005. PubMed DOI

Uehara M., Tabata E., Okuda M., Maruyama Y., Matoska V., Bauer P.O., Oyama F. Robust chitinolytic activity of crab-eating monkey (Macaca fascicularis) acidic chitinase under a broad pH and temperature range. Sci. Rep. 2021;11:15470. doi: 10.1038/s41598-021-95010-w. PubMed DOI PMC

Kashimura A., Okawa K., Ishikawa K., Kida Y., Iwabuchi K., Matsushima Y., Sakaguchi M., Sugahara Y., Oyama F. Protein A-mouse acidic mammalian chitinase-V5-His expressed in periplasmic space of Escherichia coli possesses chitinase functions comparable to CHO-expressed protein. PLoS ONE. 2013;8:e78669. doi: 10.1371/journal.pone.0078669. PubMed DOI PMC

Sorbotten A., Horn S.J., Eijsink V.G., Varum K.M. Degradation of chitosans with chitinase B from Serratia marcescens. Production of chito-oligosaccharides and insight into enzyme processivity. FEBS J. 2005;272:538–549. doi: 10.1111/j.1742-4658.2004.04495.x. PubMed DOI

Horn S.J., Sørbotten A., Synstad B., Sikorski P., Sørlie M., Vårum K.M., Eijsink V.G. Endo/exo mechanism and processivity of family 18 chitinases produced by Serratia marcescens. FEBS J. 2006;273:491–503. doi: 10.1111/j.1742-4658.2005.05079.x. PubMed DOI

Jackson P. The use of polyacrylamide-gel electrophoresis for the high-resolution separation of reducing saccharides labelled with the fluorophore 8-aminonaphthalene-1,3,6-trisulphonic acid. Detection of picomolar quantities by an imaging system based on a cooled charge-coupled device. Biochem. J. 1990;270:705–713. PubMed PMC

Wakita S., Kimura M., Kato N., Kashimura A., Kobayashi S., Kanayama N., Ohno M., Honda S., Sakaguchi M., Sugahara Y., et al. Improved fluorescent labeling of chitin oligomers: Chitinolytic properties of acidic mammalian chitinase under somatic tissue pH conditions. Carbohydr. Polym. 2017;164:145–153. doi: 10.1016/j.carbpol.2017.01.095. PubMed DOI

Villa-Lerma G., González-Márquez H., Gimeno M., López-Luna A., Bárzana E., Shirai K. Ultrasonication and steam-explosion as chitin pretreatments for chitin oligosaccharide production by chitinases of Lecanicillium lecanii. Bioresour. Technol. 2013;146:794–798. doi: 10.1016/j.biortech.2013.08.003. PubMed DOI

Lodhi G., Kim Y.S., Hwang J.W., Kim S.K., Jeon Y.J., Je J.Y., Ahn C.B., Moon S.H., Jeon B.T., Park P.J. Chitooligosaccharide and its derivatives: Preparation and biological applications. Biomed. Res. Int. 2014;2014:654913. doi: 10.1155/2014/654913. PubMed DOI PMC

Ma J.-E., Li L.-M., Jiang H.-Y., Zhang X.-J., Li J., Li G.-Y., Chen J. Acidic mammalian chitinase gene is highly expressed in the special oxyntic glands of Manis javanica. FEBS Open Bio. 2018;8:1247–1255. doi: 10.1002/2211-5463.12461. PubMed DOI PMC

Du C., Zhao X., Song W., He N., Jiang S., Zhou Y., Zhang G. Combined strategies to improve the expression of acidic mammalian chitinase in Pichia pastoris for the production of N, N’-diacetylchitobiose. Biochem. Eng. J. 2021;167:107907. doi: 10.1016/j.bej.2020.107907. DOI

Ohno M., Togashi Y., Tsuda K., Okawa K., Kamaya M., Sakaguchi M., Sugahara Y., Oyama F. Quantification of chitinase mRNA levels in human and mouse tissues by real-time PCR: Species-specific expression of acidic mammalian chitinase in stomach tissues. PLoS ONE. 2013;8:e67399. doi: 10.1371/journal.pone.0067399. PubMed DOI PMC

Poria V., Rana A., Kumari A., Grewal J., Pranaw K., Singh S. Current perspectives on chitinolytic enzymes and their agro-industrial applications. Biology. 2021;10:1319. doi: 10.3390/biology10121319. PubMed DOI PMC

Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...