A Simplified Method for Evaluating Chitin-Binding Activity Applied to YKL-40 (HC-gp39, CHI3L1) and Chitotriosidase

. 2024 Dec 25 ; 30 (1) : . [epub] 20241225

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39795077

Grantová podpora
23H02532 Japan Society for the Promotion of Science

YKL-40 is structurally similar to chitotriosidase (CHIT1), an active chitinase, but it lacks chitin-degrading activity while retaining chitin-binding capability. Elevated YKL-40 levels are associated with inflammatory diseases and cancers, making it a valuable biomarker. We previously reported that the W69T substitution in YKL-40 significantly reduces its chitin-binding affinity, identifying W69 as a crucial binding site. In this study, we establish a novel chitin-binding affinity evaluation method using a three-step buffer system to assess the binding strength and specificity of chitin-binding proteins and apply it to characterize YKL-40's binding mechanism. Our findings confirm that YKL-40, through its key residue W69, exhibits highly specific and robust affinity to chitin. Unlike CHIT1, which has both a catalytic domain (CatD) and a chitin-binding domain (CBD) that allow for diverse binding and degradation activities, YKL-40 lacks a CBD and is specialized for specific chitin recognition without degrading it. Comparative analysis with YKL-39, which does not contain a corresponding W69 residue, highlights the unique role of this residue in YKL-40's chitin-binding activity that is potentially linked to immune and inflammatory responses. Our evaluation method clarifies YKL-40's binding properties and provides a versatile approach applicable to other chitin-binding proteins.

Zobrazit více v PubMed

Bueter C.L., Specht C.A., Levitz S.M. Innate sensing of chitin and chitosan. PLoS Pathog. 2013;9:e1003080. doi: 10.1371/journal.ppat.1003080. PubMed DOI PMC

Wysokowski M., Petrenko I., Stelling A.L., Stawski D., Jesionowski T., Ehrlich H. Poriferan chitin as a versatile template for extreme biomimetics. Polymers. 2015;7:235–265. doi: 10.3390/polym7020235. DOI

Van Dyken S.J., Locksley R.M. Chitins and chitinase activity in airway diseases. J. Allergy Clin. Immunol. 2018;142:364–369. doi: 10.1016/j.jaci.2018.06.017. PubMed DOI PMC

Hollak C.E., van Weely S., van Oers M.H., Aerts J.M. Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease. J. Clin. Invest. 1994;93:1288–1292. doi: 10.1172/JCI117084. PubMed DOI PMC

Renkema G.H., Boot R.G., Muijsers A.O., Donker-Koopman W.E., Aerts J.M. Purification and characterization of human chitotriosidase, a novel member of the chitinase family of proteins. J. Biol. Chem. 1995;270:2198–2202. doi: 10.1074/jbc.270.5.2198. PubMed DOI

Boot R.G., Renkema G.H., Strijland A., van Zonneveld A.J., Aerts J.M. Cloning of a cDNA encoding chitotriosidase, a human chitinase produced by macrophages. J. Biol. Chem. 1995;270:26252–26256. doi: 10.1074/jbc.270.44.26252. PubMed DOI

Boot R.G., Blommaart E.F., Swart E., Ghauharali-van der Vlugt K., Bijl N., Moe C., Place A., Aerts J.M. Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J. Biol. Chem. 2001;276:6770–6778. doi: 10.1074/jbc.M009886200. PubMed DOI

Bussink A.P., Speijer D., Aerts J.M., Boot R.G. Evolution of mammalian chitinase(-like) members of family 18 glycosyl hydrolases. Genetics. 2007;177:959–970. doi: 10.1534/genetics.107.075846. PubMed DOI PMC

Kawada M., Hachiya Y., Arihiro A., Mizoguchi E. Role of mammalian chitinases in inflammatory conditions. Keio J. Med. 2007;56:21–27. doi: 10.2302/kjm.56.21. PubMed DOI

Lee C.G., Da Silva C.A., Dela Cruz C.S., Ahangari F., Ma B., Kang M.J., He C.H., Takyar S., Elias J.A. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu. Rev. Physiol. 2011;73:479–501. doi: 10.1146/annurev-physiol-012110-142250. PubMed DOI PMC

Hakala B.E., White C., Recklies A.D. Human cartilage gp-39, a major secretory product of articular chondrocytes and synovial cells, is a mammalian member of a chitinase protein family. J. Biol. Chem. 1993;268:25803–25810. doi: 10.1016/S0021-9258(19)74461-5. PubMed DOI

Rehli M., Krause S.W., Andreesen R. Molecular characterization of the gene for human cartilage gp-39 (CHI3L1), a member of the chitinase protein family and marker for late stages of macrophage differentiation. Genomics. 1997;43:221–225. doi: 10.1006/geno.1997.4778. PubMed DOI

Webb D.C., McKenzie A.N., Foster P.S. Expression of the Ym2 lectin-binding protein is dependent on interleukin (IL)-4 and IL-13 signal transduction: Identification of a novel allergy-associated protein. J. Biol. Chem. 2001;276:41969–41976. doi: 10.1074/jbc.M106223200. PubMed DOI

Ward J.M., Yoon M., Anver M.R., Haines D.C., Kudo G., Gonzalez F.J., Kimura S. Hyalinosis and Ym1/Ym2 gene expression in the stomach and respiratory tract of 129S4/SvJae and wild-type and CYP1A2-null B6, 129 mice. Am. J. Pathol. 2001;158:323–332. doi: 10.1016/S0002-9440(10)63972-7. PubMed DOI PMC

Sun Y.J., Chang N.C., Hung S.I., Chang A.C., Chou C.C., Hsiao C.D. The crystal structure of a novel mammalian lectin, Ym1, suggests a saccharide binding site. J. Biol. Chem. 2001;276:17507–17514. doi: 10.1074/jbc.M010416200. PubMed DOI

Chang N.C., Hung S.I., Hwa K.Y., Kato I., Chen J.E., Liu C.H., Chang A.C. A macrophage protein, Ym1, transiently expressed during inflammation is a novel mammalian lectin. J. Biol. Chem. 2001;276:17497–17506. doi: 10.1074/jbc.M010417200. PubMed DOI

Jin H.M., Copeland N.G., Gilbert D.J., Jenkins N.A., Kirkpatrick R.B., Rosenberg M. Genetic characterization of the murine Ym1 gene and identification of a cluster of highly homologous genes. Genomics. 1998;54:316–322. doi: 10.1006/geno.1998.5593. PubMed DOI

Lee C.G., Hartl D., Lee G.R., Koller B., Matsuura H., Da Silva C.A., Sohn M.H., Cohn L., Homer R.J., Kozhich A.A., et al. Role of breast regression protein 39 (BRP-39)/chitinase 3-like-1 in Th2 and IL-13-induced tissue responses and apoptosis. J. Exp. Med. 2009;206:1149–1166. doi: 10.1084/jem.20081271. PubMed DOI PMC

Hu B., Trinh K., Figueira W.F., Price P.A. Isolation and sequence of a novel human chondrocyte protein related to mammalian members of the chitinase protein family. J. Biol. Chem. 1996;271:19415–19420. doi: 10.1074/jbc.271.32.19415. PubMed DOI

Schimpl M., Rush C.L., Betou M., Eggleston I.M., Recklies A.D., van Aalten D.M. Human YKL-39 is a pseudo-chitinase with retained chitooligosaccharide-binding properties. Biochem. J. 2012;446:149–157. doi: 10.1042/BJ20120377. PubMed DOI PMC

Ranok A., Wongsantichon J., Robinson R.C., Suginta W. Structural and thermodynamic insights into chitooligosaccharide binding to human cartilage chitinase 3-like protein 2 (CHI3L2 or YKL-39) J. Biol. Chem. 2015;290:2617–2629. doi: 10.1074/jbc.M114.588905. PubMed DOI PMC

Johansen J.S., Williamson M.K., Rice J.S., Price P.A. Identification of proteins secreted by human osteoblastic cells in culture. J. Bone Miner. Res. 1992;7:501–512. doi: 10.1002/jbmr.5650070506. PubMed DOI

Johansen J.S., Jensen B.V., Roslind A., Nielsen D., Price P.A. Serum YKL-40, a new prognostic biomarker in cancer patients? Cancer Epidemiol. Biomarkers Prev. 2006;15:194–202. doi: 10.1158/1055-9965.EPI-05-0011. PubMed DOI

Connor J.R., Dodds R.A., Emery J.G., Kirkpatrick R.B., Rosenberg M., Gowen M. Human cartilage glycoprotein 39 (HC gp-39) mRNA expression in adult and fetal chondrocytes, osteoblasts and osteocytes by in-situ hybridization. Osteoarthr. Cartil. 2000;8:87–95. doi: 10.1053/joca.1999.0276. PubMed DOI

Volck B., Ostergaard K., Johansen J.S., Garbarsch C., Price P.A. The distribution of YKL-40 in osteoarthritic and normal human articular cartilage. Scand. J. Rheumatol. 1999;28:171–179. PubMed

Johansen J.S., Stoltenberg M., Hansen M., Florescu A., Horslev-Petersen K., Lorenzen I., Price P.A. Serum YKL-40 concentrations in patients with rheumatoid arthritis: Relation to disease activity. Rheumatology. 1999;38:618–626. doi: 10.1093/rheumatology/38.7.618. PubMed DOI

Vos K., Steenbakkers P., Miltenburg A.M., Bos E., van Den Heuvel M.W., van Hogezand R.A., de Vries R.R., Breedveld F.C., Boots A.M. Raised human cartilage glycoprotein-39 plasma levels in patients with rheumatoid arthritis and other inflammatory conditions. Ann. Rheum. Dis. 2000;59:544–548. doi: 10.1136/ard.59.7.544. PubMed DOI PMC

Letuve S., Kozhich A., Arouche N., Grandsaigne M., Reed J., Dombret M.C., Kiener P.A., Aubier M., Coyle A.J., Pretolani M. YKL-40 is elevated in patients with chronic obstructive pulmonary disease and activates alveolar macrophages. J. Immunol. 2008;181:5167–5173. doi: 10.4049/jimmunol.181.7.5167. PubMed DOI

Hector A., Kormann M.S., Mack I., Latzin P., Casaulta C., Kieninger E., Zhou Z., Yildirim A.O., Bohla A., Rieber N., et al. The chitinase-like protein YKL-40 modulates cystic fibrosis lung disease. PLoS ONE. 2011;6:e24399. doi: 10.1371/journal.pone.0024399. PubMed DOI PMC

Bernardi D., Podswiadek M., Zaninotto M., Punzi L., Plebani M. YKL-40 as a marker of joint involvement in inflammatory bowel disease. Clin. Chem. 2003;49:1685–1688. doi: 10.1373/49.10.1685. PubMed DOI

Koutroubakis I.E., Petinaki E., Dimoulios P., Vardas E., Roussomoustakaki M., Maniatis A.N., Kouroumalis E.A. Increased serum levels of YKL-40 in patients with inflammatory bowel disease. Int. J. Colorectal Dis. 2003;18:254–259. doi: 10.1007/s00384-002-0446-z. PubMed DOI

Vind I., Johansen J.S., Price P.A., Munkholm P. Serum YKL-40, a potential new marker of disease activity in patients with inflammatory bowel disease. Scand. J. Gastroenterol. 2003;38:599–605. PubMed

Chupp G.L., Lee C.G., Jarjour N., Shim Y.M., Holm C.T., He S., Dziura J.D., Reed J., Coyle A.J., Kiener P., et al. A chitinase-like protein in the lung and circulation of patients with severe asthma. N. Engl. J. Med. 2007;357:2016–2027. doi: 10.1056/NEJMoa073600. PubMed DOI

Johansen J.S., Moller S., Price P.A., Bendtsen F., Junge J., Garbarsch C., Henriksen J.H. Plasma YKL-40: A new potential marker of fibrosis in patients with alcoholic cirrhosis? Scand. J. Gastroenterol. 1997;32:582–590. doi: 10.3109/00365529709025104. PubMed DOI

Johansen J.S., Cintin C., Jorgensen M., Kamby C., Price P.A. Serum YKL-40: A new potential marker of prognosis and location of metastases of patients with recurrent breast cancer. Eur. J. Cancer. 1995;31A:1437–1442. doi: 10.1016/0959-8049(95)00196-P. PubMed DOI

Cintin C., Johansen J.S., Christensen I.J., Price P.A., Sorensen S., Nielsen H.J. Serum YKL-40 and colorectal cancer. Br. J. Cancer. 1999;79:1494–1499. doi: 10.1038/sj.bjc.6690238. PubMed DOI PMC

Suzuki K., Okawa K., Ohkura M., Kanaizumi T., Kobayashi T., Takahashi K., Takei H., Otsuka M., Tabata E., Bauer P.O., et al. Evolutionary insights into sequence modifications governing chitin recognition and chitinase inactivity in YKL-40 (HC-gp39, CHI3L1) J. Biol. Chem. 2024;300:107365. doi: 10.1016/j.jbc.2024.107365. PubMed DOI PMC

Renkema G.H., Boot R.G., Strijland A., Donker-Koopman W.E., van den Berg M., Muijsers A.O., Aerts J.M. Synthesis, sorting, and processing into distinct isoforms of human macrophage chitotriosidase. Eur. J. Biochem. 1997;244:279–285. doi: 10.1111/j.1432-1033.1997.00279.x. PubMed DOI

Tjoelker L.W., Gosting L., Frey S., Hunter C.L., Trong H.L., Steiner B., Brammer H., Gray P.W. Structural and functional definition of the human chitinase chitin-binding domain. J. Biol. Chem. 2000;275:514–520. doi: 10.1074/jbc.275.1.514. PubMed DOI

Kashimura A., Okawa K., Ishikawa K., Kida Y., Iwabuchi K., Matsushima Y., Sakaguchi M., Sugahara Y., Oyama F. Protein A-mouse acidic mammalian chitinase-V5-His expressed in periplasmic space of Escherichia coli possesses chitinase functions comparable to CHO-expressed protein. PLoS ONE. 2013;8:e78669. doi: 10.1371/journal.pone.0078669. PubMed DOI PMC

Kashimura A., Kimura M., Okawa K., Suzuki H., Ukita A., Wakita S., Okazaki K., Ohno M., Bauer P.O., Sakaguchi M., et al. Functional properties of the catalytic domain of mouse acidic mammalian chitinase expressed in Escherichia coli. Int. J. Mol. Sci. 2015;16:4028–4042. doi: 10.3390/ijms16024028. PubMed DOI PMC

Tabata E., Kashimura A., Wakita S., Sakaguchi M., Sugahara Y., Imamura Y., Shimizu H., Matoska V., Bauer P.O., Oyama F. Acidic chitinase-chitin complex is dissociated in a competitive manner by acetic acid: Purification of natural enzyme for supplementation purposes. Int. J. Mol. Sci. 2018;19:362. doi: 10.3390/ijms19020362. PubMed DOI PMC

Lienemann M., Boer H., Paananen A., Cottaz S., Koivula A. Toward understanding of carbohydrate binding and substrate specificity of a glycosyl hydrolase 18 family (GH-18) chitinase from Trichoderma harzianum. Glycobiology. 2009;19:1116–1126. doi: 10.1093/glycob/cwp102. PubMed DOI

Yamanaka D., Suzuki K., Kimura M., Oyama F., Adachi Y. Functionally modified chitotriosidase catalytic domain for chitin detection based on split-luciferase complementation. Carbohydr. Polym. 2022;282:119125. doi: 10.1016/j.carbpol.2022.119125. PubMed DOI

Kim D.H., Park H.J., Lim S., Koo J.H., Lee H.G., Choi J.O., Oh J.H., Ha S.J., Kang M.J., Lee C.M., et al. Regulation of chitinase-3-like-1 in T cell elicits Th1 and cytotoxic responses to inhibit lung metastasis. Nat. Commun. 2018;9:503. doi: 10.1038/s41467-017-02731-6. PubMed DOI PMC

Ohno M., Kida Y., Sakaguchi M., Sugahara Y., Oyama F. Establishment of a quantitative PCR system for discriminating chitinase-like proteins: Catalytically inactive breast regression protein-39 and Ym1 are constitutive genes in mouse lung. BMC Mol. Biol. 2014;15:23. doi: 10.1186/1471-2199-15-23. PubMed DOI PMC

Ohno M., Bauer P.O., Kida Y., Sakaguchi M., Sugahara Y., Oyama F. Quantitative real-time PCR analysis of YKL-40 and its comparison with mammalian chitinase mRNAs in normal human tissues using a single standard DNA. Int. J. Mol. Sci. 2015;16:9922–9935. doi: 10.3390/ijms16059922. PubMed DOI PMC

Kimura M., Watanabe T., Sekine K., Ishizuka H., Ikejiri A., Sakaguchi M., Kamaya M., Yamanaka D., Matoska V., Bauer P.O., et al. Comparative functional analysis between human and mouse chitotriosidase: Substitution at amino acid 218 modulates the chitinolytic and transglycosylation activity. Int. J. Biol. Macromol. 2020;164:2895–2902. doi: 10.1016/j.ijbiomac.2020.08.173. PubMed DOI

Okawa K., Ohno M., Kashimura A., Kimura M., Kobayashi Y., Sakaguchi M., Sugahara Y., Kamaya M., Kino Y., Bauer P.O., et al. Loss and gain of human acidic mammalian chitinase activity by nonsynonymous SNPs. Mol. Biol. Evol. 2016;33:3183–3193. doi: 10.1093/molbev/msw198. PubMed DOI PMC

Uehara M., Takasaki C., Wakita S., Sugahara Y., Tabata E., Matoska V., Bauer P.O., Oyama F. Crab-eating monkey acidic chitinase (CHIA) efficiently degrades chitin and chitosan under acidic and high-temperature conditions. Molecules. 2022;27:409. doi: 10.3390/molecules27020409. PubMed DOI PMC

Fusetti F., Pijning T., Kalk K.H., Bos E., Dijkstra B.W. Crystal structure and carbohydrate-binding properties of the human cartilage glycoprotein-39. J. Biol. Chem. 2003;278:37753–37760. doi: 10.1074/jbc.M303137200. PubMed DOI

Pettersen E.F., Goddard T.D., Huang C.C., Meng E.C., Couch G.S., Croll T.I., Morris J.H., Ferrin T.E. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2021;30:70–82. doi: 10.1002/pro.3943. PubMed DOI PMC

Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Eberhardt J., Santos-Martins D., Tillack A.F., Forli S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021;61:3891–3898. doi: 10.1021/acs.jcim.1c00203. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace