Acidic Chitinase-Chitin Complex Is Dissociated in a Competitive Manner by Acetic Acid: Purification of Natural Enzyme for Supplementation Purposes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29370114
PubMed Central
PMC5855584
DOI
10.3390/ijms19020362
PII: ijms19020362
Knihovny.cz E-zdroje
- Klíčová slova
- GlcNAc, acetic acid, acidic chitinase, chitin, chitin column, competitive manner, natural enzyme, supplementation purposes, therapeutic agents, urea,
- MeSH
- chitin chemie metabolismus MeSH
- chitinasy chemie metabolismus MeSH
- kur domácí MeSH
- kyselina octová chemie MeSH
- prasata MeSH
- vazba proteinů MeSH
- žaludek enzymologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chitin MeSH
- chitinasy MeSH
- kyselina octová MeSH
Acidic chitinase (Chia) has been implicated in asthma, allergic inflammations, and food processing. We have purified Chia enzymes with striking acid stability and protease resistance from chicken and pig stomach tissues using a chitin column and 8 M urea (urea-Chia). Here, we report that acetic acid is a suitable agent for native Chia purification from the stomach tissues using a chitin column (acetic acid-Chia). Chia protein can be eluted from a chitin column using 0.1 M acetic acid (pH 2.8), but not by using Gly-HCl (pH 2.5) or sodium acetate (pH 4.0 or 5.5). The melting temperatures of Chia are not affected substantially in the elution buffers, as assessed by differential scanning fluorimetry. Interestingly, acetic acid appears to be more effective for Chia-chitin dissociation than do other organic acids with similar structures. We propose a novel concept of this dissociation based on competitive interaction between chitin and acetic acid rather than on acid denaturation. Acetic acid-Chia also showed similar chitinolytic activity to urea-Chia, indicating that Chia is extremely stable against acid, proteases, and denaturing agents. Both acetic acid- and urea-Chia seem to have good potential for supplementation or compensatory purposes in agriculture or even biomedicine.
Bioinova Ltd 142 20 Prague Czech Republic
Department of Chemistry and Life Science Kogakuin University Hachioji Tokyo 192 0015 Japan
RIKEN Center for Life Science Technologies Tsurumi Yokohama 230 0045 Japan
Zobrazit více v PubMed
Khoushab F., Yamabhai M. Chitin research revisited. Mar. Drugs. 2010;8:1988–2012. doi: 10.3390/md8071988. PubMed DOI PMC
Bueter C.L., Specht C.A., Levitz S.M. Innate sensing of chitin and chitosan. PLoS Pathog. 2013;9:e1003080. doi: 10.1371/journal.ppat.1003080. PubMed DOI PMC
Wysokowski M., Petrenko I., Stelling A.L., Stawski D., Jesionowski T., Ehrlich H. Poriferan chitin as a versatile template for extreme biomimetics. Polymers. 2015;7:235–265. doi: 10.3390/polym7020235. DOI
Minke R., Blackwell J. The structure of alpha-chitin. J. Mol. Biol. 1978;120:167–181. doi: 10.1016/0022-2836(78)90063-3. PubMed DOI
Roy J.C., Salaün F., Giraud S., Ferri A., Chen G., Guan J. Solubility of chitin: Solvents, solution behaviors and their related mechanisms, solubility of polysaccharides, dr. Zhenbo xu (ed.) Biochem. Genet. Mol. Biol. 2017:109–127. doi: 10.5772/intechopen.71385. DOI
Bussink A.P., Speijer D., Aerts J.M., Boot R.G. Evolution of mammalian chitinase(-like) members of family 18 glycosyl hydrolases. Genetics. 2007;177:959–970. doi: 10.1534/genetics.107.075846. PubMed DOI PMC
Koch B.E., Stougaard J., Spaink H.P. Keeping track of the growing number of biological functions of chitin and its interaction partners in biomedical research. Glycobiology. 2015;25:469–482. doi: 10.1093/glycob/cwv005. PubMed DOI PMC
Lee C.G., Da Silva C.A., Dela Cruz C.S., Ahangari F., Ma B., Kang M.J., He C.H., Takyar S., Elias J.A. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu. Rev. Physiol. 2011;73:479–501. doi: 10.1146/annurev-physiol-012110-142250. PubMed DOI PMC
Boot R.G., Blommaart E.F., Swart E., Ghauharali-van der Vlugt K., Bijl N., Moe C., Place A., Aerts J.M. Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J. Biol. Chem. 2001;276:6770–6778. doi: 10.1074/jbc.M009886200. PubMed DOI
Boot R.G., Bussink A.P., Verhoek M., de Boer P.A., Moorman A.F., Aerts J.M. Marked differences in tissue-specific expression of chitinases in mouse and man. J. Histochem. Cytochem. 2005;53:1283–1292. doi: 10.1369/jhc.4A6547.2005. PubMed DOI
Ohno M., Tsuda K., Sakaguchi M., Sugahara Y., Oyama F. Chitinase mRNA levels by quantitative pcr using the single standard DNA: Acidic mammalian chitinase is a major transcript in the mouse stomach. PLoS ONE. 2012;7:e50381. doi: 10.1371/journal.pone.0050381. PubMed DOI PMC
Kashimura A., Okawa K., Ishikawa K., Kida Y., Iwabuchi K., Matsushima Y., Sakaguchi M., Sugahara Y., Oyama F. Protein A-mouse acidic mammalian chitinase-V5-His expressed in periplasmic space of Escherichia coli possesses chitinase functions comparable to CHO-expressed protein. PLoS ONE. 2013;8:e78669. doi: 10.1371/journal.pone.0078669. PubMed DOI PMC
Ohno M., Togashi Y., Tsuda K., Okawa K., Kamaya M., Sakaguchi M., Sugahara Y., Oyama F. Quantification of chitinase mRNA levels in human and mouse tissues by real-time PCR: Species-specific expression of acidic mammalian chitinase in stomach tissues. PLoS ONE. 2013;8:e67399. doi: 10.1371/journal.pone.0067399. PubMed DOI PMC
Kashimura A., Kimura M., Okawa K., Suzuki H., Ukita A., Wakita S., Okazaki K., Ohno M., Bauer P.O., Sakaguchi M., et al. Functional properties of the catalytic domain of mouse acidic mammalian chitinase expressed in Escherichia coli. Int. J. Mol. Sci. 2015;16:4028–4042. doi: 10.3390/ijms16024028. PubMed DOI PMC
Ohno M., Kimura M., Miyazaki H., Okawa K., Onuki R., Nemoto C., Tabata E., Wakita S., Kashimura A., Sakaguchi M., et al. Acidic mammalian chitinase is a proteases-resistant glycosidase in mouse digestive system. Sci. Rep. 2016;6:37756. doi: 10.1038/srep37756. PubMed DOI PMC
Tabata E., Kashimura A., Wakita S., Ohno M., Sakaguchi M., Sugahara Y., Kino Y., Matoska V., Bauer P.O., Oyama F. Gastric and intestinal proteases resistance of chicken acidic chitinase nominates chitin-containing organisms for alternative whole edible diets for poultry. Sci. Rep. 2017;7:6662. doi: 10.1038/s41598-017-07146-3. PubMed DOI PMC
Tabata E., Kashimura A., Wakita S., Ohno M., Sakaguchi M., Sugahara Y., Imamura Y., Seki S., Ueda H., Matoska V., et al. Protease resistance of porcine acidic mammalian chitinase under gastrointestinal conditions implies that chitin-containing organisms can be sustainable dietary resources. Sci. Rep. 2017;7:12963. doi: 10.1038/s41598-017-13526-6. PubMed DOI PMC
Zhu Z., Zheng T., Homer R.J., Kim Y.K., Chen N.Y., Cohn L., Hamid Q., Elias J.A. Acidic mammalian chitinase in asthmatic TH2 inflammation and IL-13 pathway activation. Science. 2004;304:1678–1682. doi: 10.1126/science.1095336. PubMed DOI
Reese T.A., Liang H.E., Tager A.M., Luster A.D., Van Rooijen N., Voehringer D., Locksley R.M. Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature. 2007;447:92–96. doi: 10.1038/nature05746. PubMed DOI PMC
Bierbaum S., Nickel R., Koch A., Lau S., Deichmann K.A., Wahn U., Superti-Furga A., Heinzmann A. Polymorphisms and haplotypes of acid mammalian chitinase are associated with bronchial asthma. Am. J. Respir. Crit. Care Med. 2005;172:1505–1509. doi: 10.1164/rccm.200506-890OC. PubMed DOI PMC
Seibold M.A., Reese T.A., Choudhry S., Salam M.T., Beckman K., Eng C., Atakilit A., Meade K., Lenoir M., Watson H.G., et al. Differential enzymatic activity of common haplotypic versions of the human acidic mammalian chitinase protein. J. Biol. Chem. 2009;284:19650–19658. doi: 10.1074/jbc.M109.012443. PubMed DOI PMC
Okawa K., Ohno M., Kashimura A., Kimura M., Kobayashi Y., Sakaguchi M., Sugahara Y., Kamaya M., Kino Y., Bauer P.O., et al. Loss and gain of human acidic mammalian chitinase activity by nonsynonymous SNPs. Mol. Biol. Evol. 2016;33:3183–3193. doi: 10.1093/molbev/msw198. PubMed DOI PMC
Bucolo C., Musumeci M., Maltese A., Drago F., Musumeci S. Effect of chitinase inhibitors on endotoxin-induced uveitis (EIU) in rabbits. Pharmacol. Res. 2008;57:247–252. doi: 10.1016/j.phrs.2008.02.002. PubMed DOI
Musumeci M., Aragona P., Bellin M., Maugeri F., Rania L., Bucolo C., Musumeci S. Acidic mammalian chitinase in dry eye conditions. Cornea. 2009;28:667–672. doi: 10.1097/ICO.0b013e31819bc308. PubMed DOI
Bucolo C., Musumeci M., Musumeci S., Drago F. Acidic mammalian chitinase and the eye: Implications for ocular inflammatory diseases. Front. Pharmacol. 2011;2:43. doi: 10.3389/fphar.2011.00043. PubMed DOI PMC
Cozzarini E., Bellin M., Norberto L., Polese L., Musumeci S., Lanfranchi G., Paoletti M.G. Chit1 and AMCase expression in human gastric mucosa: Correlation with inflammation and Helicobacter pylori infection. Eur. J. Gastroenterol. Hepatol. 2009;21:1119–1126. doi: 10.1097/MEG.0b013e328329742a. PubMed DOI
Nookaew I., Thorell K., Worah K., Wang S., Hibberd M.L., Sjovall H., Pettersson S., Nielsen J., Lundin S.B. Transcriptome signatures in Helicobacter pylori-infected mucosa identifies acidic mammalian chitinase loss as a corpus atrophy marker. BMC Med. Genom. 2013;6:41. doi: 10.1186/1755-8794-6-41. PubMed DOI PMC
Van Dyken S.J., Liang H.E., Naikawadi R.P., Woodruff P.G., Wolters P.J., Erle D.J., Locksley R.M. Spontaneous chitin accumulation in airways and age-related fibrotic lung disease. Cell. 2017;169:497.e413–509.e413. doi: 10.1016/j.cell.2017.03.044. PubMed DOI PMC
Tabata E., Kashimura A., Kikuchi A., Masuda H., Miyahara R., Hiruma Y., Wakita S., Ohno M., Sakaguchi M., Sugahara Y., et al. Chitin digestibility is dependent on feeding behaviors, which determine acidic chitinase mrna levels in mammalian and poultry stomachs. Sci. Rep. 2018;8:1461. doi: 10.1038/s41598-018-19940-8. PubMed DOI PMC
Cheba B. Microbial chitinases purification: Conventional protocols and affinity based strategies. World J. Fish Mar. Sci. 2015;7:458–461.
Ikeda M., Miyauchi K., Matsumiya M. Purification and characterization of a 56 kda chitinase isozyme (PaChiB) from the stomach of the silver croaker, Pennahia argentatus. Biosci. Biotechnol. Biochem. 2012;76:971–979. doi: 10.1271/bbb.110989. PubMed DOI
Taira T., Ohdomari A., Nakama N., Shimoji M., Ishihara M. Characterization and antifungal activity of gazyumaru (Ficus microcarpa) latex chitinases: Both the chitin-binding and the antifungal activities of class I chitinase are reinforced with increasing ionic strength. Biosci. Biotechnol. Biochem. 2005;69:811–818. doi: 10.1271/bbb.69.811. PubMed DOI
Hashimoto M., Ikegami T., Seino S., Ohuchi N., Fukada H., Sugiyama J., Shirakawa M., Watanabe T. Expression and characterization of the chitin-binding domain of chitinase A1 from Bacillus circulans WL-12. J. Bacteriol. 2000;182:3045–3054. doi: 10.1128/JB.182.11.3045-3054.2000. PubMed DOI PMC
Lobo M.D., Silva F.D., Landim P.G., da Cruz P.R., de Brito T.L., de Medeiros S.C., Oliveira J.T., Vasconcelos I.M., Pereira H.D., Grangeiro T.B. Expression and efficient secretion of a functional chitinase from Chromobacterium violaceum in Escherichia coli. BMC Biotechnol. 2013;13:46. doi: 10.1186/1472-6750-13-46. PubMed DOI PMC
Gupta R., Deswal R. Refolding of beta-stranded class I chitinases of Hippophae rhamnoides enhances the antifreeze activity during cold acclimation. PLoS ONE. 2014;9:e91723. PubMed PMC
Suzuki M., Morimatsu M., Yamashita T., Iwanaga T., Syuto B. A novel serum chitinase that is expressed in bovine liver. FEBS Lett. 2001;506:127–130. doi: 10.1016/S0014-5793(01)02893-9. PubMed DOI
Cheba B.A., Zaghloul T.I., EL-Mahdy A.R., HishamEL-Massry M. Affinity purification and immobilization of chitinase from Bacillus sp.R2. Procedia Technol. 2015;19:958–964. doi: 10.1016/j.protcy.2015.02.137. DOI
Onaga S., Taira T. A new type of plant chitinase containing LysM domains from a fern (Pteris ryukyuensis): Roles of LysM domains in chitin binding and antifungal activity. Glycobiology. 2008;18:414–423. doi: 10.1093/glycob/cwn018. PubMed DOI
Niesen F.H., Berglund H., Vedadi M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat. Protoc. 2007;2:2212–2221. doi: 10.1038/nprot.2007.321. PubMed DOI
Liu S., Sun J., Yu L., Zhang C., Bi J., Zhu F., Qu M., Jiang C., Yang Q. Extraction and characterization of chitin from the beetle Holotrichia parallela motschulsky. Molecules. 2012;17:4604–4611. doi: 10.3390/molecules17044604. PubMed DOI PMC
Jackson P. The use of polyacrylamide-gel electrophoresis for the high-resolution separation of reducing saccharides labelled with the fluorophore 8-aminonaphthalene-1,3,6-trisulphonic acid. Detection of picomolar quantities by an imaging system based on a cooled charge-coupled device. Biochem. J. 1990;270:705–713. PubMed PMC
Wakita S., Kimura M., Kato N., Kashimura A., Kobayashi S., Kanayama N., Ohno M., Honda S., Sakaguchi M., Sugahara Y., et al. Improved fluorescent labeling of chitin oligomers: Chitinolytic properties of acidic mammalian chitinase under somatic tissue pH conditions. Carbohydr. Polym. 2017;164:145–153. doi: 10.1016/j.carbpol.2017.01.095. PubMed DOI
Tjoelker L.W., Gosting L., Frey S., Hunter C.L., Trong H.L., Steiner B., Brammer H., Gray P.W. Structural and functional definition of the human chitinase chitin-binding domain. J. Biol. Chem. 2000;275:514–520. doi: 10.1074/jbc.275.1.514. PubMed DOI
Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 1991;280 Pt 2:309–316. doi: 10.1042/bj2800309. PubMed DOI PMC
Cantarel B.L., Coutinho P.M., Rancurel C., Bernard T., Lombard V., Henrissat B. The Carbohydrate-Active EnZymes database (CAZy): An expert resource for Glycogenomics. Nucleic Acids Res. 2009;37:D233–D238. doi: 10.1093/nar/gkn663. PubMed DOI PMC
Hsieh Y.C., Wu Y.J., Chiang T.Y., Kuo C.Y., Shrestha K.L., Chao C.F., Huang Y.C., Chuankhayan P., Wu W.G., Li Y.K., et al. Crystal structures of Bacillus cereus NCTU2 chitinase complexes with chitooligomers reveal novel substrate binding for catalysis: A chitinase without chitin binding and insertion domains. J. Biol. Chem. 2010;285:31603–31615. doi: 10.1074/jbc.M110.149310. PubMed DOI PMC
Payne C.M., Baban J., Horn S.J., Backe P.H., Arvai A.S., Dalhus B., Bjoras M., Eijsink V.G., Sorlie M., Beckham G.T., et al. Hallmarks of processivity in glycoside hydrolases from crystallographic and computational studies of the Serratia marcescens chitinases. J. Biol. Chem. 2012;287:36322–36330. doi: 10.1074/jbc.M112.402149. PubMed DOI PMC
Rao F.V., Houston D.R., Boot R.G., Aerts J.M., Sakuda S., van Aalten D.M. Crystal structures of allosamidin derivatives in complex with human macrophage chitinase. J. Biol. Chem. 2003;278:20110–20116. doi: 10.1074/jbc.M300362200. PubMed DOI
Boland J.S., Davidson P.M., Weiss J. Enhanced inhibition of Escherichia coli O157:H7 by lysozyme and chelators. J. Food Prot. 2003;66:1783–1789. doi: 10.4315/0362-028X-66.10.1783. PubMed DOI
Pattengale P.K., Stewart T.A., Leder A., Sinn E., Muller W., Tepler I., Schmidt E., Leder P. Animal models of human disease. Pathology and molecular biology of spontaneous neoplasms occurring in transgenic mice carrying and expressing activated cellular oncogenes. Am. J. Pathol. 1989;135:39–61. PubMed PMC
Litten-Brown J.C., Corson A.M., Clarke L. Porcine models for the metabolic syndrome, digestive and bone disorders: A general overview. Animal. 2010;4:899–920. doi: 10.1017/S1751731110000200. PubMed DOI
Richter B., Neises G. ‘Human’ insulin versus animal insulin in people with diabetes mellitus. Cochrane Database Syst. Rev. 2003:CD003816. doi: 10.1016/S0889-8529(02)00020-8. PubMed DOI
Sakaguchi M., Shimodaira S., Ishida S.N., Amemiya M., Honda S., Sugahara Y., Oyama F., Kawakita M. Identification of GH15 family thermophilic archaeal trehalases that function within a narrow acidic-pH range. Appl. Environ. Microbiol. 2015;81:4920–4931. doi: 10.1128/AEM.00956-15. PubMed DOI PMC
Noninsect-Based Diet Leads to Structural and Functional Changes of Acidic Chitinase in Carnivora