Mouse Acidic Chitinase Effectively Degrades Random-Type Chitosan to Chitooligosaccharides of Variable Lengths under Stomach and Lung Tissue pH Conditions

. 2021 Nov 05 ; 26 (21) : . [epub] 20211105

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34771117

Chitooligosaccharides exhibit several biomedical activities, such as inflammation and tumorigenesis reduction in mammals. The mechanism of the chitooligosaccharides' formation in vivo has been, however, poorly understood. Here we report that mouse acidic chitinase (Chia), which is widely expressed in mouse tissues, can produce chitooligosaccharides from deacetylated chitin (chitosan) at pH levels corresponding to stomach and lung tissues. Chia degraded chitin to produce N-acetyl-d-glucosamine (GlcNAc) dimers. The block-type chitosan (heterogenous deacetylation) is soluble at pH 2.0 (optimal condition for mouse Chia) and was degraded into chitooligosaccharides with various sizes ranging from di- to nonamers. The random-type chitosan (homogenous deacetylation) is soluble in water that enables us to examine its degradation at pH 2.0, 5.0, and 7.0. Incubation of these substrates with Chia resulted in the more efficient production of chitooligosaccharides with more variable sizes was from random-type chitosan than from the block-type form of the molecule. The data presented here indicate that Chia digests chitosan acquired by homogenous deacetylation of chitin in vitro and in vivo. The degradation products may then influence different physiological or pathological processes. Our results also suggest that bioactive chitooligosaccharides can be obtained conveniently using homogenously deacetylated chitosan and Chia for various biomedical applications.

Zobrazit více v PubMed

Wysokowski M., Petrenko I., Stelling A.L., Stawski D., Jesionowski T., Ehrlich H. Poriferan chitin as a versatile template for extreme biomimetics. Polymers. 2015;7:235–265. doi: 10.3390/polym7020235. DOI

Calström D. The crystal structure of α-chitin (poly-N-acetyl-D-glucosamine) J. Biophys. Biochem. Cytol. 1957;3:669–683. doi: 10.1083/jcb.3.5.669. PubMed DOI PMC

Sikorski P., Hori R., Wada M. Revisit of alpha-chitin crystal structure using high resolution X-ray diffraction data. Biomacromolecules. 2009;10:1100–1105. doi: 10.1021/bm801251e. PubMed DOI

Minke R., Blackwell J. The structure of α-chitin. J. Mol. Biol. 1978;120:167–181. doi: 10.1016/0022-2836(78)90063-3. PubMed DOI

Rudall K., Kenchington W. The chitin system. Biol. Rev. 1973;49:597–636.

Kaya M., Mujtaba M., Ehrlich H., Salaberria A.M., Baran T., Amemiya C.T., Galli R., Akyuz L., Sargin I., Labidi J. On chemistry of γ-chitin. Carbohydr. Polym. 2017;176:177–186. doi: 10.1016/j.carbpol.2017.08.076. PubMed DOI

Sannan T., Kurita K., Iwakura Y. Studies on chitin, 2. Effect of deacetylation on solubility. Die Makromol. Chem. Macromol. Chem. Phys. 1976;177:3589–3600.

Kurita K., Sannan T., Iwakura Y. Studies on chitin, 4. Evidence for formation of block and random copolymers of N-acetyl-D-glucosamine and D-glucosamine by hetero- and homogeneous hydrolyses. Macromol. Chem. Phys. 1977;178:3197–3202.

Bussink A.P., Speijer D., Aerts J.M., Boot R.G. Evolution of mammalian chitinase(-like) members of family 18 glycosyl hydrolases. Genetics. 2007;177:959–970. PubMed PMC

Bueter C.L., Specht C.A., Levitz S.M. Innate sensing of chitin and chitosan. PLoS Pathog. 2013;9:e1003080. doi: 10.1371/journal.ppat.1003080. PubMed DOI PMC

Lee C.G., Da Silva C.A., Dela Cruz C.S., Ahangari F., Ma B., Kang M.J., He C.H., Takyar S., Elias J.A. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu. Rev. Physiol. 2011;73:479–501. doi: 10.1146/annurev-physiol-012110-142250. PubMed DOI PMC

Koch B.E., Stougaard J., Spaink H.P. Keeping track of the growing number of biological functions of chitin and its interaction partners in biomedical research. Glycobiology. 2015;25:469–482. doi: 10.1093/glycob/cwv005. PubMed DOI PMC

Boot R.G., Blommaart E.F., Swart E., Ghauharali-van der Vlugt K., Bijl N., Moe C., Place A., Aerts J.M. Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J. Biol. Chem. 2001;276:6770–6778. doi: 10.1074/jbc.M009886200. PubMed DOI

Zhu Z., Zheng T., Homer R.J., Kim Y.K., Chen N.Y., Cohn L., Hamid Q., Elias J.A. Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation. Science. 2004;304:1678–1682. doi: 10.1126/science.1095336. PubMed DOI

Reese T.A., Liang H.E., Tager A.M., Luster A.D., Van Rooijen N., Voehringer D., Locksley R.M. Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature. 2007;447:92–96. PubMed PMC

Bucolo C., Musumeci M., Maltese A., Drago F., Musumeci S. Effect of chitinase inhibitors on endotoxin-induced uveitis (EIU) in rabbits. Pharmacol. Res. 2008;57:247–252. doi: 10.1016/j.phrs.2008.02.002. PubMed DOI

Musumeci M., Aragona P., Bellin M., Maugeri F., Rania L., Bucolo C., Musumeci S. Acidic mammalian chitinase in dry eye conditions. Cornea. 2009;28:667–672. doi: 10.1097/ICO.0b013e31819bc308. PubMed DOI

Bucolo C., Musumeci M., Musumeci S., Drago F. Acidic mammalian chitinase and the eye: Implications for ocular inflammatory diseases. Front. Pharmacol. 2011;2:43. doi: 10.3389/fphar.2011.00043. PubMed DOI PMC

Cozzarini E., Bellin M., Norberto L., Polese L., Musumeci S., Lanfranchi G., Paoletti M.G. CHIT1 and AMCase expression in human gastric mucosa: Correlation with inflammation and Helicobacter pylori infection. Eur. J. Gastroenterol. Hepatol. 2009;21:1119–1126. PubMed

Nookaew I., Thorell K., Worah K., Wang S., Hibberd M.L., Sjovall H., Pettersson S., Nielsen J., Lundin S.B. Transcriptome signatures in Helicobacter pylori-infected mucosa identifies acidic mammalian chitinase loss as a corpus atrophy marker. BMC Med. Genom. 2013;6:41. doi: 10.1186/1755-8794-6-41. PubMed DOI PMC

Bierbaum S., Nickel R., Koch A., Lau S., Deichmann K.A., Wahn U., Superti-Furga A., Heinzmann A. Polymorphisms and haplotypes of acid mammalian chitinase are associated with bronchial asthma. Am. J. Respir. Crit. Care Med. 2005;172:1505–1509. PubMed PMC

Seibold M.A., Reese T.A., Choudhry S., Salam M.T., Beckman K., Eng C., Atakilit A., Meade K., Lenoir M., Watson H.G., et al. Differential enzymatic activity of common haplotypic versions of the human acidic mammalian chitinase protein. J. Biol. Chem. 2009;284:19650–19658. doi: 10.1074/jbc.M109.012443. PubMed DOI PMC

Okawa K., Ohno M., Kashimura A., Kimura M., Kobayashi Y., Sakaguchi M., Sugahara Y., Kamaya M., Kino Y., Bauer P.O., et al. Loss and gain of human acidic mammalian chitinase activity by nonsynonymous SNPs. Mol. Biol. Evol. 2016;33:3183–3193. doi: 10.1093/molbev/msw198. PubMed DOI PMC

Fitz L.J., DeClercq C., Brooks J., Kuang W., Bates B., Demers D., Winkler A., Nocka K., Jiao A., Greco R.M., et al. Acidic mammalian chitinase is not a critical target for allergic airway disease. Am. J. Respir. Cell Mol. Biol. 2012;46:71–79. doi: 10.1165/rcmb.2011-0095OC. PubMed DOI

Van Dyken S.J., Liang H.E., Naikawadi R.P., Woodruff P.G., Wolters P.J., Erle D.J., Locksley R.M. Spontaneous chitin accumulation in airways and age-related fibrotic lung disease. Cell. 2017;169:497–509. doi: 10.1016/j.cell.2017.03.044. PubMed DOI PMC

Ohno M., Tsuda K., Sakaguchi M., Sugahara Y., Oyama F. Chitinase mRNA levels by quantitative PCR using the single standard DNA: Acidic mammalian chitinase is a major transcript in the mouse stomach. PLoS ONE. 2012;7:e50381. PubMed PMC

Ohno M., Togashi Y., Tsuda K., Okawa K., Kamaya M., Sakaguchi M., Sugahara Y., Oyama F. Quantification of chitinase mRNA levels in human and mouse tissues by real-time PCR: Species-specific expression of acidic mammalian chitinase in stomach tissues. PLoS ONE. 2013;8:e67399. doi: 10.1371/journal.pone.0067399. PubMed DOI PMC

Kashimura A., Okawa K., Ishikawa K., Kida Y., Iwabuchi K., Matsushima Y., Sakaguchi M., Sugahara Y., Oyama F. Protein A-mouse acidic mammalian chitinase-V5-His expressed in periplasmic space of Escherichia coli possesses chitinase functions comparable to CHO-expressed protein. PLoS ONE. 2013;8:e78669. doi: 10.1371/journal.pone.0078669. PubMed DOI PMC

Kashimura A., Kimura M., Okawa K., Suzuki H., Ukita A., Wakita S., Okazaki K., Ohno M., Bauer P.O., Sakaguchi M., et al. Functional properties of the catalytic domain of mouse acidic mammalian chitinase expressed in Escherichia coli. Int. J. Mol. Sci. 2015;16:4028–4042. doi: 10.3390/ijms16024028. PubMed DOI PMC

Wakita S., Kimura M., Kato N., Kashimura A., Kobayashi S., Kanayama N., Ohno M., Honda S., Sakaguchi M., Sugahara Y., et al. Improved fluorescent labeling of chitin oligomers: Chitinolytic properties of acidic mammalian chitinase under somatic tissue pH conditions. Carbohydr. Polym. 2017;164:145–153. doi: 10.1016/j.carbpol.2017.01.095. PubMed DOI

Kimura M., Umeyama T., Wakita S., Okawa K., Sakaguchi M., Matoska V., Bauer P.O., Oyama F. Direct comparison of chitinolytic properties and determination of combinatory effects of mouse chitotriosidase and acidic mammalian chitinase. Int. J. Biol. Macromol. 2019;134:882–890. doi: 10.1016/j.ijbiomac.2019.05.097. PubMed DOI

Wakita S., Kobayashi S., Kimura M., Kashimura A., Honda S., Sakaguchi M., Sugahara Y., Kamaya M., Matoska V., Bauer P.O., et al. Mouse acidic mammalian chitinase exhibits transglycosylation activity at somatic tissue pH. FEBS Lett. 2017;591:3310–3318. doi: 10.1002/1873-3468.12798. PubMed DOI

Ohno M., Kimura M., Miyazaki H., Okawa K., Onuki R., Nemoto C., Tabata E., Wakita S., Kashimura A., Sakaguchi M., et al. Acidic mammalian chitinase is a proteases-resistant glycosidase in mouse digestive system. Sci. Rep. 2016;6:37756. doi: 10.1038/srep37756. PubMed DOI PMC

Tabata E., Kashimura A., Wakita S., Ohno M., Sakaguchi M., Sugahara Y., Kino Y., Matoska V., Bauer P.O., Oyama F. Gastric and intestinal proteases resistance of chicken acidic chitinase nominates chitin-containing organisms for alternative whole edible diets for poultry. Sci. Rep. 2017;7:6662. doi: 10.1038/s41598-017-07146-3. PubMed DOI PMC

Tabata E., Kashimura A., Wakita S., Ohno M., Sakaguchi M., Sugahara Y., Imamura Y., Seki S., Ueda H., Matoska V., et al. Protease resistance of porcine acidic mammalian chitinase under gastrointestinal conditions implies that chitin-containing organisms can be sustainable dietary resources. Sci. Rep. 2017;7:12963. PubMed PMC

Tabata E., Kashimura A., Kikuchi A., Masuda H., Miyahara R., Hiruma Y., Wakita S., Ohno M., Sakaguchi M., Sugahara Y., et al. Chitin digestibility is dependent on feeding behaviors, which determine acidic chitinase mRNA levels in mammalian and poultry stomachs. Sci. Rep. 2018;8:1461. doi: 10.1038/s41598-018-19940-8. PubMed DOI PMC

Tabata E., Kashimura A., Uehara M., Wakita S., Sakaguchi M., Sugahara Y., Yurimoto T., Sasaki E., Matoska V., Bauer P.O., et al. High expression of acidic chitinase and chitin digestibility in the stomach of common marmoset (Callithrix jacchus), an insectivorous nonhuman primate. Sci. Rep. 2019;9:159. doi: 10.1038/s41598-018-36477-y. PubMed DOI PMC

Aam B.B., Heggset E.B., Norberg A.L., Sorlie M., Varum K.M., Eijsink V.G. Production of chitooligosaccharides and their potential applications in medicine. Mar. Drugs. 2010;8:1482–1517. doi: 10.3390/md8051482. PubMed DOI PMC

Khoushab F., Yamabhai M. Chitin research revisited. Mar. Drugs. 2010;8:1988–2012. PubMed PMC

Masuda S., Azuma K., Kurozumi S., Kiyose M., Osaki T., Tsuka T., Itoh N., Imagawa T., Minami S., Sato K., et al. Anti-tumor properties of orally administered glucosamine and N-acetyl-D-glucosamine oligomers in a mouse model. Carbohydr. Polym. 2014;111:783–787. PubMed

Azuma K., Osaki T., Minami S., Okamoto Y. Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides. J. Funct. Biomater. 2015;6:33–49. doi: 10.3390/jfb6010033. PubMed DOI PMC

Kazami N., Sakaguchi M., Mizutani D., Masuda T., Wakita S., Oyama F., Kawakita M., Sugahara Y. A simple procedure for preparing chitin oligomers through acetone precipitation after hydrolysis in concentrated hydrochloric acid. Carbohydr. Polym. 2015;132:304–310. doi: 10.1016/j.carbpol.2015.05.082. PubMed DOI

Cabrera J.C., Cutsem P.V. Preparation of chitooligosaccharides with degree of polymerization higher than 6 by acid or enzymatic degradation of chitosan. Biochem. Eng. J. 2005;25:165–172. doi: 10.1016/j.bej.2005.04.025. DOI

Vishu Kumar A.B., Varadaraj M.C., Gowda L.R., Tharanathan R.N. Low molecular weight chitosans–preparation with the aid of pronase, characterization and their bactericidal activity towards Bacillus cereus and Escherichia coli. Biochim. Biophys. Acta. 2007;1770:495–505. doi: 10.1016/j.bbagen.2006.12.003. PubMed DOI

Kumar B.A., Tharanathan R.N. A comparative study on depolymerization of chitosan by proteolytic enzymes. Carbohydr. Polym. 2004;58:275–283.

Roncal T., Oviedo A., Lopez de Armentia I., Fernandez L., Villaran M.C. High yield production of monomer-free chitosan oligosaccharides by pepsin catalyzed hydrolysis of a high deacetylation degree chitosan. Carbohydr. Res. 2007;342:2750–2756. doi: 10.1016/j.carres.2007.08.023. PubMed DOI

Tabata E., Wakita S., Kashimura A., Sugahara Y., Matoska V., Bauer P.O., Oyama F. Residues of acidic chitinase cause chitinolytic activity degrading chitosan in porcine pepsin preparations. Sci. Rep. 2019;9:15609. doi: 10.1038/s41598-019-52136-2. PubMed DOI PMC

Pacheco N., Garnica-Gonzalez M., Gimeno M., Barzana E., Trombotto S., David L., Shirai K. Structural characterization of chitin and chitosan obtained by biological and chemical methods. Biomacromolecules. 2011;12:3285–3290. doi: 10.1021/bm200750t. PubMed DOI

Chien R.C., Yen M.T., Mau J.L. Antimicrobial and antitumor activities of chitosan from shiitake stipes, compared to commercial chitosan from crab shells. Carbohydr. Polym. 2016;138:259–264. doi: 10.1016/j.carbpol.2015.11.061. PubMed DOI

Qiao Y., Bai X.F., Du Y.G. Chitosan oligosaccharides protect mice from LPS challenge by attenuation of inflammation and oxidative stress. Int. Immunopharmacol. 2011;11:121–127. doi: 10.1016/j.intimp.2010.10.016. PubMed DOI

Shen K.T., Chen M.H., Chan H.Y., Jeng J.H., Wang Y.J. Inhibitory effects of chitooligosaccharides on tumor growth and metastasis. Food Chem. Toxicol. 2009;47:1864–1871. doi: 10.1016/j.fct.2009.04.044. PubMed DOI

Jackson P. The use of polyacrylamide-gel electrophoresis for the high-resolution separation of reducing saccharides labelled with the fluorophore 8-aminonaphthalene-1,3,6-trisulphonic acid. Detection of picomolar quantities by an imaging system based on a cooled charge-coupled device. Biochem. J. 1990;270:705–713. PubMed PMC

Islam M.M., Yang C.J. Efficacy of mealworm and super mealworm larvae probiotics as an alternative to antibiotics challenged orally with Salmonella and E. coli infection in broiler chicks. Poult. Sci. 2017;96:27–34. doi: 10.3382/ps/pew220. PubMed DOI

Jin X.H., Heo P.S., Hong J.S., Kim N.J., Kim Y.Y. Supplementation of Dried Mealworm (Tenebrio molitor larva) on Growth Performance, Nutrient Digestibility and Blood Profiles in Weaning Pigs. Asian-Australas. J. Anim. Sci. 2016;29:979–986. doi: 10.5713/ajas.15.0535. PubMed DOI PMC

Van Dyken S.J., Locksley R.M. Chitins and chitinase activity in airway diseases. J. Allergy Clin. Immunol. 2018;142:364–369. doi: 10.1016/j.jaci.2018.06.017. PubMed DOI PMC

Uehara M., Tabata E., Okuda M., Maruyama Y., Matoska V., Bauer P.O., Oyama F. Robust chitinolytic activity of crab-eating monkey (Macaca fascicularis) acidic chitinase under a broad pH and temperature range. Sci. Rep. 2021;11:15470. doi: 10.1038/s41598-021-95010-w. PubMed DOI PMC

Kimura M., Wakita S., Ishikawa K., Sekine K., Yoshikawa S., Sato A., Okawa K., Kashimura A., Sakaguchi M., Sugahara Y., et al. Functional properties of mouse chitotriosidase expressed in the periplasmic space of Escherichia coli. PLoS ONE. 2016;11:e0164367. doi: 10.1371/journal.pone.0164367. PubMed DOI PMC

Kimura M., Umeyama T., Wakita S., Okawa K., Sakaguchi M., Matoska V., Bauer P.O., Oyama F. Quantification of chitooligosaccharides by FACE method: Determination of combinatory effects of mouse chitinases. MethodsX. 2020;7:100881. doi: 10.1016/j.mex.2020.100881. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...